
1

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

Introduction

In this chapter

Who Should Read This Book? 2

Before You Start Reading 3

What This Book Covers 3

Conventions Used in This Book 6

Time to Get Started 7

I N T R O D U C T I O N

Untitled-3 2/18/99, 1:26 PM1

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

2 Introduction

Visual C++ is a powerful and complex tool for building 32-bit applications for Window 95 and
Windows NT. These applications are much larger and more complex than their predecessors
for 16-bit Windows or older programs that didn’t use a graphical user interface. Yet, as pro-
gram size and complexity has increased, programmer effort has decreased, at least for pro-
grammers who are using the right tools.

Visual C++ is one of the right tools. With its code-generating wizards, it can produce the shell
of a working Windows application in seconds. The class library included with Visual C++, the
Microsoft Foundation Classes (MFC), has become the industry standard for Windows soft-
ware development in a variety of C++ compilers. The visual editing tools make layout of menus
and dialogs a snap. The time you invest in learning to use this product will pay for itself on your
first Windows programming project.

Who Should Read This Book?
This book teaches you how to use Visual C++ to build 32-bit Windows applications, including
database applications, Internet applications, and applications that tap the power of the ActiveX
technology. That’s a tall order, and to fit all that in less than a thousand pages, some things
have to go. This book does not teach you the following:

■ The C++ programming language: You should already be familiar with C++. Appendix A,
“C++ Review and Object-Oriented Concepts,” is a review for those whose C++ skills need
a boost.

■ How to use Windows applications: You should be a proficient Windows user, able to resize
and move windows, double-click, and recognize familiar toolbar buttons, for example.

■ How to use Visual C++ as a C compiler: If you already work in C, you can use Visual C++
as your compiler, but new developers should take the plunge into C++.

■ Windows programming without MFC: This, too, is okay for those who know it, but not
something to learn now that MFC exists.

■ The internals of ActiveX programming: This is referred to in the ActiveX chapters, which
tell you only what you need to know to make it work.

You should read this book if you fit one of these categories:

■ You know some C++ and some Windows programming techniques and are new to Visual
C++. You will learn the product much more quickly than you would if you just tried
writing programs.

■ You’ve been working with previous versions of Visual C++. Many times users learn one
way to do things and end up overlooking some of the newer productivity features.

■ You’ve been working with Visual C++ 6 for a while and are beginning to suspect you’re
doing things the hard way. Maybe you are.

■ You work in Visual C++ 6 regularly, and you need to add a feature to your product. For
tasks like Help, printing, and threading, you’ll find a “hand up” to get started.

Untitled-3 2/18/99, 1:26 PM2

3

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

Before You Start Reading
You need a copy of Visual C++ 6 and must have it installed. The installation process is simple
and easy to follow, so it’s not covered in this book.

Before you buy Visual C++ 6, you need a 32-bit Windows operating system: Windows 95, Win-
dows 98, or Windows NT Server or Workstation. That means your machine must be reason-
ably powerful and modern—say, a 486 or better for your processor, at least 16MB of RAM and
500MB of disk space, and a screen that can do 800 × 600 pixel displays or even finer resolu-
tions. The illustrations in this book were all prepared at a resolution of 800 × 600 and, as you
will see, at times things become a little crowded. The sample code is all available on the Web,
so following along will be simpler if you also have a modem and access to the Web.

Finally, you need to make a promise to yourself—that you will follow along in Visual C++ as you
read this book, clicking and typing and trying things out. You don’t need to type all the code if
you don’t want to: It’s all on the Web site for you to look at. However, you should be ready to
open the files and look at the code as you go.

What This Book Covers
A topic such as Windows programming in Visual C++ covers a lot of ground. This book con-
tains 28 chapters and 6 reference appendixes (A to F). Be sure to look over the titles of the
appendixes now and turn to them whenever you are unsure how to do something. They pro-
vide valuable references for the following:

■ Appendix A, “C++ Review and Object-Oriented Concepts,” reminds you of the basics of
the C++ language and the principles and benefits of object-oriented programming.

■ Appendix B, “Windows Programming Review and a Look Inside CWnd,” covers the
specifics of Windows programming that are now hidden from you by MFC classes such
as CWnd.

■ Appendix C, “The Visual Studio User Interface, Menus, and Toolbars,” explains all the
menus, toolbars, editing areas on the screens, shortcuts, and so on, that make up the
highly complicated and richly powerful interface between you and Visual Studio.

■ Appendix D, “Debugging,” explains the extra menus, windows, toolbars, and commands
involved in debugging a running application.

■ Appendix E, “MFC Macros and Globals,” summarizes the many preprocessor macros
and global variables and functions sprinkled throughout code generated by the
Developer Studio wizards.

■ Appendix F, “Useful Classes,” describes the classes used throughout the book to
manipulate dates, strings, and collections of objects.

Depending on your background and willingness to poke around in menus and the online help,
you might just skim these appendixes once and never return, or you might fill them full of
bookmarks and yellow stickies. Although they don’t lead you through the sample applications,
they will teach you a lot.

What This Book Covers

Untitled-3 2/18/99, 1:26 PM3

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

4 Introduction

The mainstream of the book is in Chapters 1 through 28. Each chapter teaches you an impor-
tant programming task or sometimes two closely related tasks, such as building a taskbar or
adding Help to an application. Detailed instructions show you how to build a working applica-
tion, or several working applications, in each chapter.

The first nine chapters cover concepts found in almost every Windows application; after that,
the tasks become less general. Here’s a brief overview of some of the work that is covered.

Dialogs and Controls
What Windows program doesn’t have a dialog box? an edit box? a button? Dialog boxes and
controls are vital to Windows user interfaces, and all of them, even the simple button or piece
of static text, are windows. The common controls enable you to take advantage of the learning
time users have devoted to other programs and the programming time developers have put in
on the operating system in order to use the same File Open dialog box as everybody else, the
same hierarchical tree control, and so on. Learn more about all these controls in Chapters 2,
“Dialogs and Controls,” and 10, “Windows 95 Common Controls.”

Messages and Commands
Messages form the heart of Windows programming. Whenever anything happens on a Win-
dows machine, such as a user clicking the mouse or pressing a key, a message is triggered and
sent to one or more windows, which do something about it. Visual C++ makes it easy for you to
write code that catches these messages and acts on them. Chapter 3, “Messages and Com-
mands,” explains the concept of messages and how MFC and other aspects of Visual C++ en-
able you to deal with them.

The View/Document Paradigm
A paradigm is a model, a way of looking at things. The designers of MFC chose to design the
framework based on the assumption that every program has something it wants to save in a
file. That collection of information is referred to as the document. A view is one way of looking
at a document. There are many advantages to separating the view and the document, explained
further in Chapter 4, “Documents and Views.” MFC provides classes from which to inherit
your document class and your view class, so that common programming tasks such as imple-
menting scrollbars are no longer your problem.

Drawing Onscreen
No matter how smart your Windows program is, if you can’t tell the user what’s going on by
putting some words or pictures onscreen, no one will know what the program has done. A
remarkable amount of the work is automatically done by your view classes (one of the advan-
tages of adopting the document/view paradigm), but at times you have to do the drawing your-
self. You learn about device contexts, scrolling, and more in Chapter 5, “Drawing on the
Screen.”

Printing on Paper
Adding printing capabilities to your program is sometimes the simplest thing in the world
because the code you use to draw onscreen can be reused to draw on paper. If more than one
page of information is involved, though, things become tricky. Chapter 6, “Printing and Print
Preview,” explains all this, as well as mapping modes, headers and footers, and more.

Untitled-3 2/18/99, 1:26 PM4

5

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

Persistence and File I/O
Some good things are meant to be only temporary, such as the display of a calculator or an
online chat window. However, most programs can save their documents to a file and open and
load that file to re-create a document that has been stored. MFC simplifies this by using ar-
chives and extending the use of the stream I/O operators >> and <<. You learn all about read-
ing and writing to files in Chapter 7, “Persistence and File I/O.”

ActiveX Programming
ActiveX is the successor to OLE, and it’s the technology that facilitates communication be-
tween applications at the object level, enabling you to embed a Word document in an Excel
spreadsheet or to embed any of hundreds of kinds of objects in any ActiveX application.
ActiveX chapters include Chapters 13, “ActiveX Concepts,” 14, “Building an ActiveX Container
Application,” 15, “Building an ActiveX Server Application,” 16, “Building an Automation
Server,” and 17, “Building an ActiveX Control.”

The Internet
Microsoft recognizes that distributed computing, in which work is shared between two or more
computers, is becoming more and more common. Programs need to talk to each other, people
need to send messages across a LAN or around the world, and MFC has classes that support
these kinds of communication. The four Internet chapters in this book are Chapter 18, “Sock-
ets, MAPI, and the Internet,” Chapter 19, “Internet Programming with the WinInet Classes,”
Chapter 20, “Building an Internet ActiveX Control,” and Chapter 21, “The Active Template
Library.”

Database Access
Database programming keeps getting easier. ODBC, Microsoft’s Open DataBase Connectivity
package, enables your code to call API functions that access a huge variety of database files—
Oracle, DBase, an Excel spreadsheet, a plain text file, old legacy mainframe systems using
SQL, whatever! You call a standard name function, and the API provided by the database ven-
dor or a third party handles the translation. The details are in Chapters 22, “Database Access,”
and 23, “SQL and the Enterprise Edition.”

Advanced Material
For developers who have mastered the basics, this book features some advanced chapters to
move your programming skills forward. You will learn how to prevent memory leaks, find
bottlenecks, and locate bugs in your code with the techniques discussed in Chapter 24, “Im-
proving Your Application’s Performance.”

Reuse is a hugely popular concept in software development at the moment, especially with
managers who see a chance to lower their development budget. If you’d like to write reusable
code and components, Chapter 25, “Achieving Reuse with the Gallery and Your Own
AppWizards,” will take you there.

Often C++ programmers are so busy learning the basics of how to make programs work that
they miss the features that make C++ truly powerful. You will learn in Chapter 26, “Exceptions
and Templates,” how to catch errors efficiently and how to use one set of code in many differ-
ent situations.

What This Book Covers

Untitled-3 2/18/99, 1:26 PM5

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

6 Introduction

As user demands for high-performance software continue to multiply, developers must learn
entirely new techniques to produce powerful applications that provide fast response times. For
many developers, writing multithreaded applications is a vital technique. Learn about threading
in Chapter 27, “Multitasking with Windows Threads.”

Chapter 28, “Future Explorations,” introduces you to topics that are definitely not for begin-
ners. Learn how to create console applications, use and build your own DLLs, and work with
Unicode.

Conventions Used in This Book
One thing this book has plenty of is code. Sometimes you need to see only a line or two, so the
code is mixed in with the text, like this:

int SomeFunction(int x, int y);
{
 return x+y;
}

You can tell the difference between code and regular text by the fonts used for each. Some-
times, you’ll see a piece of code that’s too large to mix in with the text: You will find an example
in Listing 0.1.

Listing 0.1

CHostDialog dialog(m_pMainWnd);
 if (dialog.DoModal() == IDOK)
 {
 AppSocket = new CSocket();
 if (AppSocket->Connect(dialog.m_hostname,119))
 {
 while (AppSocket->GetStatus() == CONNECTING)
 {
 YieldControl();
 }
 if (AppSocket->GetStatus() == CONNECTED)
 {
 CString response = AppSocket->GetLine();
 SocketAvailable = TRUE;
 }
 }
 }
 if (!SocketAvailable)
 {
 AfxMessageBox(“Can’t connect to server. Please
 ➥ quit.”,MB_OK|MB_ICONSTOP);
 }

The character on the next-to-last line (➥) is called the code continuation character. It indicates a
place where a line of code had to be broken to fit it on the page, but in reality the line doesn’t

Untitled-3 2/18/99, 1:26 PM6

7

b3/a3/swg#4 SEUsing Visual C++6 #1539-2 7.20.98 Ayanna intro LP#3

break there. If you’re typing code from the book, don’t break the line there—keep going. If
you’re reading along in code that was generated for you by Visual C++, don’t be confused when
the line doesn’t break there.

Remember, the code is in the book so that you can understand what’s going on, not for you to
type it. All the code is on the companion Web site as well. Sometimes you will work your way
through the development of an application and see several versions of a block of code as you
go—the final version is on the Web site. You’ll find the site by going to www.mcp.com/info or
www.gregcons.com/uvc6.htm.

This is a Tip: a shortcut or an interesting feature you might want to know about.

This is a Note: It explains a subtle but important point. Don’t skip Notes, even if you’re the
kind who skips Tips. ■

CAUTION

This is a Caution, and it’s serious. It warns you of the horrible consequences if you make a false step, so be
sure to read all of these that you come across.

When a word is being defined or emphasized, it’s in italic. The names of variables, functions,
and C++ classes are all in monospaced font. Internet URLS and things you should type are in
bold. Remember, an URL never ends with punctuation, so ignore any comma or period after
the URL.

Time to Get Started
That about wraps up things for the introduction. You’ve learned what you need to get started,
including some advanced warning about the notations used throughout the book. Jump right
in, learn all about writing Windows applications with MFC, and then get started on some devel-
opment of your own! Good luck and have fun.

T I P

N O T E

Time to Get Started

Untitled-3 2/18/99, 1:27 PM7

Untitled-3 2/18/99, 1:27 PM8

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptI LP#3

IP A R T

Getting Started with Visual C++

1 Building Your First Windows Application 11

2 Dialogs and Controls 43

3 Messages and Commands 61

Untitled-4 2/18/99, 1:28 PM9

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptI LP#3

Untitled-4 2/18/99, 1:28 PM10

11

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

C H A P T E R

Building Your First Windows Application

1

In this chapter

Creating a Windows Application 12

Creating a Dialog-Based Application 22

Creating DLLs, Console Applications, and More 26

Changing Your AppWizard Decisions 28

Understanding AppWizard’s Code 29

Understanding a Multiple Document Interface Application 34

Understanding the Components of a Dialog-Based Application 37

Reviewing AppWizard Decisions and This Chapter 40

Untitled-5 2/18/99, 1:30 PM11

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

12 Chapter 1 Building Your First Windows Application

Creating a Windows Application
Visual C++ doesn’t just compile code; it generates code. You can create a Windows application
in minutes with a tool called AppWizard. In this chapter you’ll learn how to tell AppWizard to
make you a starter app with all the Windows boilerplate code you want. AppWizard is a very
effective tool. It copies into your application the code that almost all Windows applications
require. After all, you aren’t the first programmer to need an application with resizable edges,
minimize and maximize buttons, a File menu with Open, Close, Print Setup, Print, and Exit
options, are you?

AppWizard can make many kinds of applications, but what most people want, at least at first, is
an executable (.exe) program. Most people also want AppWizard to produce boilerplate code—
the classes, objects, and functions that have to be in every program. To create a program like
this, Choose File, New and click the Projects tab in the New dialog box, as shown in Figure 1.1.

Choose MFC AppWizard (EXE) from the list box on the left, fill in a project name, and click
OK. AppWizard will work through a number of steps. At each step, you make a decision about
what kind of application you want and then click Next. At any time, you can click Back to re-
turn to a previous decision, Cancel to abandon the whole process, Help for more details, or
Finish to skip to the end and create the application without answering any more questions (not
recommended before the last step). The following sections explain each step.

An MFC application uses MFC, the Microsoft Foundation Classes. You will learn more about
MFC throughout this book. ■

Deciding How Many Documents the Application Supports
The first decision to communicate to AppWizard, as shown in Figure 1.2, is whether your appli-
cation should be MDI, SDI, or dialog based. AppWizard generates different code and classes
for each of these application types.

FIG. 1.1
The Projects tab of the
New dialog box is where
you choose the kind of
application you want to
build.

N O T E

Untitled-5 2/18/99, 1:30 PM12

13

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

The three application types to choose from are as follows:

■ A single document interface (SDI) application, such as Notepad, has only one document
open at a time. When you choose File, Open, the currently open file is closed before the
new one is opened.

■ A multiple document interface (MDI) application, such as Excel or Word, can open many
documents (typically files) at once. There is a Window menu and a Close item on the File
menu. It’s a quirk of MFC that if you like multiple views on a single document, you must
build an MDI application.

■ A dialog-based application, such as the Character Map utility that comes with Windows
and is shown in Figure 1.3, does not have a document at all. There are no menus. (If
you’d like to see Character Map in action, it’s usually in the Accessories folder, reached
by clicking Start. You may need to install it by using Add/Remove programs under
Control Panel.)

FIG. 1.2
The first step in building
a typical application
with AppWizard is
choosing the interface.

As you change the radio button selection, the picture on the left of the screen changes to dem-
onstrate how the application appears if you choose this type of application.

Dialog-based applications are quite different from MDI or SDI applications. The AppWizard
dialogs are different when you’re creating a dialog-based application. They are presented

later in the section “Creating a Dialog-Based Application.” ■

FIG. 1.3
Character Map is a
dialog-based applica-
tion.

N O T E

Creating a Windows Application

Untitled-5 2/18/99, 1:30 PM13

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

14 Chapter 1 Building Your First Windows Application

Beneath these choices is a checkbox for you to indicate whether you want support for the
Document/View architecture. This framework for your applications is explained in Chapter 4,
“Documents and Views.” Experienced Visual C++ developers, especially those who are porting
an application from another development system, might choose to turn off this support. You
should leave the option selected.

Lower on the screen is a drop-down box to select the language for your resources. If you have
set your system language to anything other than the default, English[United States], make
sure you set your resources to that language, too. If you don’t, you will encounter unexpected
behavior from ClassWizard later. (Of course, if your application is for users who will have their
language set to U.S. English, you might not have a choice. In that case, change your system
language under Control Panel.) Click Next after you make your choices.

Databases
The second step in creating an executable Windows program with AppWizard is to choose the
level of database support, as shown in Figure 1.4.

There are four choices for database support:

■ If you aren’t writing a database application, choose None.

■ If you want to have access to a database but don’t want to derive your view from
CFormView or have a Record menu, choose Header Files Only.

■ If you want to derive your view from CFormView and have a Record menu but don’t need
to serialize a document, choose Database View Without File Support. You can update
database records with CRecordset, an MFC class discussed in more detail in Chapter 22,
“Database Access.”

■ If you want to support databases as in the previous option but also need to save a
document on disk (perhaps some user options), choose Database View With File
Support.

FIG. 1.4
The second step to
building a typical
application with
AppWizard is to set the
database options you
will use.

Untitled-5 2/18/99, 1:30 PM14

15

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Chapter 22 clarifies these choices and demonstrates database programming with MFC. If you
choose to have a database view, you must specify a data source now. Click the Data Source
button to set this up.

As you select different radio buttons, the picture on the left changes to show you the results of
your choice. Click Next to move to the next step.

Compound Document Support
The third step in running AppWizard to create an executable Windows program is to decide on
the amount of compound document support you want to include, as shown in Figure 1.5. OLE
(object linking and embedding) has been officially renamed ActiveX to clarify the recent tech-
nology shifts, most of which are hidden from you by MFC. ActiveX and OLE technology are
jointly referred to as compound document technology. Chapter 13, “ActiveX Concepts,” covers
this technology in detail.

There are five choices for compound document support:

■ If you are not writing an ActiveX application, choose None.

■ If you want your application to contain embedded or linked ActiveX objects, such as
Word documents or Excel worksheets, choose Container. You learn to build an ActiveX
container in Chapter 14, “Building an ActiveX Container Application.”

■ If you want your application to serve objects that can be embedded in other applications,
but it never needs to run as a standalone application, choose Mini Server.

■ If your application serves documents and also functions as a standalone application,
choose Full Server. In Chapter 15, “Building an ActiveX Server Application,” you learn to
build an ActiveX full server.

■ If you want your application to have the capability to contain objects from other applica-
tions and also to serve its objects to other applications, choose Both Container and
Server.

FIG. 1.5
The third step of
building a typical
application with
AppWizard is to set the
compound document
support you will need.

Creating a Windows Application

Untitled-5 2/18/99, 1:30 PM15

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

16 Chapter 1 Building Your First Windows Application

If you choose to support compound documents, you can also support compound files. Com-
pound files contain one or more ActiveX objects and are saved in a special way so that one of
the objects can be changed without rewriting the whole file. This spares you a great deal of
time. Use the radio buttons in the middle of this Step 3 dialog box to say Yes, Please, or
No, Thank You to compound files.

If you want your application to surrender control to other applications through automation,
check the Automation check box. (Automation is the subject of Chapter 16, “Building an Auto-
mation Server.”) If you want your application to use ActiveX controls, select the ActiveX Con-
trols check box. Click Next to move to the next step.

If you want your application to be an ActiveX control, you don’t create a typical .exe
application as described in this section. Creating ActiveX controls with the ActiveX

ControlWizard is covered in Chapter 17, “Building an ActiveX Control.” ■

Appearance and Other Options
The fourth step in running AppWizard to create an executable Windows program (see
Figure 1.6) is to determine some of the interface appearance options for your application. This
Step 4 dialog box contains a number of independent check boxes. Check them if you want a
feature; leave them unchecked if you don’t.

N O T E

The following are the options that affect your interface’s appearance:

■ Docking Toolbar. AppWizard sets up a toolbar for you. You can edit it to remove un-
wanted buttons or to add new ones linked to your own menu items. This is described in
Chapter 9, “Status Bars and Toolbars.”

■ Initial Status Bar. AppWizard creates a status bar to display menu prompts and other
messages. Later, you can write code to add indicators and other elements to this bar, as
described in Chapter 9.

FIG. 1.6
The fourth step of
building a typical
application with
AppWizard is to set
some interface options.

Untitled-5 2/18/99, 1:31 PM16

17

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

■ Printing and Print Preview. Your application will have Print and Print Preview options on
the File menu, and much of the code you need in order to implement printing will be
generated by AppWizard. Chapter 6, “Printing and Print Preview,” discusses the rest.

■ Context-Sensitive Help. Your Help menu will gain Index and Using Help options, and
some of the code needed to implement Help will be provided by AppWizard. This
decision is hard to change later because quite a lot of code is added in different places
when implementing Context-Sensitive Help. Chapter 11, “Help,” describes Help imple-
mentation.

■ 3D Controls. Your application will look like a typical Windows 95 application. If you don’t
select this option, your dialog boxes will have a white background, and there will be no
shadows around the edges of edit boxes, check boxes, and other controls.

■ MAPI(Messaging API). Your application will be able to use the Messaging API to send
fax, email, or other messages. Chapter 18, “Sockets, MAPI, and the Internet,” discusses
the Messaging API.

■ Windows Sockets. Your application can access the Internet directly, using protocols like
FTP and HTTP (the World Wide Web protocol). Chapter 18 discusses sockets. You can
produce Internet programs without enabling socket support if you use the new WinInet
classes, discussed in Chapter 19, “Internet Programming with the WinInet Classes.”

You can ask AppWizard to build applications with “traditional” toolbars, like those in Word or
Visual C++ itself, or with toolbars like those in Internet Explorer. You can read more about this
in Chapter 9.

You can also set how many files you want to appear on the recent file list for this application.
Four is the standard number; change it only if you have good reason to do so.

Clicking the Advanced button at the bottom of this Step 4 dialog box brings up the Advanced
Options dialog box, which has two tabs. The Document Template Strings tab is shown in Fig-
ure 1.7. AppWizard builds many names and prompts from the name of your application, and
sometimes it needs to abbreviate your application name. Until you are familiar with the names
AppWizard builds, you should check them on this Document Template Strings dialog box and
adjust them, if necessary. You can also change the mainframe caption, which appears in the
title bar of your application. The file extension, if you choose one, will be incorporated into
filenames saved by your application and will restrict the files initially displayed when the user
chooses File, Open.

The Window Styles tab is shown in Figure 1.8. Here you can change the appearance of your
application quite dramatically. The first check box, Use Split Window, adds all the code needed
to implement splitter windows like those in the code editor of Developer Studio. The remainder
of the Window Styles dialog box sets the appearance of your main frame and, for an MDI appli-
cation, of your MDI child frames. Frames hold windows; the system menu, title bar, minimize
and maximize boxes, and window edges are all frame properties. The main frame holds your
entire application. An MDI application has a number of MDI child frames—one for each docu-
ment window, inside the main frame.

Creating a Windows Application

Untitled-5 2/18/99, 1:31 PM17

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

18 Chapter 1 Building Your First Windows Application

Here are the properties you can set for frames:

■ Thick Frame. The frame has a visibly thick edge and can be resized in the usual Win-
dows way. Uncheck this to prevent resizing.

■ Minimize Box. The frame has a minimize box in the top-right corner.

■ Maximize Box. The frame has a maximize box in the top-right corner.

■ System Menu. The frame has a system menu in the top-left corner.

■ Minimized. The frame is minimized when the application starts. For SDI applications,
this option will be ignored when the application is running under Windows 95.

■ Maximized. The frame is maximized when the application starts. For SDI applications,
this option will be ignored when the application is running under Windows 95.

FIG. 1.7
The Document Template
Strings tab of the
Advanced Options
dialog box lets you
adjust the way names
are abbreviated.

FIG. 1.8
The Window Styles tab
of the Advanced Options
dialog box lets you
adjust the appearance
of your windows.

Untitled-5 2/18/99, 1:31 PM18

19

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

When you have made your selections, click Close to return to step 4 and click Next to move on
to the next step.

Other Options
The fifth step in running AppWizard to create an executable Windows program (see
 Figure 1.9) asks the leftover questions that are unrelated to menus, OLE, database access, or
appearance. Do you want comments inserted in your code? You certainly do. That one is easy.

The next question isn’t as straightforward. Do you want the MFC library as a shared DLL or
statically linked? A DLL (dynamic link library) is a collection of functions used by many differ-
ent applications. Using a DLL makes your programs smaller but makes the installation a little
more complex. Have you ever moved an executable to another directory, or another computer,
only to find it won’t run anymore because it’s missing DLLs? If you statically link the MFC
library into your application, it is larger, but it is easier to move and copy around.

If your users are likely to be developers themselves and own at least one other application that
uses the MFC DLL or aren’t intimidated by the need to install DLLs as well as the program
itself, choose the shared DLL option. The smaller executable is convenient for all. If your users
are not developers, choose the statically linked option. It reduces the technical support issues
you have to face with inexperienced users. If you write a good install program, you can feel
more confident about using shared DLLs.

After you’ve made your Step 5 choices, click Next to move to Step 6.

Filenames and Classnames
The final step in running AppWizard to create an executable Windows program is to confirm
the classnames and the filenames that AppWizard creates for you, as shown in Figure 1.10.
AppWizard uses the name of the project (FirstSDI in this example) to build the classnames
and filenames. You should not need to change these names. If your application includes a
view class, you can change the class from which it inherits; the default is CView, but many

FIG. 1.9
The fifth step of
building an application
with AppWizard is to
decide on comments
and the MFC library.

Creating a Windows Application

Untitled-5 2/18/99, 1:31 PM19

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

20 Chapter 1 Building Your First Windows Application

developers prefer to use another view, such as CScrollView or CEditView. The view classes are
discussed in Chapter 4. Click Finish when this Step 6 dialog box is complete.

Objects, classes, and inheritance are reviewed in Appendix A, “C++ Review and Object-Oriented
Concepts.”

T I P

Creating the Application
After you click Finish, AppWizard shows you what is going to be created in a dialog box, simi-
lar to Figure 1.11. If anything here is wrong, click Cancel and work your way back through
AppWizard with the Back buttons until you reach the dialog box you need to change. Move
forward with Next, Finish; review this dialog box again; and click OK to actually create the
application. This takes a few minutes, which is hardly surprising because hundreds of code
lines, menus, dialog boxes, help text, and bitmaps are being generated for you in as many as 20
files. Let it work.

FIG. 1.10
The final step of
building a typical
application with
AppWizard is to confirm
filenames and
classnames.

FIG. 1.11
When AppWizard is
ready to build your
application, you get one
more chance to confirm
everything.

Untitled-5 2/18/99, 1:31 PM20

21

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Try It Yourself
If you haven’t started Developer Studio already, do so now. If you’ve never used it before, you
may find the interface intimidating. There’s a full explanation of all the areas, toolbars, menus,
and shortcuts in Appendix C, “The Visual Studio User Interface, Menus, and Toolbars.”

Bring up AppWizard by choosing File, New and clicking the Projects tab. On the Projects tab,
fill in a folder name where you would like to keep your applications; AppWizard will make a
new folder for each project. Fill in FirstSDI for the project name; then move through the six
AppWizard steps. Choose an SDI application at Step 1, and on all the other steps simply leave
the selections as they are and click Next. When AppWizard has created the project, choose
Build, Build from the Developer Studio menu to compile and link the code.

When the build is complete, choose Build, Execute. You have a real, working Windows applica-
tion, shown in Figure 1.12. Play around with it a little: Resize it, minimize it, maximize it.

Try out the File menu by choosing File, Open; bring up the familiar Windows File Open dialog
(though no matter what file you choose, nothing seems to happen); and then choose File, Exit
to close the application. Execute the program again to continue exploring the capabilities that
have been automatically generated for you. Move the mouse cursor over one of the toolbar
buttons and pause; a ToolTip will appear, reminding you of the toolbar button’s purpose. Click
the Open button to confirm that it is connected to the File Open command you chose earlier.
Open the View menu and click Toolbar to hide the toolbar; then choose View Toolbar again to
restore it. Do the same thing with the status bar. Choose Help, About, and you’ll see it even has
an About box with its own name and the current year in the copyright date (see Figure 1.13).

Repeat these steps to create an MDI application called FirstMDI. The creation process will
differ only on Step 0, where you specify the project name, and Step 1, where you choose an
MDI application. Accept the defaults on all the other steps, create the application, build it, and
execute it. You’ll see something similar to Figure 1.14, an MDI application with a single docu-
ment open. Try out the same operations you tried with FirstSDI.

FIG. 1.12
Your first application
looks like any full-
fledged Windows
application.

Creating a Windows Application

Untitled-5 2/18/99, 1:31 PM21

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

22 Chapter 1 Building Your First Windows Application

Choose File, New, and a second window, FirstM2, appears. Try minimizing, maximizing, and
restoring these windows. Switch among them using the Window menu. All this functionality is
yours from AppWizard, and you don’t have to write a single line of code to get it.

Creating a Dialog-Based Application
A dialog-based application has no menus other than the system menu, and it cannot save or
open a file. This makes it good for simple utilities like the Windows Character Map. The
AppWizard process is a little different for a dialog-based application, primarily because such
applications can’t have a document and therefore can’t support database access or compound
documents. To create a dialog-based application, start AppWizard as you did for the SDI or
MDI application, but in Step 1 choose a dialog-based application, as shown in Figure 1.15. Call
this application FirstDialog.

FIG. 1.13
You even get an About
box in this start
application.

FIG. 1.14
An MDI application can
display a number of
documents at once.

Untitled-5 2/18/99, 1:32 PM22

23

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Choose Dialog Based and click Next to move to Step 2, shown in Figure 1.16.

FIG. 1.15
To create a dialog-
based application,
specify your preference
in Step 1 of the
AppWizard process.

If you would like an About item on the system menu, select the About Box item. To have
AppWizard lay the framework for Help, select the Context-Sensitive Help option. The third
check box, 3D Controls, should be selected for most Windows 95 and Windows NT applica-
tions. If you want your application to surrender control to other applications through automa-
tion, as discussed in Chapter 16, select the Automation check box. If you want your application
to contain ActiveX controls, select the ActiveX Controls check box. If you are planning to have
this application work over the Internet with sockets, check the Windows Sockets box. (Dialog-
based apps can’t use MAPI because they have no document.) Click Next to move to the third
step, shown in Figure 1.17.

As with the SDI and MDI applications created earlier, you want comments in your code. The
decision between static linking and a shared DLL is also the same as for the SDI and MDI
applications. If your users are likely to already have the MFC DLLs (because they are develop-
ers or because they have another product that uses the DLL) or if they won’t mind installing
the DLLs as well as your executable, go with the shared DLL to make a smaller executable file
and a faster link. Otherwise, choose As A Statically Linked Library. Click Next to move to the
final step, shown in Figure 1.18.

FIG. 1.16
Step 2 of the
AppWizard process for
a dialog-based
application involves
choosing Help,
Automation, ActiveX,
and Sockets settings.

Creating a Dialog-Based Application

Untitled-5 2/18/99, 1:32 PM23

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

24 Chapter 1 Building Your First Windows Application

In this step you can change the names AppWizard chooses for files and classes. This is rarely a
good idea because it will confuse people who maintain your code if the filenames can’t be easily
distinguished from the classnames, and vice versa. If you realize after looking at this dialog that
you made a poor choice of project name, use Back to move all the way back to the New Project
Workspace dialog, change the name, click Create, and then use Next to return to this dialog.
Click Finish to see the summary of the files and classes to be created, similar to that in Figure
1.19.

If any information on this dialog isn’t what you wanted, click Cancel and then use Back to move
to the appropriate step and change your choices. When the information is right, click OK and
watch as the application is created.

To try it yourself, create an empty dialog-based application yourself, call it FirstDialog, and
accept the defaults for each step of AppWizard. When it’s complete, choose Build, Build to
compile and link the application. Choose Build, Execute to see it in action. Figure 1.20 shows
the empty dialog-based application running.

FIG. 1.17
Step 3 of the AppWizard
process for a dialog-
based application deals
with comments and the
MFC library.

FIG. 1.18
Step 4 of the AppWizard
process for a dialog-
based application gives
you a chance to adjust
filenames and
classnames.

Untitled-5 2/18/99, 1:32 PM24

25

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Clicking the OK or Cancel button, or the X in the top-right corner, makes the dialog disappear.
Clicking the system menu in the top-left corner gives you a choice of Move, Close, or About.
Figure 1.21 shows the About box that was generated for you.

FIG. 1.19
AppWizard confirms the
files and classes before
creating them.

FIG. 1.20
A starter dialog
application includes a
reminder of the work
ahead of you.

FIG. 1.21
The same About box is
generated for SDI, MDI,
and dialog-based
applications.

Creating a Dialog-Based Application

Untitled-5 2/18/99, 1:32 PM25

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

26 Chapter 1 Building Your First Windows Application

Creating DLLs, Console Applications, and More
Although most people use AppWizard to create an executable program, it can make many
other kinds of projects. You choose File, New and then the Projects tab, as discussed at the
start of this chapter, but choose a different wizard from the list on the left of the New dialog
box, shown in Figure 1.1. The following are some of the other projects AppWizard can create:

■ ATL COM AppWizard

■ Custom AppWizard

■ Database Project

■ DevStudio Add-In Wizard

■ Extended Stored Procedure AppWizard

■ ISAPI Extension Wizard

■ Makefile

■ MFC ActiveX ControlWizard

■ MFC AppWizard (dll)

■ Utility Project

■ Win32 Application

■ Win32 Console Application

■ Win32 Dynamic Link Library

■ Win32 Static Library

These projects are explained in the following sections.

ATL COM AppWizard
ATL is the Active Template Library, and it’s used to write small ActiveX controls. It’s generally
used by developers who have already mastered writing MFC ActiveX controls, though an MFC
background is not required to learn ATL. Chapter 17 introduces important control concepts
while demonstrating how to build an MFC control; Chapter 21, “The Active Template Library,”
teaches you ATL.

Custom AppWizard
Perhaps you work in a large programming shop that builds many applications. Although
AppWizard saves a lot of time, your programmers may spend a day or two at the start of each
project pasting in your own boilerplate, which is material that is the same in every one of your
projects. You may find it well worth your time to build a Custom AppWizard, a wizard of your
very own that puts in your boilerplate as well as the standard MFC material. After you have
done this, your application type is added to the list box on the left of the Projects tab of the New
dialog box shown in Figure 1.1. Creating and using Custom AppWizards is discussed in Chap-
ter 25, “Achieving Reuse with the Gallery and Your Own AppWizards.”

Untitled-5 2/18/99, 1:32 PM26

27

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Database Project
If you have installed the Enterprise Edition of Visual C++, you can create a database project.
This is discussed in Chapter 23, “SQL and the Enterprise Edition.”

DevStudio Add-In Wizard
Add-ins are like macros that automate Developer Studio, but they are written in C++ or another
programming language; macros are written in VBScript. They use automation to manipulate
Developer Studio.

ISAPI Extension Wizard
ISAPI stands for Internet Server API and refers to functions you can call to interact with a
running copy of Microsoft Internet Information Server, a World Wide Web server program that
serves out Web pages in response to client requests. You can use this API to write DLLs used
by programs that go far beyond browsing the Web to sophisticated automatic information
retrieval. This process is discussed in Chapter 18.

Makefile
If you want to create a project that is used with a different make utility than Developer Studio,
choose this wizard from the left list in the New Project Workspace dialog box. No code is gen-
erated. If you don’t know what a make utility is, don’t worry—this wizard is for those who
prefer to use a standalone tool to replace one portion of Developer Studio.

MFC ActiveX ControlWizard
ActiveX controls are controls you write that can be used on a Visual C++ dialog, a Visual Basic
form, or even a Web page. These controls are the 32-bit replacement for the VBX controls
many developers were using to achieve intuitive interfaces or to avoid reinventing the wheel on
every project. Chapter 17 guides you through building a control with this wizard.

MFC AppWizard (DLL)
If you want to collect a number of functions into a DLL, and these functions use MFC classes,
choose this wizard. (If the functions don’t use MFC, choose Win32 Dynamic Link Library,
discussed a little later in this section.) Building a DLL is covered in Chapter 28, “Future Explo-
rations.” AppWizard generates code for you so you can get started.

Win32 Application
There are times when you want to create a Windows application in Visual C++ that doesn’t use
MFC and doesn’t start with the boilerplate code that AppWizard produces for you. To create
such an application, choose the Win32 Application wizard from the left list in the Projects tab,
fill in the name and folder for your project, and click OK. You are not asked any questions;
AppWizard simply creates a project file for you and opens it. You have to create all your code
from scratch and insert the files into the project.

Creating DLLs, Console Applications, and More

Untitled-5 2/18/99, 1:32 PM27

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

28 Chapter 1 Building Your First Windows Application

Win32 Console Application
A console application looks very much like a DOS application, though it runs in a resizable
window. (Console applications are 32-bit applications that won’t run under DOS, however.) It
has a strictly character-based interface with cursor keys instead of mouse movement. You use
the Console API and character-based I/O functions such as printf() and scanf() to interact
with the user. Some very rudimentary boilerplate code can be generated for you, or you can
have just an empty project. Chapter 28 discusses building and using console applications.

Win32 Dynamic Link Library
If you plan to build a DLL that does not use MFC and does not need any boilerplate, choose the
Win32 Dynamic Link Library option instead of MFC AppWizard (dll). You get an empty project
created right away with no questions.

Win32 Static Library
Although most code you reuse is gathered into a DLL, you may prefer to use a static library
because that means you don’t have to distribute the DLL with your application. Choose this
wizard from the left list in the New Project Workspace dialog box to create a project file into
which you can add object files to be linked into a static library, which is then linked into your
applications.

Changing Your AppWizard Decisions
Running AppWizard is a one-time task. Assuming you are making a typical application, you
choose File, New; click the Projects tab; enter a name and folder; choose MFC Application
(exe); go through the six steps; create the application starter files; and then never touch
AppWizard again. However, what if you choose not to have online Help and later realize you
should have included it?

AppWizard, despite the name, isn’t really magic. It pastes in bits and pieces of code you need,
and you can paste in those very same bits yourself. Here’s how to find out what you need to
paste in.

First, create a project with the same options you used in creating the project whose settings
you want to change, and don’t add any code to it. Second, in a different folder create a project
with the same name and all the same settings, except the one thing you want to change
(Context-Sensitive Help in this example). Compare the files, using WinDiff, which comes with
Visual C++. Now you know what bits and pieces you need to add to your full-of-code project to
implement the feature you forgot to ask AppWizard for.

Some developers, if they discover their mistake soon enough, find it quicker to create a new
project with the desired features and then paste their own functions and resources from the
partially built project into the new empty one. It’s only a matter of taste, but after you go
through either process for changing your mind, you probably will move a little more slowly
through those AppWizard dialog boxes.

Untitled-5 2/18/99, 1:33 PM28

29

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Understanding AppWizard’s Code
The code generated by AppWizard may not make sense to you right away, especially if you
haven’t written a C++ program before. You don’t need to understand this code in order to write
your own simple applications. Your programs will be better ones, though, if you know what
they are doing, so a quick tour of AppWizard’s boilerplate code is a good idea. You’ll see the
core of an SDI application, an MDI application, and a dialog-based application.

You’ll need the starter applications FirstSDI, FirstMDI, and FirstDialog, so if you didn’t create
them earlier, do so now. If you’re unfamiliar with the Developer Studio interface, glance
through Appendix C to learn how to edit code and look at classes.

A Single Document Interface Application
An SDI application has menus that the user uses to open one document at a time and work with
that document. This section presents the code that is generated when you create an SDI appli-
cation with no database or compound document support, with a toolbar, a status bar, Help, 3D
controls, source file comments, and with the MFC library as a shared DLL—in other words,
when you accept all the AppWizard defaults after Step 1.

Five classes have been created for you. For the application FirstSDI, they are as follows:

■ CAboutDlg, a dialog class for the About dialog box

■ CFirstSDIApp, a CWinApp class for the entire application

■ CFirstSDIDoc, a document class

■ CFirstSDIView, a view class

■ CMainFrame, a frame class

Dialog classes are discussed in Chapter 2, “Dialogs and Controls.” Document, view, and frame
classes are discussed in Chapter 4. The header file for CFirstSDIApp is shown in Listing 1.1.
The easiest way for you to see this code is to double-click on the classname, CFirstDSIApp, in
the ClassView pane. This will edit the header file for the class.

Listing 1.1 FirstSDI.h—Main Header File for the FirstSDI Application

// FirstSDI.h : main header file for the FIRSTSDI application
//

#if !defined(AFX_FIRSTSDI_H__CDF38D8A_8718_11D0_B02C_0080C81A3AA2__INCLUDED_)
#define AFX_FIRSTSDI_H__CDF38D8A_8718_11D0_B02C_0080C81A3AA2__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
 #error include ‘stdafx.h’ before including this file for PCH
#endif

continues

Understanding AppWizard’s Code

Untitled-5 2/18/99, 1:33 PM29

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

30 Chapter 1 Building Your First Windows Application

#include “resource.h” // main symbols

///
// CFirstSDIApp:
// See FirstSDI.cpp for the implementation of this class
//

class CFirstSDIApp : public CWinApp
{
public:
 CFirstSDIApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFirstSDIApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CFirstSDIApp)
 afx_msg void OnAppAbout();
 // NOTE - The ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif //!defined(AFX_FIRSTSDI_H__CDF38D8A_8718_11D0_B02C_0080C81A3AA2__INCLUDED_)

This code is confusing at the beginning. The #if(!defined) followed by the very long string
(yours will be different) is a clever form of include guarding. You may have seen a code snippet
like this before:

#ifndef test_h
#include “test.h”
#define test_h
#endif

This guarantees that the file test.h will never be included more than once. Including the same
file more than once is quite likely in C++. Imagine that you define a class called Employee, and it
uses a class called Manager. If the header files for both Employee and Manager include, for ex-
ample, BigCorp.h, you will get error messages from the compiler about “redefining” the sym-
bols in BigCorp.h the second time it is included.

Listing 1.1 Continued

Untitled-5 2/18/99, 1:33 PM30

31

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

There is a problem with this approach: If someone includes test.h but forgets to set test_h,
your code will include test.h the second time. The solution is to put the test and the definition
in the header file instead, so that test.h looks like this:

#ifndef test_h
... the entire header file
#define test_h
#endif

All AppWizard did was generate a more complicated variable name than test_h (this wild
name prevents problems when you have several files, in different folders and projects, with the
same name) and use a slightly different syntax to check the variable. The #pragma once code is
also designed to prevent multiple definitions if this file is ever included twice.

The actual meat of the file is the definition of the class CFirstSDIApp. This class inherits from
CWinApp, an MFC class that provides most of the functionality you need. AppWizard has gener-
ated some functions for this class that override the ones inherited from the base class. The
section of code that begins //Overrides is for virtual function overrides. AppWizard generated
the odd-looking comments that surround the declaration of InitInstance(): ClassWizard will
use these to simplify the job of adding other overrides later, if they are necessary. The next
section of code is a message map and declares there is a function called OnAppAbout. You can
learn all about message maps in Chapter 3, “Messages and Commands.”

AppWizard generated the code for the CFirstSDIApp constructor, InitInstance(), and
OnAppAbout() in the file firstsdi.cpp. Here’s the constructor, which initializes a CFirstSDIApp
object as it is created:

CFirstSDIApp::CFirstSDIApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

This is a typical Microsoft constructor. Because constructors don’t return values, there’s no
easy way to indicate that there has been a problem with the initialization. There are several
ways to deal with this. Microsoft’s approach is a two-stage initialization, with a separate initializ-
ing function so that construction does no initialization. For an application, that function is called
InitInstance(), shown in Listing 1.2.

Listing 1.2 CFirstSDIApp::InitInstance()

BOOL CFirstSDIApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and want to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you don’t need.

continues

Understanding AppWizard’s Code

Untitled-5 2/18/99, 1:33 PM31

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

32 Chapter 1 Building Your First Windows Application

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which our settings are stored.
 // You should modify this string to be something appropriate,
 // such as the name of your company or organization.
 SetRegistryKey(_T(“Local AppWizard-Generated Applications”));

 LoadStdProfileSettings(); // Load standard INI file options (including
 // MRU)

 // Register the application’s document templates. Document templates
 // serve as the connection between documents, frame windows, and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CFirstSDIDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CFirstSDIView));
 AddDocTemplate(pDocTemplate);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

InitInstance gets applications ready to go. This one starts by enabling the application to
contain ActiveX controls with a call to AfxEnableControlContainer() and then turns on 3D
controls. It then sets up the Registry key under which this application will be registered. (The
Registry is introduced in Chapter 7, “Persistence and File I/O.” If you’ve never heard of it, you
can ignore it for now.)

InitInstance() goes on to register single document templates, which is what makes this an
SDI application. Documents, views, frames, and document templates are all discussed in
Chapter 4.

Listing 1.2 Continued

Untitled-5 2/18/99, 1:33 PM32

33

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Following the comment about parsing the command line, InitInstance() sets up an empty
CCommandLineInfo object to hold any parameters that may have been passed to the application
when it was run, and it calls ParseCommandLine() to fill that. Finally, it calls
ProcessShellCommand() to do whatever those parameters requested. This means your applica-
tion can support command-line parameters to let users save time and effort, without effort on
your part. For example, if the user types at the command line FirstSDI fooble, the application
starts and opens the file called fooble. The command-line parameters that
ProcessShellCommand() supports are the following:

Parameter Action

None Start app and open new file.

Filename Start app and open file.

/p filename Start app and print file to default printer.

/pt filename printer driver port Start app and print file to the specified printer.

/dde Start app and await DDE command.

/Automation Start app as an OLE automation server.

/Embedding Start app to edit an embedded OLE item.

If you would like to implement other behavior, make a class that inherits from
CCommandLineInfo to hold the parsed command line; then override CWinApp::
ParseCommandLine() and CWinApp::ProcessShellCommand() in your own App class.

You may already know that you can invoke many Windows programs from the command line; for
example, typing Notepad blah.txt at a DOS prompt will open blah.txt in Notepad. Other command line
options work, too, so typing Notepad /p blah.txt will open blah.txt in Notepad, print it, and then close
Notepad.

That’s the end of InitInstance(). It returns TRUE to indicate that the rest of the application
should now run.

The message map in the header file indicated that the function OnAppAbout() handles a mes-
sage. Which one? Here’s the message map from the source file:

BEGIN_MESSAGE_MAP(CFirstSDIApp, CWinApp)
 //{{AFX_MSG_MAP(CFirstSDIApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - The ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file-based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

T I P

Understanding AppWizard’s Code

Untitled-5 2/18/99, 1:34 PM33

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

34 Chapter 1 Building Your First Windows Application

This message map catches commands from menus, as discussed in Chapter 3. When the user
chooses Help About, CFirstSDIApp::OnAppAbout() will be called. When the user chooses File
New, File Open, or File Print Setup, functions from CWinApp will handle that work for you. (You
would override those functions if you wanted to do something special for those menu choices.)
OnAppAbout() looks like this:

void CFirstSDIApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

This code declares an object that is an instance of CAboutDlg, and calls its DoModal() function
to display the dialog onscreen. (Dialog classes and the DoModal() function are both covered
in Chapter 2.) There’s no need to handle OK or Cancel in any special way—this is just an
About box.

Other Files
If you selected Context-Sensitive Help, AppWizard generates an .HPJ file and a number of .RTF
files to give some context-sensitive help. These files are discussed in Chapter 11 in the “Com-
ponents of the Help System” section.

AppWizard also generates a README.TXT file that explains what all the other files are and
what classes have been created. Read this file if all the similar filenames become confusing.

There are also a number of project files used to hold your settings and options, to speed build
time by saving partial results, and to keep information about all your variables and functions.
These files have extensions like .ncb, .aps, .dsw, and so on. You can safely ignore these files
because you will not be using them directly.

Understanding a Multiple Document Interface
Application

A multiple document interface application also has menus, and it enables the user to have more
than one document open at once. This section presents the code that is generated when you
choose an MDI application with no database or compound document support, but instead with
a toolbar, a status bar, Help, 3D controls, source file comments, and the MFC library as a
shared DLL. As with the SDI application, these are the defaults after Step 1. The focus here is
on what differs from the SDI application in the previous section.

Five classes have been created for you. For the application FirstMDI, they are

■ CAboutDlg, a dialog class for the About dialog box

■ CFirstMDIApp, a CWinApp class for the entire application

■ CFirstMDIDoc, a document class

■ CFirstMDIView, a view class

■ CMainFrame, a frame class

Untitled-5 2/18/99, 1:34 PM34

35

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

The App class header is shown in Listing 1.3.

Listing 1.3 FirstMDI.h—Main Header File for the FirstMDI Application

// FirstMDI.h : main header file for the FIRSTMDI application
//

#if !defined(AFX_FIRSTMDI_H__CDF38D9E_8718_11D0_B02C_0080C81A3AA2__INCLUDED_)
#define AFX_FIRSTMDI_H__CDF38D9E_8718_11D0_B02C_0080C81A3AA2__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
 #error include ‘stdafx.h’ before including this file for PCH
#endif

#include “resource.h” // main symbols

///
// CFirstMDIApp:
// See FirstMDI.cpp for the implementation of this class
//

class CFirstMDIApp : public CWinApp
{
public:
 CFirstMDIApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFirstMDIApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CFirstMDIApp)
 afx_msg void OnAppAbout();
 // NOTE - The ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately
// before the previous line.

#endif //!defined(AFX_FIRSTMDI_H__CDF38D9E_8718_11D0_B02C_0080C81A3AA2__INCLUDED_)

Understanding a Multiple Document Interface Application

Untitled-5 2/18/99, 1:34 PM35

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

36 Chapter 1 Building Your First Windows Application

How does this differ from FirstSDI.h? Only in the classnames. The constructor is also the same
as before. OnAppAbout() is just like the SDI version. How about InitInstance()? It is in
Listing 1.4.

Listing 1.4 CFirstMDIApp::InitInstance()

BOOL CFirstMDIApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and want to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you don’t need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which your settings are stored.
 // You should modify this string to be something appropriate,
 // such as the name of your company or organization.
 SetRegistryKey(_T(“Local AppWizard-Generated Applications”));

 LoadStdProfileSettings(); // Load standard INI file options (including
 // MRU)

 // Register the application’s document templates. Document templates
 // serve as the connection between documents, frame windows, and views.

 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(
 IDR_FIRSTMTYPE,
 RUNTIME_CLASS(CFirstMDIDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CFirstMDIView));
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))

Untitled-5 2/18/99, 1:34 PM36

37

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

 return FALSE;

 // The main window has been initialized, so show and update it.
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

What’s different here? Using WinDiff can help. WinDiff is a tool that comes with Visual C++
and is reached from the Tools menu. (If WinDiff isn’t on your Tools menu, see the “Tools”
section of Appendix C.) Using WinDiff to compare the FirstSDI and FirstMDI versions of
InitInstance() confirms that, other than the classnames, the differences are

■ The MDI application sets up a CMultiDocTemplate and the SDI application sets up a
CSingleDocTemplate, as discussed in Chapter 4.

■ The MDI application sets up a mainframe window and then shows it; the SDI application
does not.

This shows a major advantage of the Document/View paradigm: It enables an enormous de-
sign decision to affect only a small amount of the code in your project and hides that decision
as much as possible.

Understanding the Components of a Dialog-Based
Application

Dialog applications are much simpler than SDI and MDI applications. Create one called
FirstDialog, with an About box, no Help, 3D controls, no automation, ActiveX control support,
no sockets, source file comments, and MFC as a shared DLL. In other words, accept all the
default options.

Three classes have been created for you for the application called FirstMDI:

■ CAboutDlg, a dialog class for the About dialog box

■ CFirstDialogApp, a CWinApp class for the entire application

■ CFirstDialogDlg, a dialog class for the entire application

The dialog classes are the subject of Chapter 2. Listing 1.5 shows the header file for
CFirstDialogApp.

Listing 1.5 dialog16.h—Main Header File

// FirstDialog.h : main header file for the FIRSTDIALOG application
//

#if !defined(AFX_FIRSTDIALOG_H__CDF38DB4_8718_11D0_B02C_0080C81A3AA2__INCLUDED_)

continues

Understanding the Components of a Dialog-Based Application

Untitled-5 2/18/99, 1:35 PM37

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

38 Chapter 1 Building Your First Windows Application

#define AFX_FIRSTDIALOG_H__CDF38DB4_8718_11D0_B02C_0080C81A3AA2__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
 #error include ‘stdafx.h’ before including this file for PCH
#endif

#include “resource.h” // main symbols

///
// CFirstDialogApp:
// See FirstDialog.cpp for the implementation of this class
//

class CFirstDialogApp : public CWinApp
{
public:
 CFirstDialogApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFirstDialogApp)
 public:
 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CFirstDialogApp)
 // NOTE - The ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately
// before the previous line.

#endif // !defined(AFX_FIRSTDIALOG_H__CDF38DB4_8718_11D0_B02C_0080C81A3AA2
➥__INCLUDED_)

CFirstDialogApp inherits from CWinApp, which provides most of the functionality. CWinApp has
a constructor, which does nothing, as did the SDI and MDI constructors earlier in this chapter,
and it overrides the virtual function InitInstance(), as shown in Listing 1.6.

Listing 1.5 Continued

Untitled-5 2/18/99, 1:35 PM38

39

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

Listing 1.6 FirstDialog.cpp—CDialog16App::InitInstance()

BOOL CFirstDialogApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and want to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you don’t need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 CFirstDialogDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Because the dialog has been closed, return FALSE so that you exit the
 // application, rather than start the application’s message pump.
 return FALSE;
}

This enables 3D controls, because you asked for them, and then puts up the dialog box that is
the entire application. To do that, the function declares an instance of CDialog16Dlg, dlg, and
then calls the DoModal() function of the dialog, which displays the dialog box onscreen and
returns IDOK if the user clicks OK, or IDCANCEL if the user clicks Cancel. (This process is dis-
cussed further in Chapter 2.) It’s up to you to make that dialog box actually do something.
Finally, InitInstance() returns FALSE because this is a dialog-based application and when the
dialog box is closed, the application is ended. As you saw earlier for the SDI and MDI applica-
tions, InitInstance() usually returns TRUE to mean “everything is fine—run the rest of the
application” or FALSE to mean “something went wrong while initializing.” Because there is no
“rest of the application,” dialog-based apps always return FALSE from their InitInstance().

Understanding the Components of a Dialog-Based Application

Untitled-5 2/18/99, 1:35 PM39

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

40 Chapter 1 Building Your First Windows Application

Reviewing AppWizard Decisions and This Chapter
AppWizard asks a lot of questions and starts you down a lot of roads at once. This chapter
explains InitInstance and shows some of the code affected by the very first AppWizard deci-
sion: whether to have AppWizard generate a dialog-based, SDI, or MDI application. Most of the
other AppWizard decisions are about topics that take an entire chapter. The following table
summarizes those choices and where you can learn more:

Step Decision Chapter Dialog

0 MFC DLL or 28, Future Explorations
non-MFC DLL

0 OCX Control 17, Building an ActiveX
Control

0 Console 28, Future Explorations
Application

0 Custom 25, Achieving Reuse with the
AppWizards Gallery and Your Own AppWizard

0 ISAPI Extension 18, Sockets, MAPI, and the
Internet Wizard

1 Language Support 28, Future Explorations Yes

2 Database Support 22, Database Access

3 Compound 14, Building an ActiveX
Document Container Container Application

3 Compound Document 15, Building an ActiveX
Mini-Server Server Application

3 Compound Document 15, Building an ActiveX
Full Server Server Application

3 Compound Files 14, Building an ActiveX
Container Application

3 Automation 16, Building an Automation Yes
Server

3 Using ActiveX 17, Building an ActiveX Yes
Controls Control

4 Docking Toolbar 9, Status Bars and Toolbars

4 Status Bar 9, Status Bars and Toolbars

4 Printing and 6, Printing and Print
Print Preview Preview

4 Context-Sensitive 11, Help Yes
Help

4 3D Controls — Yes

Untitled-5 2/18/99, 1:35 PM40

41

B3A3 swg4 UsingVisualC++ 1539-2 7.20.98 Ayanna chapter 1 LP#3

1

I
Part

Ch

4 MAPI 18, Sockets, MAPI,
and the Internet

4 Windows Sockets 18, Sockets, MAPI, Yes
and the Internet

4 Files in MRU list —

5 Comments in code — Yes

5 MFC library — Yes

6 Base class for View 4, Documents and Views

Because some of these questions are not applicable for dialog-based applications, this table has
a Dialog column Yes that indicates this decision applies to dialog-based applications, too. An
entry of — in the Chapter column means that this decision doesn’t really warrant discussion.
These topics get a sentence or two in passing in this chapter or elsewhere.

By now you know how to create applications that don’t do much of anything. To make them do
something, you need menus or dialog controls that give commands, and you need other dialog
controls that gather more information. These are the subject of the next chapter, Chapter 2,
“Dialogs and Controls.” ●

Step Decision Chapter Dialog

Reviewing AppWizard Decisions and This Chapter

Untitled-5 2/18/99, 1:35 PM41

Untitled-5 2/18/99, 1:35 PM42

43

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

C H A P T E R

Dialogs and Controls

2

In this chapter

Understanding Dialog Boxes 44

Creating a Dialog Box Resource 44

Writing a Dialog Box Class 47

Using the Dialog Box Class 50

Untitled-6 2/18/99, 1:37 PM43

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

44 Chapter 2 Dialogs and Controls

Understanding Dialog Boxes
Windows programs have a graphical user interface. In the days of DOS, the program could
simply print a prompt onscreen and direct the user to enter whatever value the program
needed. With Windows, however, getting data from the user is not as simple, and most user
input is obtained from dialog boxes. For example, a user can give the application details about a
request by typing in edit boxes, choosing from list boxes, selecting radio buttons, checking or
unchecking check boxes, and more. These components of a dialog box are called controls.

Chances are that your Windows application will have several dialog boxes, each designed to
retrieve a specific type of information from your user. For each dialog box that appears
onscreen, there are two entities you need to develop: a dialog box resource and a dialog box class.

The dialog box resource is used to draw the dialog box and its controls onscreen. The class
holds the values of the dialog box, and it is a member function of the class that causes the
dialog box to be drawn onscreen. They work together to achieve the overall effect: making
communication with the program easier for your user.

You build a dialog box resource with the resource editor, adding controls to it and arranging
them to make the control easy to use. Class Wizard then helps you to create a dialog box class,
typically derived from the MFC class CDialog, and to connect the resource to the class. Usu-
ally, each control on the dialog box resource corresponds to one member variable in the class.
To display the dialog box, you call a member function of the class. To set the control values to
defaults before displaying the dialog box, or to determine the values of the controls after the
user is finished with the box, you use the member variables of the class.

Creating a Dialog Box Resource
The first step in adding a dialog box to your MFC application is creating the dialog box re-
source, which acts as a sort of template for Windows. When Windows sees the dialog box
resource in your program, it uses the commands in the resource to construct the dialog box for
you.

In this chapter you learn to work with dialog boxes by adding one to a simple application. Cre-
ate an SDI application just as you did in Chapter 1, “Building Your First Windows Application,”
calling it simply SDI. You will create a dialog box resource and a dialog box class for the appli-
cation, write code to display the dialog box, and write code to use the values entered by the
user.

To create a dialog box resource, first open the application. Choose Insert, Resource from De-
veloper Studio’s menu bar. The Insert Resource dialog box, shown in Figure 2.1, appears.
Double-click Dialog in the Resource Type box. The dialog box editor appears, as shown in
Figure 2.2.

Bring up the Properties dialog box for the new dialog box by choosing View, Properties.
Change the caption to Sample Dialog, as shown in Figure 2.3. You’ll be using the Properties
dialog box quite a lot as you work on this dialog box resource, so pin it to the screen by click-
ing the pushpin in the upper-left corner.

Untitled-6 2/18/99, 1:37 PM44

45

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

FIG. 2.1
Double-click Dialog on
the Insert Resource
dialog box.

FIG. 2.2
A brand new dialog box
resource has a title, an
OK button, and a
Cancel button.

FIG. 2.3
Use the Dialog
Properties dialog box to
change the title of the
new dialog box.

Creating a Dialog Box Resource

Untitled-6 2/18/99, 1:37 PM45

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

46 Chapter 2 Dialogs and Controls

The control palette shown at the far right of Figure 2.2 is used to add controls to the dialog box
resource. Dialog boxes are built and changed with a very visual WYSIWYG interface. If you
need a button on your dialog box, you grab one from the control palette, drop it where you
want it, and change the caption from Button1 to Lookup, or Connect, or whatever you want the
button to read. All the familiar Windows controls are available for your dialog boxes:

■ Static text. Not really a control, this is used to label other controls such as edit boxes.

■ Edit box. Single line or multiline, this is a place for users to type strings or numbers as
input to the program. Read-only edit boxes are used to display text.

■ Button. Every dialog box starts with OK and Cancel buttons, but you can add as many of
your own as you want.

■ Check box. You use this control to set options on or off; each option can be selected or
deselected independently.

■ Radio button. You use this to select only one of a number of related options. Selecting
one button deselects the rest.

■ List box. You use this box type to select one item from a list hardcoded into the dialog
box or filled in by the program as the dialog box is created. The user cannot type in the
selection area.

■ Combo box. A combination of an edit box and a list box, this control enables users to
select from a list or type their response, if the one they want isn’t on the list.

The sample application in this chapter is going to have a dialog box with a selection of controls
on it, to demonstrate the way they are used.

Defining Dialog Box and Control IDs
Because dialog boxes are often unique to an application (with the exception of the common
dialog boxes), you almost always create your own IDs for both the dialog box and the controls
it contains. You can, if you want, accept the default IDs that the dialog box editor creates for
you. However, these IDs are generic (for example, IDD_DIALOG1, IDC_EDIT1, IDC_RADIO1, and
so on), so you’ll probably want to change them to something more specific. In any case, as you
can tell from the default IDs, a dialog box’s ID usually begins with the prefix IDD, and control
IDs usually begin with the prefix IDC. You change these IDs in the Properties dialog box: Click
the control (or the dialog box background to select the entire background), and choose View,
Properties unless the Properties dialog box is already pinned in place; then change the re-
source ID to a descriptive name that starts with IDD for a dialog and IDC for a control.

Creating the Sample Dialog Box
Click the Edit box button on the control palette, and then click in the upper-left corner of the
dialog box to place the edit box. If necessary, grab a moving handle and move it until it is in
approximately the same place as the edit box in Figure 2.4. Normally, you would change the ID
from Edit1, but for this sample leave it unchanged.

Untitled-6 2/18/99, 1:38 PM46

47

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

If you aren’t sure which control palette button inserts an edit box (or any other type of control), just
hold the pointer still over one of the buttons for a short time. A ToolTip will appear, reminding you of the
name of the control associated with the button. Move the pointer from button to button until you find
the one for the edit box.

FIG. 2.4
You can build a simple
dialog box quickly in the
resource editor.

T I P

Add a check box and three radio buttons to the dialog box so that it resembles Figure 2.4.
Change the captions on the radio buttons to One, Two, and Three. To align all these controls,
click one, and then while holding down the Ctrl key, click each of the rest of them. Choose
Layout, Align, Left, and if necessary drag the stack of controls over with the mouse while they
are all selected. Then choose Layout, Space Evenly, Down, to adjust the vertical spacing.

The commands on the Layout menu are also on the Dialog toolbar, which appears at the bottom of
your screen while you are using the resource editor. The toolbar symbols are repeated on the menu to
help you learn which button is associated with each menu item.

Click the One radio button again and bring up the Properties dialog box. Select the Group
check box. This indicates that this is the first of a group of buttons. When you select a radio
button, all the other buttons in the group are deselected.

Add a list box to the dialog box, to the right of the radio buttons, and resize it to match Figure
2.4. With the list box highlighted, choose View, Properties to bring up the Properties dialog
box if it is not still pinned in place. Select the Styles tab and make sure that the Sort box is not
selected. When this box is selected, the strings in your list box are automatically presented in
alphabetical order. For this application, they should be presented in the order that they are
added.

Writing a Dialog Box Class
When the resource is complete, bring up ClassWizard by choosing View, ClassWizard.
ClassWizard recognizes that this new dialog box resource does not have a class associated
with it and offers to build one for you, as shown in Figure 2.5. Leave the Create a New Class
radio button selected, and click OK. The New Class dialog box appears, as shown in Figure 2.6.
Fill in the classname as CSdiDialog and click OK. ClassWizard creates a new class, prepares
the source file (SdiDialog.cpp) and header file (SdiDialog.h), and adds them to your project.

T I P

Writing a Dialog Box Class

Untitled-6 2/18/99, 1:38 PM47

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

48 Chapter 2 Dialogs and Controls

A member variable in the new dialog box class can be connected to a control’s value or to the
control. This sample demonstrates both kinds of connection. For IDC_CHECK1, fill in the variable
name as m_check, and make sure that the Category drop-down box has Value selected. If you
open the Variable Type drop-down box, you will see that the only possible choice is BOOL.
Because a check box can be either selected or not selected, it can be connected only to a BOOL
variable, which holds the value TRUE or FALSE. Click OK to complete the connection.

FIG. 2.6
Creating a dialog box
class is simple with
ClassWizard.

FIG. 2.7
The Member Variables
tab of ClassWizard
connects dialog box
controls to dialog box
class member variables.

You connect the dialog box resources to your code with the Member Variables tab of
ClassWizard, shown in Figure 2.7. Click IDC_CHECK1 and then click the Add Variable button.
This brings up the Add Member Variable dialog box, shown in Figure 2.8.

FIG. 2.5
ClassWizard makes
sure you don’t forget to
create a class to go
with your new dialog
box resource.

Untitled-6 2/18/99, 1:38 PM48

49

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

FIG. 2.8
You choose the name
for the member variable
associated with each
control.

Writing a Dialog Box Class

Here are the data types that go with each control type:

■ Edit box. Usually a string but also can be other data types, including int, float, and long

■ Check box. int

■ Radio button. int

■ List box. String

■ Combo box. String

■ Scrollbar. int

Connect IDC_EDIT1 in the same way, to a member variable called m_edit of type CString as a
Value. Connect IDC_LIST1 as a Control to a member variable called m_listbox of type
CListBox. Connect IDC_RADIO_1, the first of the group of radio buttons, as a Value to an int
member variable called m_radio.

After you click OK to add the variable, ClassWizard offers, for some kinds of variables, the
capability to validate the user’s data entry. For example, when an edit control is selected, a field
under the variables list allows you to set the maximum number of characters the user can enter
into the edit box (see Figure 2.9). Set it to 10 for m_edit. If the edit box is connected to a num-
ber (int or float), this area of ClassWizard is used to specify minimum or maximum values
for the number entered by the user. The error messages asking the user to try again are gener-
ated automatically by MFC with no work on your part.

FIG. 2.9
Enter a number in
the Maximum
Characters field to
limit the length of a
user’s entry.

Untitled-6 2/18/99, 1:39 PM49

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

50 Chapter 2 Dialogs and Controls

Using the Dialog Box Class
Now that you have your dialog box resource built and your dialog box class written, you can
create objects of that class within your program and display the associated dialog box element.
The first step is to decide what will cause the dialog box to display. Typically, it is a menu
choice, but because adding menu items and connecting them to code are not covered until
Chapter 8, “Building a Complete Application: ShowString,” you can simply have the dialog box
display when the application starts running. To display the dialog box, you call the DoModal()
member function of the dialog box class.

Modeless Dialog Boxes
Most of the dialog boxes you will code will be modal dialog boxes. A modal dialog box is on top of all
the other windows in the application: The user must deal with the dialog box and then close it before
going on to other work. An example of this is the dialog box that comes up when the user chooses
File, Open in any Windows application.

A modeless dialog box enables the user to click the underlying application and do some other work
and then return to the dialog box. An example of this is the dialog box that comes up when the user
chooses Edit, Find in many Windows applications.

Displaying a modeless dialog box is more difficult than displaying a modal one. The dialog box
object, the instance of the dialog box class, must be managed carefully. Typically, it is created with
new and destroyed with delete when the user closes the dialog box with Cancel or OK. You have to
override a number of functions within the dialog box class. In short, you should be familiar and
comfortable with modal dialog boxes before you attempt to use a modeless dialog box. When you’re
ready, look at the Visual C++ sample called MODELESS that comes with Developer Studio. The fastest
way to open this sample is by searching for MODELESS in InfoViewer. Searching in InfoViewer is
covered in Appendix C, “The Visual Studio User Interface, Menus, and Toolbars.”

Arranging to Display the Dialog Box
Select the ClassView in the project workspace pane, expand the SDI Classes item, and then
expand CSdiApp. Double-click the InitInstance() member function. This function is called
whenever the application starts. Scroll to the top of the file, and after the other #include state-
ments, add this directive:

#include “sdidialog.h”

This ensures that the compiler knows what a CSdiDialog class is when it compiles this file.

Double-click InitInstance() in the ClassView again to bring the cursor to the beginning of
the function. Scroll down to the end of the function, and just before the return at the end of the
function, add the lines in Listing 2.1.

Untitled-6 2/18/99, 1:39 PM50

51

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

Listing 2.1 SDI.CPP—Lines to Add at the End of CSdiApp::InitInstance()

 CSdiDialog dlg;
 dlg.m_check = TRUE;
 dlg.m_edit = “hi there”;
 CString msg;
 if (dlg.DoModal() == IDOK)
 {
 msg = “You clicked OK. “;
 }
 else
 {
 msg = “You cancelled. “;
 }
 msg += “Edit box is: “;
 msg += dlg.m_edit;
 AfxMessageBox (msg);

Entering Code
As you enter code into this file, you may want to take advantage of a feature that makes its debut in
this version of Visual C++: Autocompletion. Covered in more detail in Appendix C, Autocompletion
saves you the trouble of remembering all the member variables and functions of a class. If you type
dlg. and then pause, a window will appear, listing all the member variables and functions of the
class CSdiDialog, including those it inherited from its base class. If you start to type the variable
you want—for example, typing m_—the list will scroll to variables starting with m_. Use the arrow keys
to select the one you want, and press Space to select it and continue typing code. You are sure to
find this feature a great time saver. If the occasional pause as you type bothers you, Autocompletion
can be turned off by choosing Tools, Options and clicking the Editor tab. Deselect the parts of
Autocompletion you no longer want.

This code first creates an instance of the dialog box class. It sets the check box and edit box to
simple default values. (The list box and radio buttons are a little more complex and are added
later in this chapter, in “Using a List Box Control” and “Using Radio Buttons.”) The dialog box
displays onscreen by calling its DoModal() function, which returns a number represented by
IDOK if the user clicks OK and IDCANCEL if the user clicks Cancel. The code then builds a mes-
sage and displays it with the AfxMessageBox function.

The CString class has a number of useful member functions and operator overloads. As
you see here, the += operator tacks characters onto the end of a string. For more about the

CString class, consult Appendix F, “Useful Classes.” ■

Build the project by choosing Build, Build or by clicking the Build button on the Build toolbar.
Run the application by choosing Build, Execute or by clicking the Execute Program button on
the Build toolbar. You will see that the dialog box displays with the default values you just
coded, as shown in Figure 2.10. Change them, and click OK. You should get a message box
telling you what you did, such as the one in Figure 2.11. Now the program sits there, ready to

Using the Dialog Box Class

N O T E

Untitled-6 2/18/99, 1:39 PM51

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

52 Chapter 2 Dialogs and Controls

Run it again, change the contents of the edit box, and this time click Cancel on the dialog box.
Notice in Figure 2.12 that the edit box is reported as still hi there. This is because MFC does
not copy the control values into the member variables when the user clicks Cancel. Again, just
close the application after the dialog box is gone.

FIG. 2.11
After you click OK, the
application echoes the
contents of the edit
control.

Be sure to try entering more characters into the edit box than the 10 you specified with
ClassWizard. You will find you cannot type more than 10 characters—the system just beeps at
you. If you try to paste in something longer than 10 characters, only the first 10 characters
appear in the edit box.

FIG. 2.12
When you click Cancel,
the application ignores
any changes you made.

go, but because there is no more for it to do, you can close it by choosing File, Exit or by click-
ing the – in the top-right corner.

FIG. 2.10
Your application
displays the dialog box
when it first runs.

Untitled-6 2/18/99, 1:39 PM52

53

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

Using the Dialog Box Class

Behind the Scenes
You may be wondering what’s going on here. When you click OK on the dialog box, MFC
arranges for a function called OnOK() to be called. This function is inherited from CDialog, the
base class for CSdiDialog. Among other things, it calls a function called DoDataExchange(),
which ClassWizard wrote for you. Here’s how it looks at the moment:

void CSdiDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CSdiDialog)
 DDX_Control(pDX, IDC_LIST1, m_listbox);
 DDX_Check(pDX, IDC_CHECK1, m_check);
 DDX_Text(pDX, IDC_EDIT1, m_edit);
 DDV_MaxChars(pDX, m_edit, 10);
 DDX_Radio(pDX, IDC_RADIO1, m_radio);
 //}}AFX_DATA_MAP
}

The functions with names that start with DDX all perform data exchange: Their second param-
eter is the resource ID of a control, and the third parameter is a member variable in this class.
This is the way that ClassWizard connected the controls to member variables—by generating
this code for you. Remember that ClassWizard also added these variables to the dialog box
class by generating code in the header file that declares them.

There are 34 functions whose names begin with DDX: one for each type of data that might be
exchanged between a dialog box and a class. Each has the type in its name. For example,
DDX_Check is used to connect a check box to a BOOL member variable. DDX_Text is used to
connect an edit box to a CString member variable. ClassWizard chooses the right function
name when you make the connection.

Some DDX functions are not generated by ClassWizard. For example, when you connect a
list box as a Value, your only choice for type is CString. Choosing that causes

ClassWizard to generate a call to DDX_LBString(), which connects the selected string in the list box
to a CString member variable. There are cases when the integer index into the list box might be more
useful, and there is a DDX_LBIndex() function that performs that exchange. You can add code to
DoDataExchange(), outside the special ClassWizard comments, to make this connection. If you do
so, remember to add the member variable to the class yourself. You can find the full list of DDX
functions in the online documentation. ■

Functions with names that start with DDV perform data validation. ClassWizard adds a call to
DDV_MaxChars right after the call to DDX_Text that filled m_edit with the contents of IDC_EDIT1.
The second parameter of the call is the member variable name, and the third is the limit: how
many characters can be in the string. If a user ever managed to get extra characters into a
length-validated string, the DDV_MaxChars() function contains code that puts up a warning box
and gets the user to try again. You can just set the limit and count on its being enforced.

N O T E

Untitled-6 2/18/99, 1:40 PM53

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

54 Chapter 2 Dialogs and Controls

FIG. 2.13
The New Windows
Message and Event
Handlers dialog box
helps you override
OnInitDialog().

Using a List Box Control
Dealing with the list box is more difficult because only while the dialog box is onscreen is the
list box control a real window. You cannot call a member function of the list box control class
unless the dialog box is onscreen. (This is true of any control that you access as a control
rather than as a value.) This means that you must initialize the list box (fill it with strings) and
use it (determine which string is selected) in functions that are called by MFC while the dialog
box is onscreen.

When it is time to initialize the dialog box, just before it displays onscreen, a CDialog function
named OnInitDialog() is called. Although the full explanation of what you are about to do will
have to wait until Chapter 3, “Messages and Commands,” follow the upcoming steps to add the
function to your class.

In ClassView, right-click CSdiDialog and choose Add Windows Message Handler. The New
Windows Message and Event Handlers dialog box shown in Figure 2.13 appears. Choose
WM_INITDIALOG from the list and click Add Handler. The message name disappears from the
left list and appears in the right list. Click it and then click Edit Existing to see the code.

Remove the TODO comment and add calls to the member functions of the list box so that the
function is as shown in Listing 2.2.

Listing 2.2 SDIDIALOG.CPP—CSdiDialog::OnInitDialog()

BOOL CSdiDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_listbox.AddString(“First String”);
 m_listbox.AddString(“Second String”);
 m_listbox.AddString(“Yet Another String”);
 m_listbox.AddString(“String Number Four”);

Untitled-6 2/18/99, 1:40 PM54

55

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

 m_listbox.SetCurSel(2);

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

This function starts by calling the base class version of OnInitDialog() to do whatever behind-
the-scenes work MFC does when dialog boxes are initialized. Then it calls the list box member
function AddString() which, as you can probably guess, adds a string to the list box. The
strings will be displayed to the user in the order that they were added with AddString(). The
final call is to SetCurSel(), which sets the current selection. As you see when you run this
program, the index you pass to SetCurSel() is zero based, which means that item 2 is the third
in the list, counting 0, 1, 2.

Usually, the strings of a list box are not hardcoded like this. To set them from elsewhere in
your program, you have to add a CStringArray member variable to the dialog box class

and a function to add strings to that array. The OnInitDialog() would use the array to fill the list
box. Alternatively, you can use another one of MFC’s collection classes or even fill the list box from a
database. For more about CStringArray and other MFC collection classes, consult Appendix F.
Database programming is covered in Chapter 22, “Database Access.” ■

In order to have the message box display some indication of what was selected in the list box,
you have to add another member variable to the dialog box class. This member variable will be
set as the dialog box closes and can be accessed after it is closed. In ClassView, right-click
CSdiDialog and choose Add Member Variable. Fill in the dialog box, as shown in Figure 2.14,
and then click OK. This adds the declaration of the CString called m_selected to the header
file for you. (If the list box allowed multiple selections, you would have to use a CStringArray
to hold the list of selected items.) Strictly speaking, the variable should be private, and you
should either add a public accessor function or make CSdiApp::InitInstance() a friend func-
tion to CSdiDialog in order to be truly object oriented. Here you take an excusable shortcut.
The general rule still holds: Member variables should be private.

Using the Dialog Box Class

N O T E

FIG. 2.14
Add a CString to your
class to hold the string
that was selected in the
list box.

Object-oriented concepts (such as accessor functions), friend functions, and the reasoning behind
private member variables are discussed in Appendix A, “C++ Review and Object-Oriented Concepts.”

T I P

Untitled-6 2/18/99, 1:40 PM55

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

56 Chapter 2 Dialogs and Controls

3. In the far right list box, select BN_CLICKED. You are adding a function to handle the user’s
clicking the OK button once.

4. Click the Add Handler button. The Add Member Function dialog box shown in Figure
2.16 appears.

5. Accept the suggested name, OnOK(), by clicking OK.

6. Click the Edit Existing button to edit the code, and add lines as shown in Listing 2.3.

Listing 2.3 SDIDIALOG.CPP—CSdiDialog::OnOK()

void CSdiDialog::OnOK()
{
 int index = m_listbox.GetCurSel();
 if (index != LB_ERR)
 {
 m_listbox.GetText(index, m_selected);
 }

FIG. 2.16
ClassWizard suggests a
very good name for this
event handler: Do not
change it.

This new member variable is used to hold the string that the user selected. It is set when the
user clicks OK or Cancel. To add a function that is called when the user clicks OK, follow these
steps:

1. Right-click CSdiDialog in the ClassView, and choose Add Windows Message Handler.

2. In the New Windows Message and Event Handlers dialog box, shown in Figure 2.15,
highlight ID_OK in the list box at the lower right, labeled Class or Object to Handle.

FIG. 2.15
Add a function to
handle the user’s
clicking OK on your
dialog box.

Untitled-6 2/18/99, 1:40 PM56

57

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

Using the Dialog Box Class

 else
 {
 m_selected = “”;
 }

 CDialog::OnOK();
}

This code calls the list box member function GetCurSel(), which returns a constant repre-
sented by LB_ERR if there is no selection or if more than one string has been selected. Other-
wise, it returns the zero-based index of the selected string. The GetText() member function
fills m_selected with the string at position index. After filling this member variable, this func-
tion calls the base class OnOK() function to do the other processing required.

In a moment you will add lines to CSdiApp::InitInstance() to mention the selected string in
the message box. Those lines will execute whether the user clicks OK or Cancel, so you need
to add a function to handle the user’s clicking Cancel. Simply follow the numbered steps for
adding OnOK, except that you choose ID_CANCEL from the top-right box and agree to call the
function OnCancel. The code, as shown in Listing 2.4, resets m_selected because the user
canceled the dialog box.

Listing 2.4 SDIDIALOG.CPP—CSdiDialog::OnCancel()

void CSdiDialog::OnCancel()
{
 m_selected = “”;
 CDialog::OnCancel();
}

Add these lines to CSdiApp::InitInstance() just before the call to AfxMessageBox():

 msg += “. List Selection: “;
 msg += dlg.m_selected;

Build the application, run it, and test it. Does it work as you expect? Does it resemble Figure
2.17?

FIG. 2.17
Your application now
displays strings in the
list box.

Untitled-6 2/18/99, 1:41 PM57

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

58 Chapter 2 Dialogs and Controls

Using Radio Buttons
You may have already noticed that when the dialog box first appears onscreen, none of the
radio buttons are selected. You can arrange for one of them to be selected by default: Simply
add two lines to CSdiDialog::OnInitDialog(). These lines set the second radio button and
save the change to the dialog box:

m_radio = 1;
UpdateData(FALSE);

You may recall that m_radio is the member variable to which the group of radio buttons is
connected. It is a zero-based index into the group of buttons, indicating which one is selected.
Button 1 is the second button. The call to UpdateData() refreshes the dialog box controls with
the member variable values. The parameter indicates the direction of transfer:
UpdateData(TRUE) would refresh the member variables with the control values, wiping out the
setting of m_radio you just made.

Unlike list boxes, a group of radio buttons can be accessed after the dialog box is no longer
onscreen, so you won’t need to add code to OnOK() or OnCancel(). However, you have a prob-
lem: how to convert the integer selection into a string to tack on the end of msg. There are lots
of approaches, including the Format() function of CString, but in this case, because there are
not many possible selections, a switch statement is readable and quick. At the end of
CSdiApp::InitInstance(), add the lines in Listing 2.5 just before the call to AfxMessageBox().

Listing 2.5 SDIDIALOG.CPP—Lines to Add to CSdiApp::InitInstance()

 msg += “\r\n”;
 msg += “Radio Selection: “;

 switch (dlg.m_radio)
 {
 case 0:
 msg += “0”;
 break;
 case 1:
 msg += “1”;
 break;
 case 2:
 msg += “2”;
 break;
 default:
 msg += “none”;
 break;
 }

The first new line adds two special characters to the message. Return, represented by \r, and
new line, represented by \n, combine to form the Windows end-of-line marker. This adds a line
break after the part of the message you have built so far. The rest of msg will appear on the
second line of the message box. The switch statement is an ordinary piece of C++ code, which

Untitled-6 2/18/99, 1:41 PM58

59

B3A3 swg4 UsingVisualC++6 1539-2 7.20.98 ayanna chapter 2 LP#3

2

I
Part

Ch

was also present in C. It executes one of the case statements, depending on the value of
dlg.m_radio.

Once again, build and test the application. Any surprises? It should resemble Figure 2.18. You
are going to be building and using dialog boxes throughout this book, so take the time to un-
derstand how this application works and what it does. You may want to step through it with the
debugger and watch it in action. You can read all about debugging in Chapter 24, “Improving
Your Application’s Performance,” and in Appendix D, “Debugging.”

Using the Dialog Box Class

FIG. 2.18
Your application now
selects Button Two by
default.

Untitled-6 2/18/99, 1:41 PM59

Untitled-6 2/18/99, 1:41 PM60

61

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

C H A P T E R

Messages and Commands

Understanding Message Routing 62

Understanding Message Loops 63

Reading Message Maps 65

Learning How ClassWizard Helps You Catch Messages 69

Recognizing Messages 72

Understanding Commands 73

Understanding Command Updates 74

Learning How ClassWizard Helps You Catch Commands and Command Updates 76

3

In this chapter

Untitled-7 2/18/99, 2:07 PM61

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

62 Chapter 3 Messages and Commands

Understanding Message Routing
If there is one thing that sets Windows programming apart from other kinds of programming,
it is messages. Most DOS programs, for example, relied on watching (sometimes called poll-
ing) possible sources of input like the keyboard or the mouse to await input from them. A pro-
gram that wasn’t polling the mouse would not react to mouse input. In contrast, everything that
happens in a Windows program is mediated by messages. A message is a way for the operating
system to tell an application that something has happened—for example, the user has typed,
clicked, or moved the mouse, or the printer has become available. A window (and every screen
element is a window) can also send a message to another window, and typically most windows
react to messages by passing a slightly different message along to another window. MFC has
made it much easier to deal with messages, but you must understand what is going on beneath
the surface.

Messages are all referred to by their names, though the operating system uses integers to
refer to them. An enormous list of #define statements connects names to numbers and lets
Windows programmers talk about WM_PAINT or WM_SIZE or whatever message they need to talk
about. (The WM stands for Window Message.) An excerpt from that list is shown in Listing 3.1.

Listing 3.1 Excerpt from winuser.h Defining Message Names

#define WM_SETFOCUS 0x0007
#define WM_KILLFOCUS 0x0008
#define WM_ENABLE 0x000A
#define WM_SETREDRAW 0x000B
#define WM_SETTEXT 0x000C
#define WM_GETTEXT 0x000D
#define WM_GETTEXTLENGTH 0x000E
#define WM_PAINT 0x000F
#define WM_CLOSE 0x0010
#define WM_QUERYENDSESSION 0x0011
#define WM_QUIT 0x0012
#define WM_QUERYOPEN 0x0013
#define WM_ERASEBKGND 0x0014
#define WM_SYSCOLORCHANGE 0x0015
#define WM_ENDSESSION 0x0016

As well as a name, a message knows what window it is for and can have up to two parameters.
(Often, several different values are packed into these parameters, but that’s another story.)

Different messages are handled by different parts of the operating system or your application.
For example, when the user moves the mouse over a window, the window receives a
WM_MOUSEMOVE message, which it almost certainly passes to the operating system to deal with.
The operating system redraws the mouse cursor at the new location. When the left button is
clicked over a button, the button (which is a window) receives a WM_LBUTTONDOWN message and
handles it, often generating another message to the window that contains the button, saying, in
effect, “I was clicked.”

Untitled-7 2/18/99, 2:07 PM62

63

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

MFC has enabled many programmers to completely ignore low-level messages such as
WM_MOUSEMOVE and WM_LBUTTONDOWN. Instead, programmers deal only with higher level mes-
sages that mean things like “The third item in this list box has been selected” or “The Submit
button has been clicked.” All these kinds of messages move around in your code and the oper-
ating system code in the same way as the lower level messages. The only difference is what
piece of code chooses to handle them. MFC makes it much simpler to announce, at the indi-
vidual class’s level, which messages each class can handle. The old C way, which you will see
in the next section, made those announcements at a higher level and interfered with the object-
oriented approach to Windows programming, which involves hiding implementation details as
much as possible inside objects.

Understanding Message Loops
The heart of any Windows program is the message loop, typically contained in a WinMain()
routine. The WinMain() routine is, like the main() in DOS or UNIX, the function called by the
operating system when you run the program. You won’t write any WinMain() routines because
it is now hidden away in the code that AppWizard generates for you. Still, there is a WinMain(),
just as there is in Windows C programs. Listing 3.2 shows a typical WinMain().

Listing 3.2 Typical WinMain() Routine

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{

 MSG msg;
 if (! InitApplication (hInstance))
 return (FALSE);

 if (! InitInstance (hInstance, nCmdShow))
 return (FALSE);

 while (GetMessage (&msg, NULL, 0, 0)){
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
 return (msg.wParam);
}

In a Windows C program like this, InitApplication() typically calls RegisterWindow(), and
InitInstance() typically calls CreateWindow(). (More details on this are in Appendix B, “Win-
dows Programming Review and a Look Inside Cwnd.”) Then comes the message loop, the while
loop that calls GetMessage(). The API function GetMessage() fills msg with a message destined
for this application and almost always returns TRUE, so this loop runs over and over until the
program is finished. The only thing that makes GetMessage() return FALSE is if the message it
receives is WM_QUIT.

Understanding Message Loops

Untitled-7 2/18/99, 2:08 PM63

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

64 Chapter 3 Messages and Commands

TranslateMessage() is an API function that streamlines dealing with keyboard messages.
Most of the time, you don’t need to know that “the A key just went down” or “the A key just
went up,” and so on. It’s enough to know that “the user pressed A.” TranslateMessage() deals
with that. It catches the WM_KEYDOWN and WM_KEYUP messages and usually sends a WM_CHAR mes-
sage in their place. Of course, with MFC, most of the time you don’t care that the user pressed
A. The user types into an edit box or similar control, and you can retrieve the entire string out
of it later, when the user has clicked OK. Don’t worry too much about TranslateMessage().

The API function DispatchMessage() calls the WndProc for the window that the message is
headed for. The WndProc() function for a Windows C program is a huge switch statement
with one case for each message the programmer planned to catch, such as the one in
Listing 3.3.

Listing 3.3 Typical WndProc() Routine

LONG APIENTRY MainWndProc (HWND hWnd, // window handle
 UINT message, // type of message
 UINT wParam, // additional information
 LONG lParam) // additional information
{

 switch (message) {
 case WM_MOUSEMOVE:
 //handle mouse movement
 break;

 case WM_LBUTTONDOWN:
 //handle left click
 break;

 case WM_RBUTTONDOWN:
 //handle right click
 break;

 case WM_PAINT:
 //repaint the window
 break;

 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage (0);
 break;

 default:
 return (DefWindowProc (hWnd, message, wParam, lParam));
 }

 return (0);
}

Untitled-7 2/18/99, 2:08 PM64

65

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

As you can imagine, these WndProcs become very long in a hurry. Program maintenance can
be a nightmare. MFC solves this problem by keeping information about message processing
close to the functions that handle the messages, freeing you from maintaining a giant switch
statement that is all in one place. Read on to see how it’s done.

Reading Message Maps
Message maps are part of the MFC approach to Windows programming. Instead of writing a
WinMain() function that sends messages to your WindProc and then writing a WindProc that
checks which kind of message this is and then calls another of your functions, you just write
the function that will handle the message, and you add a message map to your class that says,
in effect, “I will handle this sort of message.” The framework handles whatever routing is re-
quired to send that message to you.

If you’ve worked in Microsoft Visual Basic, you should be familiar with event procedures, which handle
specific events such as a mouse click. The message-handling functions you will write in C++ are
equivalent to event procedures. The message map is the way that events are connected to their
handlers.

Message maps come in two parts: one in the .h file for a class and one in the corresponding
.cpp. Typically, they are generated by wizards, although in some circumstances you will add
entries yourself. Listing 3.4 shows the message map from the header file of one of the classes
in a simple application called ShowString, presented in Chapter 8, “Building a Complete Appli-
cation: ShowString.”

Listing 3.4 Message Map from showstring.h

//{{AFX_MSG(CShowStringApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

This declares a function called OnAppAbout(). The specially formatted comments around the
declarations help ClassWizard keep track of which messages are caught by each class.
DECLARE_MESSAGE_MAP() is a macro, expanded by the C++ compiler’s preprocessor, that de-
clares some variables and functions to set up some of this magic message catching.

The message map in the source file, as shown in Listing 3.5, is quite similar.

T I P

Reading Message Maps

Untitled-7 2/18/99, 2:08 PM65

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

66 Chapter 3 Messages and Commands

Listing 3.5 Message Map from Chapter 8’s showstring.cpp

BEGIN_MESSAGE_MAP(CShowStringApp, CWinApp)
 //{{AFX_MSG_MAP(CShowStringApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

Message Map Macros
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP are macros that, like DECLARE_MESSAGE_MAP in the
include file, declare some member variables and functions that the framework can use to
navigate the maps of all the objects in the system. A number of macros are used in message
maps, including these:

■ DECLARE_MESSAGE_MAP—Used in the include file to declare that there will be a message
map in the source file.

■ BEGIN MESSAGE MAP—Marks the beginning of a message map in the source file.

■ END MESSAGE MAP—Marks the end of a message map in the source file.

■ ON_COMMAND—Used to delegate the handling of a specific command to a member function
of the class.

■ ON_COMMAND_RANGE—Used to delegate the handling of a group of commands, expressed
as a range of command IDs, to a single member function of the class.

■ ON_CONTROL—Used to delegate the handling of a specific custom control–notification
message to a member function of the class.

■ ON_CONTROL_RANGE—Used to delegate the handling of a group of custom control–
notification messages, expressed as a range of control IDs, to a single member function
of the class.

■ ON_MESSAGE—Used to delegate the handling of a user-defined message to a member
function of the class.

■ ON_REGISTERED_MESSAGE—Used to delegate the handling of a registered user-defined
message to a member function of the class.

■ ON_UPDATE_COMMAND_UI—Used to delegate the updating for a specific command to a
member function of the class.

■ ON_COMMAND_UPDATE_UI_RANGE—Used to delegate the updating for a group of commands,
expressed as a range of command IDs, to a single member function of the class.

Untitled-7 2/18/99, 2:08 PM66

67

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

■ ON_NOTIFY—Used to delegate the handling of a specific control-notification message with
extra data to a member function of the class.

■ ON_NOTIFY_RANGE—Used to delegate the handling of a group of control-notification
messages with extra data, expressed as a range of child identifiers, to a single member
function of the class. The controls that send these notifications are child windows of the
window that catches them.

■ ON_NOTIFY_EX—Used to delegate the handling of a specific control-notification message
with extra data to a member function of the class that returns TRUE or FALSE to indicate
whether the notification should be passed on to another object for further reaction.

■ ON_NOTIFY_EX_RANGE—Used to delegate the handling of a group of control-notification
messages with extra data, expressed as a range of child identifiers, to a single member
function of the class that returns TRUE or FALSE to indicate whether the notification
should be passed on to another object for further reaction. The controls that send these
notifications are child windows of the window that catches them.

In addition to these, there are about 100 macros, one for each of the more common messages,
that direct a single specific message to a member function. For example, ON_CREATE delegates
the WM_CREATE message to a function called OnCreate(). You cannot change the function names
in these macros. Typically, these macros are added to your message map by ClassWizard, as
demonstrated in Chapter 8.

How Message Maps Work
The message maps presented in Listings 3.3 and 3.4 are for the CShowStringApp class of the
ShowString application. This class handles application-level tasks such as opening a new file or
displaying the About box. The entry added to the header file’s message map can be read as
“there is a function called OnAppAbout() that takes no parameters.” The entry in the source
file’s map means “when an ID_APP_ABOUT command message arrives, call OnAppAbout().” It
shouldn’t be a big surprise that the OnAppAbout() member function displays the About box for
the application.

If you don’t mind thinking of all this as magic, it might be enough to know that adding the
message map entry causes your code to run when the message is sent. Perhaps you’re wonder-
ing just how message maps really work. Here’s how. Every application has an object that inher-
its from CWinApp, and a member function called Run(). That function calls CWinThread::Run(),
which is far longer than the simple WinMain() presented earlier but has the same message loop
at its heart: call GetMessage(), call TranslateMessage(), call DispatchMessage(). Almost
every window object uses the same old-style Windows class and the same WindProc, called
AfxWndProc(). The WindProc, as you’ve already seen, knows the handle, hWnd, of the window
the message is for. MFC keeps something called a handle map, a table of window handles and
pointers to objects, and the framework uses this to send a pointer to the C++ object, a CWnd*.
Next, it calls WindowProc(), a virtual function of that object. Buttons or views might have differ-
ent WindowProc() implementations, but through the magic of polymorphism, the right function
is called.

Reading Message Maps

Untitled-7 2/18/99, 2:09 PM67

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

68 Chapter 3 Messages and Commands

Polymorphism
Virtual functions and polymorphism are important C++ concepts for anyone working with MFC. They
arise only when you are using pointers to objects and when the class of objects to which the pointers
are pointing is derived from another class. Consider as an example a class called CDerived that is
derived from a base class called CBase, with a member function called Function() that is
declared in the base class and overridden in the derived class. There are now two functions: One has
the full name CBase::Function(), and the other is CDerived::Function().

If your code has a pointer to a base object and sets that pointer equal to the address of the derived
object, it can then call the function, like this:

 CDerived derivedobject;
 CBase* basepointer;
 basepointer = &derivedobject;
 basepointer->Function();

In this case, CBase::Function() will be called. However, there are times when that is not what
you want—when you have to use a CBase pointer, but you really want CDerived::Function() to
be called. To indicate this, in CBase, Function() is declared to be virtual. Think of it as an
instruction to the compiler to override this function, if there is any way to do it.

When Function() is declared to be virtual in the base class, CBase, the code fragment above
would actually call CDerived::Function(), as desired. That’s polymorphism, and that shows up
again and again when using MFC classes. You use a pointer to a window, a CWnd*, that really points
to a CButton or a CView or some other class derived from CWnd, and when a function such as
WindowProc() is called, it will be the derived function—CButton::WindowProc() for example—
that is called.

You might wonder why the messages can’t just be handled by virtual functions. This would
make the virtual tables enormous, and slow the application too much. The message map

system is a much faster approach. ■

WindowProc()calls OnWndMsg(), the C++ function that really handles messages. First, it checks
to see whether this is a message, a command, or a notification. Assuming it’s a message, it
looks in the message map for the class, using the member variables and functions set up by
DECLARE_MESSAGE_MAP, BEGIN_MESSAGE_MAP, and END_MESSAGE_MAP. Part of what those macros
arrange is to enable access to the message map entries of the base class by the functions that
search the message map of the derived class. That means that if a class inherits from CView and
doesn’t catch a message normally caught by CView, that message will still be caught by the
same CView function as inherited by the derived class. This message map inheritance parallels
the C++ inheritance but is independent of it and saves a lot of trouble carrying virtual functions
around.

The bottom line: You add a message map entry, and when a message arrives, the functions
called by the hidden message loop look in these tables to decide which of your objects, and
which member function of the object, should handle the message. That’s what’s really going on
behind the scenes.

N O T E

Untitled-7 2/18/99, 2:09 PM68

69

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

Messages Caught by MFC Code
The other great advantage of MFC is that the classes already catch most of the common mes-
sages and do the right thing, without any coding on your part at all. For example, you don’t
need to catch the message that tells you that the user has chosen File, Save As—MFC classes
catch it, put up the dialog box to obtain the new filename, handle all the behind-the-scenes
work, and finally call one of your functions, which must be named Serialize(), to actually
write out the document. (Chapter 7, “Persistence and File I/O,” explains the Serialize()
function.) You need only to add message map entries for behavior that is not common to all
applications.

Learning How ClassWizard Helps You Catch
Messages

Message maps may not be simple to read, but they are simple to create if you use ClassWizard.
There are two ways to add an entry to a message map in Visual C++ 6.0: with the main
ClassWizard dialog box or with one of the new dialog boxes that add message handlers or
virtual functions. This section shows you these dialog boxes for ShowString, rather than work
you through creating a sample application.

The ClassWizard Tabbed Dialog Box
The main ClassWizard dialog box is displayed by choosing View, ClassWizard or by pressing
Ctrl+W. ClassWizard is a tabbed dialog box, and Figure 3.1 shows the Message Maps tab. At
the top of the dialog box are two drop-down list boxes, one that reminds you which project you
are working on (ShowString in this case) and the other that reminds you which class owns the
message map you are editing. In this case, it is the CShowStringApp class, whose message map
you have already seen.

FIG. 3.1
ClassWizard makes
catching messages
simple.

Learning How ClassWizard Helps You Catch Messages

Untitled-7 2/18/99, 2:10 PM69

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

70 Chapter 3 Messages and Commands

Below those single-line boxes is a pair of multiline boxes. The one on the left lists the class
itself and all the commands that the user interface can generate. Commands are discussed in
the “Commands” section later in this chapter. With the classname highlighted, the box on the
right lists all the Windows messages this class might catch. It also lists a number of virtual
functions that catch common messages.

To the right of those boxes are buttons where you can add a new class to the project, add a
function to the class to catch the highlighted message, remove a function that was catching a
message, or open the source code for the function that catches the highlighted message. Typi-
cally, you select a class, select a message, and click Add Function to catch the message. Here’s
what the Add Function button sets in motion:

■ Adds a skeleton function to the bottom of the source file for the application

■ Adds an entry to the message map in the source file

■ Adds an entry to the message map in the include file

■ Updates the list of messages and member functions in the dialog box

After you add a function, clicking Edit Code makes it simple to start filling in the behavior of
that function. If you prefer, double-click the function name in the Member Functions list box.

Below the Object IDs and Messages boxes is a list of the member functions of this class that
are related to messages. This class has two such functions:

■ InitInstance()—Overrides a virtual function in CWinApp, the base class for
CShowStringApp, and is labeled with a V (for virtual function) in the list.

■ OnAppAbout()—Catches the ID_APP_ABOUT command and is labeled with a W (for
Windows message) in the list.

The InitInstance function is called whenever an application first starts. You don’t need to
understand this function to see that ClassWizard reminds you the function has been over-
ridden.

Finally, under the Member Functions box is a reminder of the meaning of the highlighted
message. called to implement wait cursors is a description of the DoWaitCursor virtual
function.

The Add Windows Message Handler Dialog Box
In release 5.0 of Visual C++, a new way of catching messages was added. Rather than opening
ClassWizard and then remembering to set the right classname in a drop-down list box, you
right-click on the classname in ClassView and then choose Add Windows Message Handler
from the shortcut menu that appears. Figure 3.2 shows the dialog box that appears when you
make this choice.

Untitled-7 2/18/99, 2:10 PM70

71

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

ChThis dialog box doesn’t show any virtual functions that were listed in the main ClassView dia-
log box. It is easy to see that this class catches the command ID_APP_ABOUT but doesn’t catch
the command update. (Commands and command updating are discussed in more detail later in
this chapter.) To add a new virtual function, you right-click on the class in ClassView and
choose Add New Virtual Function from the shortcut menu. Figure 3.3 shows this dialog box.

FIG. 3.2
The New Windows
Message and Event
Handlers dialog box is
another way to catch
messages.

FIG. 3.3
The New Virtual
Override dialog box
simplifies implementing
virtual functions.

You can see in Figure 3.3 that CShowStringApp already overrides the InitInstance() virtual
function, and you can see what other functions are available to be overridden. As in the tabbed
dialog box, a message area at the bottom of the dialog box reminds you of the purpose of each
function: In fact, the text—Called to implement wait cursors—is identical to that in
Figure 3.1.

Learning How ClassWizard Helps You Catch Messages

Untitled-7 2/18/99, 2:10 PM71

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

72 Chapter 3 Messages and Commands

Which Class Should Catch the Message?
The only tricky part of message maps and message handling is deciding which class should
catch the message. That’s a decision you can’t make until you understand all the different
message and command targets that make up a typical application. The choice is usually one of
the following:

■ The active view

■ The document associated with the active view

■ The frame window that holds the active view

■ The application object

Views, documents, and frames are discussed in Chapter 4, “Documents and Views.”

Recognizing Messages
There are almost 900 Windows messages, so you won’t find a list of them all in this chapter.
Usually, you arrange to catch messages with ClassWizard and are presented with a much
shorter list that is appropriate for the class you are catching messages with. Not every kind of
window can receive every kind of message. For example, only classes that inherit from
CListBox receive list box messages such as LB_SETSEL, which directs the list box to move the
highlight to a specific list item. The first component of a message name indicates the kind of
window this message is destined for, or coming from. These window types are listed in
Table 3.1.

Table 3.1 Windows Message Prefixes and Window Types

Prefix Window Type

ABM, ABN Appbar

ACM, ACN Animation control

BM, BN Button

CB, CBN Combo box

CDM, CDN Common dialog box

CPL Control Panel application

DBT Any application (device change message)

DL Drag list box

DM Dialog box

EM, EN Edit box

FM, FMEVENT File Manager

HDM, HDN Header control

Untitled-7 2/18/99, 2:11 PM72

73

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

Prefix Window Type

HKM HotKey control

IMC, IMN IME window

LB, LBN List box

LVM, LVN List view

NM Any parent window (notification message)

PBM Progress bar

PBT Any application (battery power broadcast)

PSM, PSN Property sheet

SB Status bar

SBM Scrollbar

STM, STN Static control

TB, TBN Toolbar

TBM Track bar

TCM, TCN Tab control

TTM, TTN ToolTip

TVM, TVN Tree view

UDM Up Down control

WM Generic window

What’s the difference between, say, a BM message and a BN message? A BM message is a mes-
sage to a button, such as “act as though you were just clicked.” A BN message is a notification
from a button to the window that owns it, such as “I was clicked.” The same pattern holds for
all the prefixes that end with M or N in the preceding table.

Sometimes the message prefix does not end with M; for example CB is the prefix for a message
to a combo box, whereas CBN is the prefix for a notification from a combo box to the window
that owns it. Another example is CB_SETCURSEL, a message to a combo box directing it to select
one of its strings, whereas CBN_SELCHANGE is a message sent from a combo box, notifying its
parent that the user has changed which string is selected.

Understanding Commands
What is a command? It is a special type of message. Windows generates a command whenever
a user chooses a menu item, clicks a button, or otherwise tells the system to do something. In
older versions of Windows, both menu choices and button clicks generated a WM_COMMAND mes-
sage; these days you receive a WM_COMMAND for a menu choice and a WM_NOTIFY for a control

Understanding Commands

Untitled-7 2/18/99, 2:11 PM73

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

74 Chapter 3 Messages and Commands

notification such as button clicking or list box selecting. Commands and notifications are
passed around by the operating system just like any other message, until they get into the top
of OnWndMsg(). At that point, Windows message passing stops and MFC command routing
starts.

Command messages all have, as their first parameter, the resource ID of the menu item that
was chosen or the button that was clicked. These resource IDs are assigned according to a
standard pattern—for example, the menu item File, Save has the resource ID ID_FILE_SAVE.

Command routing is the mechanism OnWndMsg() uses to send the command (or notification) to
objects that can’t receive messages. Only objects that inherit from CWnd can receive messages,
but all objects that inherit from CCmdTarget, including CWnd and CDocument, can receive com-
mands and notifications. That means a class that inherits from CDocument can have a message
map. There won’t be any entries in it for messages, only for commands and notifications, but
it’s still a message map.

How do the commands and notifications get to the class, though? By command routing. (This
becomes messy, so if you don’t want the inner details, skip this paragraph and the next.)
OnWndMsg() calls CWnd::OnCommand() or CWnd::OnNotify(). OnCommand() checks all sorts of
petty stuff (such as whether this menu item was grayed after the user selected it but before
this piece of code started to execute) and then calls OnCmdMsg(). OnNotify() checks different
conditions and then it, too, calls OnCmdMsg(). OnCmdMsg() is virtual, which means that different
command targets have different implementations. The implementation for a frame window
sends the command to the views and documents it contains.

This is how something that started out as a message can end up being handled by a member
function of an object that isn’t a window and therefore can’t really catch messages.

Should you care about this? Even if you don’t care how it all happens, you should care that you
can arrange for the right class to handle whatever happens within your application. If the user
resizes the window, a WM_SIZE message is sent, and you may have to rescale an image or do
some other work inside your view. If the user chooses a menu item, a command is generated,
and that means your document can handle it if that’s more appropriate. You see examples of
these decisions at work in Chapter 4.

Understanding Command Updates
This under-the-hood tour of how MFC connects user actions such as window resizing or menu
choices to your code is almost finished. All that’s left is to handle the graying of menus and
buttons, a process called command updating.

Imagine you are designing an operating system, and you know it’s a good idea to have some
menu items grayed to show they can’t be used right now. There are two ways you can go about
implementing this.

Untitled-7 2/18/99, 2:12 PM74

75

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch

One is to have a huge table with one entry for every menu item and a flag to indicate whether
it’s available. Whenever you have to display the menu, you can quickly check the table. When-
ever the program does anything that makes the item available or unavailable, it updates the
table. This is called the continuous-update approach.

The other way is not to have a table but to check all the conditions just before your program
displays the menu. This is called the update-on-demand approach and is the approach taken in
Windows. In the old C way of doing things—to check whether each menu option should be
grayed—the system sent a WM_INITMENUPOPUP message, which means “I’m about to display a
menu.” The giant switch in the WindProc caught that message and quickly enabled or disabled
each menu item. This wasn’t very object-oriented though. In an object-oriented program, differ-
ent pieces of information are stored in different objects and aren’t generally made available to
the entire program.

When it comes to updating menus, different objects know whether each item should be
grayed. For example, the document knows whether it has been modified since it was last
saved, so it can decide whether File, Save should be grayed. However, only the view knows
whether some text is currently highlighted; therefore, it can decide if Edit, Cut and Edit, Copy
should be grayed. This means that the job of updating these menus should be parcelled out to
various objects within the application rather than handled within the WindProc.

The MFC approach is to use a little object called a CCmdUI, a command user interface, and give
this object to whoever catches a CN_UPDATE_COMMAND_UI message. You catch those messages
by adding (or getting ClassWizard to add) an ON_UPDATE_COMMAND_UI macro in your message
map. If you want to know what’s going on behind the scenes, it’s this: The operating system
still sends WM_INITMENUPOPUP; then the MFC base classes such as CFrameWnd take over. They
make a CCmdUI, set its member variables to correspond to the first menu item, and call one of
that object’s own member functions, DoUpdate(). Then, DoUpdate() sends out the
CN_COMMAND_UPDATE_UI message with a pointer to itself as the CCmdUI object the handlers use.
The same CCmdUI object is then reset to correspond to the second menu item, and so on, until
the entire menu is ready to be displayed. The CCmdUI object is also used to gray and ungray
buttons and other controls in a slightly different context.

CCmdUI has the following member functions:

■ Enable()—Takes a TRUE or FALSE (defaults to TRUE). This grays the user interface item if
FALSE and makes it available if TRUE.

■ SetCheck()—Checks or unchecks the item.

■ SetRadio()—Checks or unchecks the item as part of a group of radio buttons, only one
of which can be set at any time.

■ SetText()—Sets the menu text or button text, if this is a button.

■ DoUpdate()—Generates the message.

Understanding Command Updates

Untitled-7 2/18/99, 2:12 PM75

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

76 Chapter 3 Messages and Commands

Determining which member function you want to use is usually clear-cut. Here is a shortened
version of the message map from an object called CWhoisView, a class derived from CFormView
that is showing information to a user. This form view contains several edit boxes, and the user
may want to paste text into one of them. The message map contains an entry to catch the up-
date for the ID_EDIT_PASTE command, like this:

BEGIN_MESSAGE_MAP(CWhoisView, CFormView)
 ...
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ...
END_MESSAGE_MAP()

The function that catches the update, OnUpdateEditPaste(), looks like this:

void CWhoisView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::IsClipboardFormatAvailable(CF_TEXT));
}

This calls the API function ::IsClipboardFormatAvailable() to see whether there is text in
the Clipboard. Other applications may be able to paste in images or other nontext Clipboard
contents, but this application cannot and grays the menu item if there is no text available to
paste. Most command update functions look just like this: They call Enable() with a parameter
that is a call to a function that returns TRUE or FALSE, or perhaps a simple logical expression.
Command update handlers must be fast because five to ten of them must run between the
moment the user clicks to display the menu and the moment before the menu is actually dis-
played.

Learning How ClassWizard Helps You Catch
Commands and Command Updates

The ClassWizard dialog box shown in Figure 4.1 has the classname highlighted in the box
labeled Object IDs. Below that are resource IDs of every resource (menu, toolbar, dialog box
controls, and so on) that can generate a command or message when this object (view, dialog,
and so on) is on the screen. If you highlight one of those, the list of messages associated with it
is much smaller, as you see in Figure 3.4.

Only two messages are associated with each resource ID: COMMAND and UPDATE_COMMAND_UI.
The first enables you to add a function to handle the user selecting the menu option or clicking
the button—that is, to catch the command. The second enables you to add a function to set the
state of the menu item, button, or other control just as the operating system is about to display
it—that is, to update the command. (The COMMAND choice is boldface in Figure 3.4 because this
class already catches that command.)

Untitled-7 2/18/99, 2:12 PM76

77

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

3

I
Part

Ch
Clicking Add Function to add a function that catches or updates a command involves an extra
step. ClassWizard gives you a chance to change the default function name, as shown in Figure
3.5. This is almost never appropriate. There is a regular pattern to the suggested names, and
experienced MFC programmers come to count on function names that follow that pattern.
Command handler functions, like message handlers, have names that start with On. Typically,
the remainder of the function name is formed by removing the ID and the underscores from
the resource ID and capitalizing each word. Command update handlers have names that start
with OnUpdate and use the same conventions for the remainder of the function name. For ex-
ample, the function that catches ID_APP_EXIT should be called OnAppExit(), and the function
that updates ID_APP_EXIT should be called OnUpdateAppExit().

FIG. 3.4
ClassWizard enables
you to catch or update
commands.

FIG. 3.5
It’s possible, but not
wise, to change the
name for your
command handler or
command update
handler from the name
suggested by
ClassWizard.

Not every command needs an update handler. The framework does some very nice work gray-
ing and ungraying for you automatically. Say you have a menu item—Network, Send—whose
command is caught by the document. When there is no open document, this menu item is
grayed by the framework, without any coding on your part. For many commands, it’s enough

Learning How ClassWizard Helps You Catch Commands and Command Updates

Untitled-7 2/18/99, 2:12 PM77

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH03 LP#3

78 Chapter 3 Messages and Commands

that an object that can handle them exists, and no special updating is necessary. For others,
you may want to check that something is selected or highlighted or that no errors are present
before making certain commands available. That’s when you use command updating. If you’d
like to see an example of command updating at work, there’s one in Chapter 8 in the
“Command Updating” section. ●

Untitled-7 2/18/99, 2:12 PM78

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptII LP#3

IIP A R T

Getting Information from Your
Applications

4 Documents and Views 81

5 Drawing on the Screen 97

6 Printing and Print Preview 121

7 Persistence and File I/O 139

8 Building a Complete Application: ShowString 159

Untitled-8 2/18/99, 2:30 PM79

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptII LP#3

Untitled-8 2/18/99, 2:30 PM80

81

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

C H A P T E R

Documents and Views

Understanding the Document Class 82

Understanding the View Class 84

Creating the Rectangles Application 87

Other View Classes 91

Document Templates, Views, and Frame Windows 93

4

In this chapter

Untitled-9 2/18/99, 2:32 PM81

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

82 Chapter 4 Documents and Views

Understanding the Document Class
When you generate your source code with AppWizard, you get an application featuring all the
bells and whistles of a commercial 32-bit Windows application, including a toolbar, a status bar,
ToolTips, menus, and even an About dialog box. However, in spite of all those features, the
application really doesn’t do anything useful. In order to create an application that does more
than look pretty on your desktop, you need to modify the code that AppWizard generates. This
task can be easy or complex, depending on how you want your application to look and act.

Probably the most important set of modifications are those related to the document—the infor-
mation the user can save from your application and restore later—and to the view—the way
that information is presented to the user. MFC’s document/view architecture separates an
application’s data from the way the user actually views and manipulates that data. Simply, the
document object is responsible for storing, loading, and saving the data, whereas the view
object (which is just another type of window) enables the user to see the data onscreen and to
edit that data in a way that is appropriate to the application. In this chapter, you learn the basics
of how MFC’s document/view architecture works.

SDI and MDI applications created with AppWizard are document/view applications. That
means that AppWizard generates a class for you derived from CDocument, and delegates certain
tasks to this new document class. It also creates a view class derived from CView and delegates
other tasks to your new view class. Let’s look through an AppWizard starter application and
see what you get.

Choose File, New, and select the Projects tab. Fill in the project name as App1 and fill in an
appropriate directory for the project files. Make sure that MFC AppWizard (exe) is selected.
Click OK.

Move through the AppWizard dialog boxes, changing the settings to match those in the follow-
ing table, and then click Next to continue:

Step 1: Multiple documents

Step 2: Don’t change the defaults presented by AppWizard

Step 3: Don’t change the defaults presented by AppWizard

Step 4: Deselect all check boxes except Printing and Print Preview

Step 5: Don’t change the defaults presented by AppWizard

Step 6: Don’t change the defaults presented by AppWizard

After you click Finish on the last step, the New project information box summarizes your work.
Click OK to create the project. Expand the App1 classes in ClassView, and you see that six
classes have been created: CAboutDlg, CApp1App, CApp1Doc, CApp1View, CChildFrame, and
CMainframe.

CApp1Doc represents a document; it holds the application’s document data. You add storage for
the document by adding data members to the CApp1Doc class. To see how this works, look at
Listing 4.1, which shows the header file AppWizard creates for the CApp1Doc class.

Untitled-9 2/18/99, 2:33 PM82

83

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

Listing 4.1 APP1DOC.H—The Header File for the CApp1Doc Class

// App1Doc.h : interface of the CApp1Doc class
//
///

#if !defined(AFX_APP1DOC_H__43BB481D_64AE_11D0_9AF3_0080C81A397C__INCLUDED_)
#define AFX_APP1DOC_H__43BB481D_64AE_11D0_9AF3_0080C81A397C__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
class CApp1Doc : public CDocument
{
protected: // create from serialization only
 CApp1Doc();
 DECLARE_DYNCREATE(CApp1Doc)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CApp1Doc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CApp1Doc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CApp1Doc)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

continues

Understanding the Document Class

Untitled-9 2/18/99, 2:33 PM83

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

84 Chapter 4 Documents and Views

Listing 4.1 Continued

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_APP1DOC_H__43BB481D_64AE_11D0_9AF3
[ccc] _0080C81A397C__INCLUDED_)

Near the top of the listing, you can see the class declaration’s Attributes section, which is fol-
lowed by the public keyword. This is where you declare the data members that will hold your
application’s data. In the program that you create a little later in this chapter, the application
must store an array of CPoint objects as the application’s data. That array is declared as a mem-
ber of the document class like this:

// Attributes
public:
 CPoint points[100];

CPoint is an MFC class that encapsulates the information relevant to a point on the screen,
most importantly the x and y coordinates of the point.

Notice also in the class’s header file that the CApp1Doc class includes two virtual member func-
tions called OnNewDocument() and Serialize(). MFC calls the OnNewDocument() function
whenever the user selects the File, New command (or its toolbar equivalent, if a New button
has been implemented in the application). You can use this function to perform whatever initial-
ization must be performed on your document’s data. In an SDI application, which has only a
single document open at any time, the open document is closed and a new blank document is
loaded into the same object; in an MDI application, which can have multiple documents open,
a blank document is opened in addition to the documents that are already open. The
Serialize() member function is where the document class loads and saves its data. This is
discussed in Chapter 7, “Persistence and File I/O.”

Understanding the View Class
As mentioned previously, the view class displays the data stored in the document object and
enables the user to modify this data. The view object keeps a pointer to the document object,
which it uses to access the document’s member variables in order to display or modify them.
Listing 4.2 is the header file for Capp1View, as generated by AppWizard.

Most MFC programmers add public member variables to their documents to make it easy for the view
class to access them. A more object-oriented approach is to add private or protected member
variables, and then add public functions to get or change the values of these variables. The reasoning
behind these design principles is explored in Appendix A, “ C++ Review and Object-Oriented Concepts.”

T I P

Untitled-9 2/18/99, 2:33 PM84

85

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

Listing 4.2 APP1VIEW.H—The Header File for the CApp1View Class

// App1View.h : interface of the CApp1View class
//
///

#if !defined(AFX_APP1VIEW_H__43BB481F_64AE_11D0_9AF3
[ccc]_0080C81A397C__INCLUDED_)
#define AFX_APP1VIEW_H__43BB481F_64AE_11D0_9AF3_0080C81A397C__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CApp1View : public CView
{
protected: // create from serialization only
 CApp1View();
 DECLARE_DYNCREATE(CApp1View)

// Attributes
public:
 CApp1Doc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CApp1View)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CApp1View();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CApp1View)
 // NOTE - the ClassWizard will add and remove member functions here.

continues

Understanding the View Class

Untitled-9 2/18/99, 2:33 PM85

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

86 Chapter 4 Documents and Views

Listing 4.2 Continued

 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in App1View.cpp
inline CApp1Doc* CApp1View::GetDocument()
 { return (CApp1Doc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_APP1VIEW_H__43BB481F_64AE_11D0_9AF3
[ccc] _0080C81A397C__INCLUDED_)

Near the top of the listing, you can see the class’s public attributes, where it declares the
GetDocument() function as returning a pointer to a CApp1Doc object. Anywhere in the view class
that you need to access the document’s data, you can call GetDocument() to obtain a pointer to
the document. For example, to add a CPoint object to the aforementioned array of CPoint
objects stored as the document’s data, you might use the following line:

GetDocument()->m_points[x] = point;

You also can do this a little differently, of course, by storing the pointer returned by
GetDocument() in a local pointer variable and then using that pointer variable to access the
document’s data, like this:

pDoc = GetDocument();
pDoc->m_points[x] = point;

The second version is more convenient when you need to use the document pointer in several
places in the function, or if using the less clear GetDocument()->variable version makes the
code hard to understand.

In release versions of your program, the GetDocument() function is inline, which means
there is no performance advantage to saving the pointer like this, but it does improve

readability. Inline functions are expanded into your code like macros, but offer type checking and other
advantages, as discussed in Appendix A. ■

Notice that the view class, like the document class, overrides a number of virtual functions
from its base class. As you’ll soon see, the OnDraw() function, which is the most important of
these virtual functions, is where you paint your window’s display. As for the other functions,
MFC calls PreCreateWindow() before the window element (that is, the actual Windows win-
dow) is created and attached to the MFC window class, giving you a chance to modify the

N O T E

Untitled-9 2/18/99, 2:33 PM86

87

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

window’s attributes (such as size and position). These two functions are discussed in more
detail in Chapter 5, “Drawing on the Screen.” OnPreparePrinting() is used to modify the Print
dialog box before it displays for the user; the OnBeginPrinting() function gives you a chance
to create GDI objects like pens and brushes that you need to handle the print job; and
OnEndPrinting() is where you can destroy any objects you might have created in
OnBeginPrinting(). These three functions are discussed in Chapter 6, “Printing and Print
Preview.”

When you first start using an application framework like MFC, it’s easy to get confused
about the difference between an object instantiated from an MFC class and the Windows

element it represents. For example, when you create an MFC frame-window object, you’re actually
creating two things: the MFC object that has member functions and member variables, and a Windows
window that you can manipulate using the functions of the MFC object. The window element is
associated with the MFC class, but is also an entity unto itself. ■

Creating the Rectangles Application
Now that you’ve had an introduction to documents and views, a little hands-on experience
should help you better understand how these classes work. In the steps that follow, you build
the Rectangles application, which demonstrates the manipulation of documents and views.
When you first run this application, it will draw an empty window. Wherever you click in the
window, a small rectangle will be drawn. You can resize the window, or minimize and restore it,
and the rectangles will be redrawn at all the coordinates where you clicked, because Rect-
angles keeps an array of coordinate points in the document and uses that array in the view.

First, use AppWizard to create the basic files for the Rectangles program, selecting the options
listed in the following table. (AppWizard is first discussed in Chapter 1, “Building Your First
Windows Application.” When you’re done, the New Project Information dialog box appears; it
should look like Figure 4.1. Click the OK button to create the project files.

Dialog Box Name Options to Select

New Project Name the project recs and set the project path to the directory
into which you want to store the project’s files. Leave the other
options set to their defaults.

Step 1 Select Single Document.

Step 2 of 6 Leave default settings.

Step 3 of 6 Leave default settings.

Step 4 of 6 Turn off all application features except Printing and Print
Preview.

Step 5 of 6 Leave default settings.

Step 6 of 6 Leave default settings.

N O T E

Creating the Rectangles Application

Untitled-9 2/18/99, 2:33 PM87

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

88 Chapter 4 Documents and Views

Now that you have a starter application, it’s time to add code to the document and view classes
in order to create an application that actually does something. This application will draw many
rectangles in the view and save the coordinates of the rectangles in the document.

Follow these steps to add the code that modifies the document class to handle the application’s
data, which is an array of CPoint objects that determine where rectangles should be drawn in
the view window:

1. Click the ClassView tab to display the ClassView in the project workspace window at the
left of the screen.

2. Expand the recs classes by clicking the + sign before them.

3. Right-click the CRecsDoc class and choose Add Member Variable from the shortcut menu
that appears.

4. Fill in the Add Member Variable dialog box. For Variable Type, enter CPoint. For
Variable Name, enter m_points[100]. Make sure the Public radio button is selected.
Click OK.

5. Again, right-click the CRecsDoc class and choose Add Member Variable.

6. For Variable Type, enter UINT. For Variable Name, enter m_pointIndex. Make sure the
Public radio button is selected. Click OK.

7. Click the + next to CRecsDoc in ClassView to see the member variables and functions.
The two member variables you added are now listed.

The m_points[] array holds the locations of rectangles displayed in the view window. The
m_pointIndex data member holds the index of the next empty element of the array.

If you’ve programmed in C++ before and are not used to the ClassView, you can open RecsDoc.h from
the FileView and add (after a public: specifier) the two lines of code that declare these variables:

UINT m_pointIndex;

CPoint m_points[100];

FIG. 4.1
When you create an SDI
application with
AppWizard, the project
information summary
confirms your settings.

T I P

Untitled-9 2/18/99, 2:34 PM88

89

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

Now you need to get these variables initialized to appropriate values and then use them to draw
the view. MFC applications that use the document/view paradigm initialize document data in a
function called OnNewDocument(), which is called automatically when the application first runs
and whenever the user chooses File, New.

The list of member variables and functions of CRecsDoc should still be displayed in ClassView.
Double-click OnNewDocument() in that list to edit the code. Using Listing 4.3 as a guide, remove
the comments left by AppWizard and initialize m_pointIndex to zero.

Listing 4.3 RECSDOC.CPP—CRecsDoc::OnNewDocument()

BOOL CRecsDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_pointIndex = 0;

 return TRUE;
}

There is no need to initialize the array of points because the index into the array will be used to
ensure no code tries to use an uninitialized element of the array. At this point your modifica-
tions to the document class are complete. As you’ll see in Chapter 7, there are a few simple
changes to make if you want this information actually saved in the document. In order to focus
on the way documents and views work together, you will not be making those changes to the
recs application.

Now turn your attention to the view class. It will use the document data to draw rectangles
onscreen. A full discussion of the way that drawing works must wait for Chapter 5. For now it is
enough to know that the OnDraw() function of your view class does the drawing. Expand the
CRecsView class in ClassView and double-click OnDraw(). Using Listing 4.4 as a guide, remove
the comments left by AppWizard and add code to draw a rectangle at each point in the array.

Listing 4.4 RECSVIEW.CPP—CRecsView::OnDraw()

void CRecsView::OnDraw(CDC* pDC)
{
 CRecsDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 UINT pointIndex = pDoc->m_pointIndex;

 for (UINT i=0; i<pointIndex; ++i)
 {
 UINT x = pDoc->m_points[i].x;
 UINT y = pDoc->m_points[i].y;
 pDC->Rectangle(x, y, x+20, y+20);
 }
}

Creating the Rectangles Application

Untitled-9 2/18/99, 2:34 PM89

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

90 Chapter 4 Documents and Views

Your modifications to the starter application generated by AppWizard are almost complete. You
have added member variables to the document, initialized those variables in the document’s
OnNewDocument() function, and used those variables in the view’s OnDraw() function. All that
remains is to enable the user to add points to the array. As discussed in Chapter 3, “Messages
and Commands,” you catch the mouse message with ClassWizard and then add code to the
message handler. Follow these steps:

1. Choose View, ClassWizard. The ClassWizard dialog box appears.

2. Make sure that CRecsView is selected in the Class Name and Object IDs boxes. Then,
double-click WM_LBUTTONDOWN in the Messages box to add the OnLButtonDown() message-
response function to the class. Whenever the application receives a WM_LBUTTONDOWN
message, it will call OnLButtonDown().

3. Click the Edit Code button to jump to the OnLButtonDown() function in your code. Then,
add the code shown in Listing 4.5 to the function.

Listing 4.5 RECSVIEW.CPP—CRecsView::OnLButtonDown()

void CRecsView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRecsDoc *pDoc = GetDocument();

 // don’t go past the end of the 100 points allocated
 if (pDoc->m_pointIndex == 100)
 return;

 //store the click location
 pDoc->m_points[pDoc->m_pointIndex] = point;
 pDoc->m_pointIndex++;

 pDoc->SetModifiedFlag();
 Invalidate();

 CView::OnLButtonDown(nFlags, point);
}

The new OnLButtonDown() adds a point to the document’s point array each time the user clicks
the left mouse button over the view window. It increments m_pointIndex so that the next click
goes into the point on the array after this one.

The call to SetModifiedFlag() marks this document as modified, or “dirty.” MFC automati-
cally prompts the user to save any dirty files on exit. (The details are found in Chapter 7.) Any
code you write that changes any document variables should call SetModifiedFlag().

Earlier in this chapter you were reminded that public access functions in the document
have some advantages. One such advantage: Any document member function that changed

a variable also could call SetModifiedFlag(), thus guaranteeing no programmer could forget it. ■

N O T E

Untitled-9 2/18/99, 2:34 PM90

91

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

Finally, the call to Invalidate() causes MFC to call the OnDraw() function, where the window’s
display is redrawn with the new data. Invalidate() takes a single parameter (with the default
value TRUE) that determines if the background is erased before calling OnDraw(). On rare occa-
sions you may choose to call Invalidate(FALSE) so that OnDraw() draws over whatever was
already onscreen.

Finally, a call to the base class OnLButtonDown() takes care of the rest of the work involved in
handling a mouse click.

You’ve now finished the complete application. Click the toolbar’s Build button, or choose Build,
Build from the menu bar, to compile and link the application. After you have the Rectangles
application compiled and linked, run it by choosing Build, Execute. When you do, you see the
application’s main window. Place your mouse pointer over the window’s client area and click. A
rectangle appears. Go ahead and keep clicking. You can place up to 100 rectangles in the win-
dow (see Figure 4.2).

FIG. 4.2
The Rectangles
application draws
rectangles wherever you
click.

Other View Classes
The view classes generated by AppWizard in this chapter’s sample applications have been
derived from MFC’s CView class. There are cases, however, when it is to your advantage to
derive your view class from one of the other MFC view classes derived from CView. These
additional classes provide your view window with special capabilities such as scrolling and
text editing. Table 4.1 lists the various view classes along with their descriptions.

Other View Classes

Untitled-9 2/18/99, 2:35 PM91

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

92 Chapter 4 Documents and Views

Table 4.1 View Classes

Class Description

CView The base view class from which the specialized view classes are
derived

CCtrlView A base class from which view classes that implement 32-bit
Windows common controls (such as the ListView, TreeView, and
RichEdit controls) are derived

CDaoRecordView Same as CRecordView, except used with the OLE DB database
classes

CEditView A view class that provides basic text-editing features

CFormView A view class that implements a form-like window using a dialog
box resource

CHtmlView A view class that can display HTML, with all the capabilities of
Microsoft Internet Explorer

CListView A view class that displays a ListView control in its window

COleDBRecordView Same as CRecordView, except used with the DAO database
classes

CRecordView A view class that can display database records along with controls
for navigating the database

CRichEditView A view class that provides more sophisticated text-editing
capabilities by using the RichEdit control

CScrollView A view class that provides scrolling capabilities

CTreeView A view class that displays a TreeView control in its window

To use one of these classes, substitute the desired class for the CView class in the application’s
project. When using AppWizard to generate your project, you can specify the view class you
want in the wizard’s Step 6 of 6 dialog box, as shown in Figure 4.3. When you have the desired
class installed as the project’s view class, you can use the specific class’s member functions to
control the view window. Chapter 5 demonstrates using the CScrollView class to implement a
scrolling view.

A CEditView object, on the other hand, gives you all the features of a Windows edit control in
your view window. Using this class, you can handle various editing and printing tasks, includ-
ing find-and-replace. You can retrieve or set the current printer font by calling the
GetPrinterFont() or SetPrinterFont() member function or get the currently selected text by
calling GetSelectedText(). Moreover, the FindText() member function locates a given text
string, and OnReplaceAll() replaces all occurrences of a given text string with another string.

Untitled-9 2/18/99, 2:35 PM92

93

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

The CRichEditView class adds many features to an edit view, including paragraph formatting
(such as centered, right-aligned, and bulleted text), character attributes (including underlined,
bold, and italic), and the capability to set margins, fonts, and paper size. As you might have
guessed, the CRichEditView class features a rich set of methods you can use to control your
application’s view object.

Figure 4.4 shows how the view classes fit into MFC’s class hierarchy. Describing these various
view classes fully is beyond the scope of this chapter. However, you can find plenty of informa-
tion about them in your Visual C++ online documentation.

FIG. 4.3
You can use AppWizard
to select your
application’s base view
class.

CView

CCtrlView

CEditView

CRichEditView

CListView

CTreeView

CView

CScrollView

CFormView

CRecordView

CDaoRecordView

COleDBRecordView

CHtmlView

FIG. 4.4
The view classes all
trace their ancestry
back to CView.

Document Templates, Views, and Frame Windows
Because you’ve been working with AppWizard-generated applications in this chapter, you’ve
taken for granted a lot of what goes on in the background of an MFC document/view program.
That is, much of the code that enables the frame window (your application’s main window), the
document, and the view window to work together is automatically generated by AppWizard and
manipulated by MFC.

Document Templates, Views, and Frame Windows

Untitled-9 2/18/99, 2:35 PM93

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

94 Chapter 4 Documents and Views

For example, if you look at the InitInstance() method of the Rectangles application’s
CRecsApp class, you see (among other things) the lines shown in Listing 4.6.

Listing 4.6 RECS.CPP—Initializing an Application’s Document

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CRecsDoc),
 RUNTIME_CLASS(CMainFrame),
 RUNTIME_CLASS(CRecsView));
AddDocTemplate(pDocTemplate);

In Listing 4.6, you discover one secret that makes the document/view system work. In that
code, the program creates a document-template object. These document templates have noth-
ing to do with C++ templates, discussed in Chapter 26, “Exceptions and Templates.” A docu-
ment template is an older concept, named before C++ templates were implemented by
Microsoft, that pulls together the following objects:

■ A resource ID identifying a menu resource—IDR_MAINFRAME in this case

■ A document class—CRecsDoc in this case

■ A frame window class—always CMainFrame

■ A view class—CRecsView in this case

Notice that you are not passing an object or a pointer to an object. You are passing the name of
the class to a macro called RUNTIME_CLASS. It enables the framework to create instances of a
class at runtime, which the application object must be able to do in a program that uses the
document/view architecture. In order for this macro to work, the classes that will be created
dynamically must be declared and implemented as such. To do this, the class must have the
DECLARE_DYNCREATE macro in its declaration (in the header file) and the IMPLEMENT_DYNCREATE
macro in its implementation. AppWizard takes care of this for you.

For example, if you look at the header file for the Rectangles application’s CMainFrame class,
you see the following line near the top of the class’s declaration:

DECLARE_DYNCREATE(CMainFrame)

As you can see, the DECLARE_DYNCREATE macro requires the class’s name as its single argu-
ment.

Now, if you look near the top of CMainFrame’s implementation file (MAINFRM.CPP), you see this
line:

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

The IMPLEMENT_DYNCREATE macro requires as arguments the name of the class and the name of
the base class.

Untitled-9 2/18/99, 2:35 PM94

95

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH04 LP#3

4

II
Part

Ch

If you explore the application’s source code further, you find that the document and view
classes also contain the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros.

If you haven’t heard of frame windows before, you should know that they contain all the win-
dows involved in the applications—this means control bars as well as views. They also route
messages and commands to views and documents, as discussed in Chapter 3.

The last line of Listing 4.6 calls AddDocTemplate() to pass the object on to the application ob-
ject, CRecsApp, which keeps a list of documents. AddDocTemplate() adds this document to this
list and uses the document template to create the document object, the frame, and the view
window.

Because this is a Single Document Interface, a single document template
(CSingleDocTemplate) is created. Multiple Document Interface applications use one
CMultiDocTemplate object for each kind of document they support. For example, a spread-
sheet program might have two kinds of documents: tables and graphs. Each would have its
own view and its own set of menus. Two instances of CMultiDocTemplate would be created in
InitInstance(), each pulling together the menu, document, and view that belong together. If
you’ve ever seen the menus in a program change as you switched from one view or document
to another, you know how you can achieve the same effect: Simply associate them with differ-
ent menu resource IDs as you build the document templates. ●

Document Templates, Views, and Frame Windows

Untitled-9 2/18/99, 2:36 PM95

Untitled-9 2/18/99, 2:36 PM96

97

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

C H A P T E R

Drawing on the Screen

Understanding Device Contexts 98

Introducing the Paint1 Application 99

Building the Paint1 Application 100

Scrolling Windows 113

Building the Scroll Application 114

5

In this chapter

Untitled-10 2/18/99, 2:37 PM97

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

98 Chapter 5 Drawing on the Screen

Understanding Device Contexts
Most applications need to display some type of data in their windows. You’d think that, because
Windows is a device-independent operating system, creating window displays would be easier
than luring a kitten with a saucer of milk. However, it’s exactly Windows’ device independence
that places a little extra burden on a programmer’s shoulders. Because you can never know in
advance exactly what type of devices may be connected to a user’s system, you can’t make
many assumptions about display capabilities. Functions that draw to the screen must do so
indirectly through something called a device context (DC).

Although device independence forces you, the programmer, to deal with data displays indi-
rectly, it helps you by ensuring that your programs run on all popular devices. In most cases,
Windows handles devices for you through the device drivers that users have installed on the
system. These device drivers intercept the data that the application needs to display and then
translates the data appropriately for the device on which it will appear, whether that’s a screen,
a printer, or some other output device.

To understand how all this device independence works, imagine an art teacher trying to design
a course of study appropriate for all types of artists. The teacher creates a course outline that
stipulates the subject of a project, the suggested colors to be used, the dimensions of the fin-
ished project, and so on. What the teacher doesn’t stipulate is the surface on which the project
will be painted or the materials needed to paint on that surface. In other words, the teacher
stipulates only general characteristics. The details of how these characteristics are applied to
the finished project are left to each specific artist.

For example, an artist using oil paints will choose canvas as his drawing surface and oil paints,
in the colors suggested by the instructor, as the paint. On the other hand, an artist using water-
colors will select watercolor paper and will, of course, use watercolors instead of oils for paint.
Finally, the charcoal artist will select the appropriate drawing surface for charcoal and will use
a single color.

The instructor in this scenario is much like a Windows programmer. The programmer has no
idea who may eventually use the program and what kind of system that user may have. The
programmer can recommend the colors in which data should be displayed and the coordinates
at which the data should appear, for example, but it’s the device driver—the Windows artist—
who ultimately decides how the data appears.

A system with a VGA monitor may display data with fewer colors than a system with a Super
VGA monitor. Likewise, a system with a monochrome monitor displays the data in only a single
color. High-resolution monitors can display more data than lower-resolution monitors. The
device drivers, much like the artists in the imaginary art school, must take the display require-
ments and fine-tune them to the device on which the data will actually appear. And it’s a data
structure known as a device context that links the application to the device’s driver.

A device context (DC) is little more than a data structure that keeps track of the attributes of a
window’s drawing surface. These attributes include the currently selected pen, brush, and font
that will be used to draw onscreen. Unlike an artist, who can have many brushes and pens with

Untitled-10 2/18/99, 2:37 PM98

99

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

which to work, a DC can use only a single pen, brush, or font at a time. If you want to use a pen
that draws wider lines, for example, you need to create the new pen and then replace the DC’s
old pen with the new one. Similarly, if you want to fill shapes with a red brush, you must create
the brush and select it into the DC, which is how Windows programmers describe replacing a
tool in a DC.

A window’s client area is a versatile surface that can display anything a Windows program can
draw. The client area can display any type of data because everything displayed in a window—
whether it be text, spreadsheet data, a bitmap, or any other type of data—is displayed graphi-
cally. MFC helps you display data by encapsulating Windows’ GDI functions and objects into its
DC classes.

Introducing the Paint1 Application
In this chapter, you will build the Paint1 application, which demonstrates fonts, pens, and
brushes. Paint1 will use the document/view paradigm discussed in Chapter 4, “Documents and
Views,” and the view will handle displaying the data. When run, the application will display text
in several different fonts. When users click the application, it displays lines drawn with several
different pens. After another click, it displays boxes filled with a variety of brushes.

The first step in creating Paint1 is to build an empty shell with AppWizard, as first discussed in
Chapter 1, “Building Your First Windows Application.” Choose File, New, and select the
Projects tab. As shown in Figure 5.1, fill in the project name as Paint1 and fill in an appropriate
directory for the project files. Make sure that MFC AppWizard (exe) is selected. Click OK.

FIG. 5.1
Start an AppWizard
project workspace
called Paint1.

Move through the AppWizard dialog boxes, change the settings to match those in the list that
follows, and then click Next to move to the next step.

Step 1: Select Single Document.

Step 2: Use default settings.

Step 3: Use default settings.

Introducing the Paint1 Application

Untitled-10 2/18/99, 2:37 PM99

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

100 Chapter 5 Drawing on the Screen

Step 4: Deselect all check boxes.

Step 5: Use default settings.

Step 6: Use default settings.

After you click Finish on the last step, the New Project Information box should resemble Fig-
ure 5.2. Click OK to create the project.

FIG. 5.2
The starter application
for Paint1 is very
simple.

Now that you have a starter application, it’s time to add code to make it demonstrate some
ways an MFC program can display data onscreen. By the time you get to the end of this chap-
ter, the words display context won’t make you scratch your head in perplexity.

Your starter application has menus, but you will ignore them completely. It would be quite a
bit of work to remove them; just pretend they aren’t there. ■

Building the Paint1 Application
To build the Paint1 application, you first need to understand how painting and drawing work in
an MFC program. Then you can set up the skeleton code to handle user clicks and the three
different kinds of display. Finally, you’ll fill in the code for each kind of display in turn.

Painting in an MFC Program
In Chapter 3, “Messages and Commands,” you learned about message maps and how you can
tell MFC which functions to call when it receives messages from Windows. One important
message that every Windows program with a window must handle is WM_PAINT. Windows
sends the WM_PAINT message to an application’s window when the window needs to be redrawn.
Several events cause Windows to send a WM_PAINT message:

N O T E

Untitled-10 2/18/99, 2:37 PM100

101

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

■ When users simply run the program: In a properly written Windows application, the
application’s window receives a WM_PAINT message almost immediately after being run,
to ensure that the appropriate data is displayed from the very start.

■ When the window has been resized or has recently been uncovered (fully or partially) by
another window: Part of the window that wasn’t visible before is now onscreen and must
be updated.

■ When a program indirectly sends itself a WM_PAINT message by invalidating its client
area: This capability ensures that an application can change its window’s contents almost
any time it wants. For example, a word processor might invalidate its window after users
paste some text from the Clipboard.

When you studied message maps, you learned to convert a message name to a message-map
macro and function name. You now know, for example, that the message-map macro for a
WM_PAINT message is ON_WM_PAINT(). You also know that the matching message-map function
should be called OnPaint(). This is another case where MFC has already done most of the
work of matching a Windows message with its message-response function. (If all this message-
map stuff sounds unfamiliar, you might want to review Chapter 3.)

You might guess that your next step is to catch the WM_PAINT message or to override the
OnPaint() function that your view class inherited from CView, but you won’t do that. Listing 5.1
shows the code for CView::OnPaint(). As you can see, WM_PAINT is already caught and handled
for you.

Listing 5.1 CView::OnPaint()

void CView::OnPaint()
{
 // standard paint routine
 CPaintDC dc(this);
 OnPrepareDC(&dc);
 OnDraw(&dc);
}

CPaintDC is a special class for managing paint DCs—device contexts used only when respond-
ing to WM_PAINT messages. An object of the CPaintDC class does more than just create a DC; it
also calls the BeginPaint() Windows API function in the class’s constructor and calls
EndPaint() in its destructor. When a program responds to WM_PAINT messages, calls to
BeginPaint() and EndPaint() are required. The CPaintDC class handles this requirement
without your having to get involved in all the messy details. As you can see, the CPaintDC con-
structor takes a single argument, which is a pointer to the window for which you’re creating
the DC. The this pointer points to the current view, so it’s passed to the constructor to make a
DC for the current view.

OnPrepareDC() is a CView function that prepares a DC for use. You’ll learn more about it in
Chapter 6, “Printing and Print Preview.”

Building the Paint1 Application

Untitled-10 2/18/99, 2:38 PM101

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

102 Chapter 5 Drawing on the Screen

OnDraw() does the actual work of visually representing the document. In most cases you will
write the OnDraw() code for your application and never touch OnPaint().

Switching the Display
The design for Paint1 states that when you click the application’s window, the window’s display
changes. This seemingly magical feat is actually easy to accomplish. You add a member vari-
able to the view to store what kind of display is being done and then change it when users click
the window. In other words, the program routes WM_LBUTTONDOWN messages to the
OnLButtonDown() message-response function, which sets the m_display flag as appropriate.

First, add the member variable. You must add it by hand rather than through the shortcut
menu because the type includes an enum declaration. Open Paint1View.h from the FileView and
add these lines after the //Attributes comment:

protected:
 enum {Fonts, Pens, Brushes} m_Display;

This is an anonymous or unnamed enum. You can learn more about enum types in Appendix A, “ C++
Review and Object-Oriented Concepts.”

Choose ClassView in the Project Workspace pane, expand the classes, expand CPaint1View,
and then double-click the constructor CPaint1View(). Add this line of code in place of the TODO
comment:

m_Display = Fonts;

This initializes the display selector to the font demonstration. You use the display selector in
the OnDraw() function called by CView::OnPaint(). AppWizard has created
CPaint1View::OnDraw(), but it doesn’t do anything at the moment. Double-click the function
name in ClassView and add the code in Listing 5.2 to the function, removing the TODO comment
left by AppWizard.

Listing 5.2 CPaint1View::OnDraw()

void CPaint1View::OnDraw(CDC* pDC)
{
 CPaint1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 switch (m_Display)
 {
 case Fonts:
 ShowFonts(pDC);
 break;
 case Pens:
 ShowPens(pDC);
 break;
 case Brushes:
 ShowBrushes(pDC);

T I P

Untitled-10 2/18/99, 2:38 PM102

103

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

 break;
 }
}

You will write the three functions ShowFonts(), ShowPens(), and ShowBrushes() in upcoming
sections of this chapter. Each function uses the same DC pointer that was passed to OnDraw()
by OnPaint(). Add them to the class now by following these steps:

1. Right-click the CPaint1View class in ClassView and select Add Member Function.

2. Enter void for the Function Type.

3. Enter ShowFonts(CDC* pDC) for the Function Declaration.

4. Change the access to protected. Click OK.

5. Repeat steps 1 through 4 for ShowPens(CDC* pDC) and ShowBrushes(CDC* pDC).

The last step in arranging for the display to switch is to catch left mouse clicks and write code
in the message handler to change m_display.

Right-click CPaint1View in the ClassView and select Add Windows Message Handler from the
shortcut menu that appears. Double-click WM_LBUTTONDOWN in the New Windows Messages/
Events list box. ClassWizard adds a function called OnLButtonDown() to the view and adds
entries to the message map so that this function will be called whenever users click the left
mouse button over this view.

Click Edit Existing to edit the OnLButtonDown() you just created, and add the code shown in
Listing 5.3.

Listing 5.3 CPaint1View::OnLButtonDown()

void CPaint1View::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_Display == Fonts)
 m_Display = Pens;
 else if (m_Display == Pens)
 m_Display = Brushes;
 else
 m_Display = Fonts

 Invalidate();

 CView::OnLButtonDown(nFlags, point);
}

As you can see, depending on its current value, m_display is set to the next display type in the
series. Of course, just changing the value of m_display doesn’t accomplish much; the program
still needs to redraw the contents of its window. The call to Invalidate() tells Windows that all
of the window needs to be repainted. This causes Windows to generate a WM_PAINT message for
the window, which means that eventually OnDraw() will be called and the view will be redrawn
as a font, pen, or brush demonstration.

Building the Paint1 Application

Untitled-10 2/18/99, 2:38 PM103

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

104 Chapter 5 Drawing on the Screen

Using Fonts
Changing the font used in a view is a technique you’ll want to use in various situations. It’s not
as simple as you might think because you can never be sure that any given font is actually
installed on the user’s machine. You set up a structure that holds information about the font
you want, attempt to create it, and then work with the font you actually have, which might not
be the font you asked for.

A Windows font is described in the LOGFONT structure outlined in Table 5.1. The LOGFONT struc-
ture uses 14 fields to hold a complete description of the font. Many fields can be set to 0 or the
default values, depending on the program’s needs.

Table 5.1 LOGFONT Fields and Their Descriptions

Field Description

lfHeight Font height in logical units

lfWidth Font width in logical units

lfEscapement Angle at which to draw the text

lfOrientation Character tilt in tenths of a degree

lfWeight Font weight

lfItalic A nonzero value indicates italics

lfUnderline A nonzero value indicates an underlined font

lfStrikeOut A nonzero value indicates a strikethrough font

lfCharSet Font character set

lfOutPrecision How to match requested font to actual font

lfClipPrecision How to clip characters that run over clip area

lfQuality Print quality of the font

lfPitchAndFamily Pitch and font family

lfFaceName Typeface name

Some terms in Table 5.1 need a little explanation. The first is logical units. How high is a font
with a height of 8 logical units, for example? The meaning of a logical unit depends on the
mapping mode you’re using, as shown in Table 5.2. The default mapping mode is MM_TEXT,
which means that one logical unit is equal to 1 pixel. Mapping modes are discussed in more
detail in Chapter 6.

Untitled-10 2/18/99, 2:39 PM104

105

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

Table 5.2 Mapping Modes

Mode Unit

MM_HIENGLISH 0.001 inch

MM_HIMETRIC 0.01 millimeter

MM_ISOTROPIC Arbitrary

MM_LOENGLISH 0.01 inch

MM_LOMETRIC 0.1 millimeter

MM_TEXT Device pixel

MM_TWIPS 1/1440 inch

Escapement refers to writing text along an angled line. Orientation refers to writing angled text
along a flat line. The font weight refers to the thickness of the letters. A number of constants
have been defined for use in this field: FW_DONTCARE, FW_THIN, FW_EXTRALIGHT, FW_ULTRALIGHT,
FW_LIGHT, FW_NORMAL, FW_REGULAR, FW_MEDIUM, FW_SEMIBOLD, FW_DEMIBOLD, FW_BOLD,
FW_EXTRABOLD, FW_ULTRABOLD, FW_BLACK, and FW_HEAVY. Not all fonts are available in all weights.
Four character sets are available (ANSI_CHARSET, OEM_CHARSET, SYMBOL_CHARSET, and
UNICODE_CHARSET), but for writing English text you’ll almost always use ANSI_CHARSET.
(Unicode is discussed in Chapter 28, “Future Explorations.”) The last field in the LOGFONT
structure is the face name, such as Courier or Helvetica.

Listing 5.4 shows the code you need to add to the empty ShowFonts() function you created
earlier.

Listing 5.4 CPaint1View::ShowFonts()

void CPaint1View::ShowFonts(CDC * pDC)
{
 // Initialize a LOGFONT structure for the fonts.
 LOGFONT logFont;
 logFont.lfHeight = 8;
 logFont.lfWidth = 0;
 logFont.lfEscapement = 0;
 logFont.lfOrientation = 0;
 logFont.lfWeight = FW_NORMAL;
 logFont.lfItalic = 0;
 logFont.lfUnderline = 0;
 logFont.lfStrikeOut = 0;
 logFont.lfCharSet = ANSI_CHARSET;
 logFont.lfOutPrecision = OUT_DEFAULT_PRECIS;
 logFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;
 logFont.lfQuality = PROOF_QUALITY;
 logFont.lfPitchAndFamily = VARIABLE_PITCH | FF_ROMAN;
 strcpy(logFont.lfFaceName, “Times New Roman”);

continues

Building the Paint1 Application

Untitled-10 2/18/99, 2:39 PM105

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

106 Chapter 5 Drawing on the Screen

Listing 5.4 Continued

 // Initialize the position of text in the window.
 UINT position = 0;

 // Create and display eight example fonts.
 for (UINT x=0; x<8; ++x)
 {
 // Set the new font’s height.
 logFont.lfHeight = 16 + (x * 8);

 // Create a new font and select it into the DC.
 CFont font;
 font.CreateFontIndirect(&logFont);
 CFont* oldFont = pDC->SelectObject(&font);

 // Print text with the new font.
 position += logFont.lfHeight;
 pDC->TextOut(20, position, “A sample font.”);

 // Restore the old font to the DC.
 pDC->SelectObject(oldFont);
 }
}

ShowFonts()starts by setting up a Times Roman font 8 pixels high, with a width that best
matches the height and all other attributes set to normal defaults.

To show the many fonts displayed in its window, the Paint1 application creates its fonts in a for
loop, modifying the value of the LOGFONT structure’s lfHeight member each time through the
loop, using the loop variable x to calculate the new font height:

logFont.lfHeight = 16 + (x * 8);

Because x starts at 0, the first font created in the loop will be 16 pixels high. Each time through
the loop, the new font will be 8 pixels higher than the previous one.

After setting the font’s height, the program creates a CFont object and calls its
CreateFontIndirect() function, which attempts to create a CFont object corresponding to the
LOGFONT you created. It will change the LOGFONT to describe the CFont that was actually created,
given the fonts installed on the user’s machine.

After ShowFonts() calls CreateFontIndirect(), the CFont object is associated with a Windows
font. Now you can select it into the DC. Selecting objects into device contexts is a crucial con-
cept in Windows output programming. You can’t use any graphical object, such as a font, di-
rectly; instead, you select it into the DC and then use the DC. You always save a pointer to the
old object that was in the DC (the pointer is returned from the SelectObject() call) and use it
to restore the device context by selecting the old object again when you’re finished. The same
function, SelectObject(), is used to select various objects into a device context: the font you’re
using in this section, a pen, a brush, or a number of other drawing objects.

Untitled-10 2/18/99, 2:40 PM106

107

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

After selecting the new font into the DC, you can use the font to draw text onscreen. The local
variable position holds the vertical position in the window at which the next line of text should
be printed. This position depends on the height of the current font. After all, if there’s not
enough space between the lines, the larger fonts will overlap the smaller ones. When Windows
created the new font, it stored the font’s height (most likely the height that you requested, but
maybe not) in the LOGFONT structure’s lfHeight member. By adding the value stored in
lfHeight, the program can determine the next position at which to display the line of text. To
make the text appear onscreen, ShowFonts() calls TextOut().

TextOut()’s first two arguments are the X and Y coordinates at which to print the text. The
third argument is the text to print. Having printed the text, you restore the old font to the DC in
case this is the last time through the loop.

Build the application and run it. It should resemble Figure 5.3. If you click the window, it will
go blank because the ShowPens() routine doesn’t draw anything. Click again and it’s still blank,
this time because the ShowBrushes() routine doesn’t draw anything. Click a third time and you
are back to the fonts screen.

FIG. 5.3
The font display shows
different types of text
output.

Sizing and Positioning the Window
As you can see in Figure 5.3, Paint1 doesn’t display eight different fonts at 800×600 screen
settings—only seven can fit in the window. To correct this, you need to set the size of the win-
dow a little larger than the Windows default. In an MFC program, you do this in the mainframe
class PreCreateWindow() function. This is called for you just before the mainframe window is
created. The mainframe window surrounds the entire application and governs the size of the
view.

PreCreateWindow() takes one parameter, a reference to a CREATESTRUCT structure. The
CREATESTRUCT structure contains essential information about the window that’s about to be
created, as shown in Listing 5.5.

Building the Paint1 Application

Untitled-10 2/18/99, 2:40 PM107

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

108 Chapter 5 Drawing on the Screen

Listing 5.5 The CREATESTRUCT Structure

typedef struct tagCREATESTRUCT {
 LPVOID lpCreateParams;
 HANDLE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCSTR lpszName;
 LPCSTR lpszClass;
 DWORD dwExStyle;
} CREATESTRUCT;

If you’ve programmed Windows without application frameworks such as MFC, you’ll recognize
the information stored in the CREATESTRUCT structure. You used to supply much of this informa-
tion when calling the Windows API function CreateWindow() to create your application’s win-
dow. Of special interest to MFC programmers are the cx, cy, x, and y members of this struc-
ture. By changing cx and cy, you can set the window width and height, respectively. Similarly,
modifying x and y changes the window’s position. By overriding PreCreateWindow(), you have
a chance to fiddle with the CREATESTRUCT structure before Windows uses it to create the
window.

AppWizard created a CMainFrame::PreCreateWindow() function. Expand CMainFrame in
ClassView, double-click PreCreateWindow() to edit it, and add lines to obtain the code shown in
Listing 5.6. This sets the application’s height and width. It also prevents users from resizing the
application by using the bitwise and operator (&) to turn off the WS_SIZEBOX style bit.

Listing 5.6 CMainFrame::PreCreateWindow()

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 cs.cx = 440;
 cs.cy = 480;

 cs.style &= ~WS_SIZEBOX;

 if(!CFrameWnd::PreCreateWindow(cs))

 return FALSE;
 return TRUE;

}

It’s important that after your own code in PreCreateWindow(), you call the base class’s
PreCreateWindow(). Failure to do this will leave you without a valid window because MFC

Untitled-10 2/18/99, 2:40 PM108

109

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

never gets a chance to pass the CREATESTRUCT structure on to Windows, so Windows never
creates your window. When overriding class member functions, you usually need to call the
base class’s version.

Build and run Paint1 to confirm that all eight fonts fit in the application’s window. Now you’re
ready to demonstrate pens.

Using Pens
You’ll be pleased to know that pens are much easier to deal with than fonts, mostly because you
don’t have to fool around with complicated data structures like LOGFONT. In fact, to create a pen,
you need to supply only the pen’s line style, thickness, and color. The Paint1 application’s
ShowPens() function displays in its window the lines drawn by using different pens created
within a for loop. Listing 5.7 shows the code.

Listing 5.7 CPaint1View::ShowPens()

void CPaint1View::ShowPens(CDC * pDC)
{
 // Initialize the line position.
 UINT position = 10;

 // Draw sixteen lines in the window.
 for (UINT x=0; x<16; ++x)
 {
 // Create a new pen and select it into the DC.
CPen pen(PS_SOLID, x*2+1, RGB(0, 0, 255));
 CPen* oldPen = pDC->SelectObject(&pen);

 // Draw a line with the new pen.
 position += x * 2 + 10;
 pDC->MoveTo(20, position);
 pDC->LineTo(400, position);

 // Restore the old pen to the DC.
 pDC->SelectObject(oldPen);
 }
}

Within the loop, ShowPens() first creates a custom pen. The constructor takes three param-
eters. The first is the line’s style, one of the styles listed in Table 5.3. (You can draw only solid
lines with different thicknesses. If you specify a pattern and a thickness greater than 1 pixel,
the pattern is ignored and a solid line is drawn.) The second argument is the line thickness,
which increases each time through the loop. The third argument is the line’s color. The RGB
macro takes three values for the red, green, and blue color components and converts them to a
valid Windows color reference. The values for the red, green, and blue color components can
be anything from 0 to 255—the higher the value, the brighter that color component. This code
creates a bright blue pen. If all the color values were 0, the pen would be black; if the color
values were all 255, the pen would be white.

Building the Paint1 Application

Untitled-10 2/18/99, 2:41 PM109

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

110 Chapter 5 Drawing on the Screen

Table 5.3 Pen Styles

Style Description

PS_DASH A pen that draws dashed lines

PS_DASHDOT A pen that draws dash-dot patterned lines

PS_DASHDOTDOT A pen that draws dash-dot-dot patterned lines

PS_DOT A pen that draws dotted lines

PS_INSIDEFRAME A pen that’s used with shapes, in which the line’s thickness must not
extend outside the shape’s frame

PS_NULL A pen that draws invisible lines

PS_SOLID A pen that draws solid lines

If you want to control the style of a line’s end points or create your own custom patterns for
pens, you can use the alternative CPen constructor, which requires a few more arguments

than the CPen constructor described in this section. To learn how to use this alternative constructor,
look up CPen in your Visual C++ online documentation. ■

After creating the new pen, ShowPens() selects it into the DC, saving the pointer to the old pen.
The MoveTo() function moves the pen to an X,Y coordinate without drawing as it moves; the
LineTo() function moves the pen while drawing. The style, thickness, and color of the pen are
used. Finally, you select the old pen into the DC.

There are a number of line drawing functions other than LineTo(), including Arc(), ArcTo(),
AngleArc(), and PolyDraw().

Build and run Paint1 again. When the font display appears, click the window. You will see a pen
display similar to the one in Figure 5.4.

Using Brushes
A pen draws a line of a specified thickness onscreen. A brush fills a shape onscreen. You can
create solid and patterned brushes and even brushes from bitmaps that contain your own
custom fill patterns. Paint1 will display both patterned and solid rectangles in the
ShowBrushes() function, shown in Listing 5.8.

N O T E

T I P

Untitled-10 2/18/99, 2:41 PM110

111

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

Listing 5.8 CPaint1View::ShowBrushes()

void CPaint1View::ShowBrushes(CDC * pDC)
 // Initialize the rectangle position.
 UINT position = 0;

 // Select pen to use for rectangle borders
 CPen pen(PS_SOLID, 5, RGB(255, 0, 0));
 CPen* oldPen = pDC->SelectObject(&pen);

 // Draw seven rectangles.
 for (UINT x=0; x<7; ++x)
 {
 CBrush* brush;

 // Create a solid or hatched brush.
 if (x == 6)
 brush = new CBrush(RGB(0,255,0));
 else
 brush = new CBrush(x, RGB(0,160,0));

 // Select the new brush into the DC.
 CBrush* oldBrush = pDC->SelectObject(brush);

 // Draw the rectangle.
 position += 50;
 pDC->Rectangle(20, position, 400, position + 40);

 // Restore the DC and delete the brush.
 pDC->SelectObject(oldBrush);
 delete brush;
 }

FIG. 5.4
The pen display shows
the effect of setting line
thickness.

continues

Building the Paint1 Application

Untitled-10 2/18/99, 2:41 PM111

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

112 Chapter 5 Drawing on the Screen

Listing 5.8 Continued

 // Restore the old pen to the DC.
 pDC->SelectObject(oldPen);
}

The rectangles painted with the various brushes in this routine will all be drawn with a border.
To arrange this, create a pen (this one is solid, 5 pixels thick, and bright red) and select it into
the DC. It will be used to border the rectangles without any further work on your part. Like
ShowFonts() and ShowPens(), this routine creates its graphical objects within a for loop. Un-
like those two functions, ShowBrushes() creates a graphical object (in this routine, a brush)
with a call to new. This enables you to call the one-argument constructor, which creates a solid
brush, or the two-argument constructor, which creates a hatched brush.

In Listing 5.8, the first argument to the two-argument constructor is just the loop variable, x.
Usually, you don’t want to show all the hatch patterns but want to select a specific one. Use one
of these constants for the hatch style:

■ HS_HORIZONTAL—Horizontal

■ HS_VERTICAL—Vertical

■ HS_CROSS—Horizontal and vertical

■ HS_FDIAGONAL—Forward diagonal

■ HS_BDIAGONAL—Backward diagonal

■ HS_DIAGCROSS—Diagonal in both directions

In a pattern that should be familiar by now, ShowBrushes() selects the brush into the DC,
determines the position at which to work, uses the brush by calling Rectangle(), and then
restores the old brush. When the loop is complete, the old pen is restored as well.

Rectangle()is just one of the shape-drawing functions that you can call. Rectangle() takes as
arguments the coordinates of the rectangle’s upper-left and lower-right corners. Some others of
interest are Chord(), DrawFocusRect(), Ellipse(), Pie(), Polygon(), PolyPolygon(),
Polyline(), and RoundRect(), which draws a rectangle with rounded corners.

Again, build and run Paint1. Click twice, and you will see the demonstration of brushes, as
shown in Figure 5.5.

Remember the call to Invalidate() in CPaint1View::OnLButtonDown()?
Invalidate() actually takes a Boolean argument with a default value of TRUE. This

argument tells Windows whether to erase the window’s background. If you use FALSE for this
argument, the background isn’t erased. In Figure 5.6, you can see what happens to the Paint1
application if Invalidate() is called with an argument of FALSE. ■

N O T E

Untitled-10 2/18/99, 2:42 PM112

113

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

Scrolling Windows
Those famous screen rectangles known as windows enable you to partition screen space be-
tween various applications and documents. Also, if a document is too large to completely fit
within a window, you can view portions of it and scroll through it a bit at a time. The Windows
operating system and MFC pretty much take care of the partitioning of screen space. However,
if you want to enable users to view portions of a large document, you must create scrolling
windows.

FIG. 5.5
The brushes display
shows several patterns
inside thick-bordered
rectangles.

FIG. 5.6
Without erasing the
background, the Paint1
application’s windows
appear messy.

Scrolling Windows

Untitled-10 2/18/99, 2:42 PM113

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

114 Chapter 5 Drawing on the Screen

Adding scrollbars to an application from scratch is a complicated task. Luckily for Visual C++
programmers, MFC handles many of the details involved in scrolling windows over documents.
If you use the document/view architecture and derive your view window from MFC’s
CScrollView class, you have scrolling capabilities almost for free. I say “almost” because you
still must handle a few details, which you learn about in the following sections.

If you create your application with AppWizard, you can specify that you want to use
CScrollView as the base class for your view class. To do this, in the Step 6 of 6 dialog

box displayed by AppWizard, select your view window in the class list and then select CScrollView in
the Base Class dialog box, as shown in Figure 5.7. ■

N O T E

Select your view class here.

FIG. 5.7
You can create a
scrolling window from
within AppWizard.

Select the CScrollView
class here.

Building the Scroll Application
In this section, you’ll build a sample program called Scroll to experiment with a scrolling win-
dow. When Scroll first runs, it displays five lines of text. Each time you click the window, five
lines of text are added to the display. When you have more lines of text than fit in the window,
a vertical scrollbar appears, enabling you to scroll to the parts of the documents that you
can’t see.

As usual, building the application starts with AppWizard. Choose File, New, and select the
Projects tab. Fill in the project name as Scroll and fill in an appropriate directory for the project
files. Make sure that MFC AppWizard (exe) is selected. Click OK.

Complete the AppWizard steps, selecting the following options:

Step 1: Select Single Document.

Step 2: Use default settings

Step 3: Use default settings.

Step 4: Deselect all check boxes.

Untitled-10 2/18/99, 2:42 PM114

115

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

Step 5: Use default settings.

Step 6: Select CScrollView from the Base Class drop-down box, as in Figure 5.7.

The New Project Information dialog box should resemble Figure 5.8. Click OK to create the
project.

FIG. 5.8
Create a scroll
application with
AppWizard.

This application generates very simple lines of text. You need to keep track only of the number
of lines in the scrolling view at the moment. To do this, add a variable to the document class by
following these steps:

1. In ClassView, expand the classes and right-click CScrollDoc.

2. Choose Add Member Variable from the shortcut menu.

3. Fill in int as the variable type.

4. Fill in m_NumLines as the variable declaration.

5. Select Public for the Access.

Variables associated with a document are initialized in OnNewDocument(), as discussed in Chap-
ter 4. In ClassView, expand CScrollDoc and double-click OnNewDocument() to expand it. Re-
place the TODO comments with this line of code:

m_NumLines = 5;

To arrange for this variable to be saved with the document and restored when the document is
loaded, you must serialize it as discussed in Chapter 7, “Persistence and File I/O.” Edit
CScrollDoc::Serialize() as shown in Listing 5.9.

Building the Scroll Application

Untitled-10 2/18/99, 2:42 PM115

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

116 Chapter 5 Drawing on the Screen

Listing 5.9 CScrollDoc::Serialize()

void CScrollDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_NumLines;
 }
 else
 {
 ar >> m_NumLines;
 }
}

Now all you need to do is use m_NumLines to draw the appropriate number of lines. Expand the
view class, CMyScrollView, in ClassView and double-click OnDraw(). Edit it until it’s the same as
Listing 5.10. This is very similar to the ShowFonts() code from the Paint1 application earlier in
this chapter.

Listing 5.10 CMyScrollView::OnDraw()

void CMyScrollView::OnDraw(CDC* pDC)
{
 CScrollDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // get the number of lines from the document
 int numLines = pDoc->m_NumLines;

 // Initialize a LOGFONT structure for the fonts.
 LOGFONT logFont;
 logFont.lfHeight = 24;
 logFont.lfWidth = 0;
 logFont.lfEscapement = 0;
 logFont.lfOrientation = 0;
 logFont.lfWeight = FW_NORMAL;
 logFont.lfItalic = 0;
 logFont.lfUnderline = 0;
 logFont.lfStrikeOut = 0;
 logFont.lfCharSet = ANSI_CHARSET;
 logFont.lfOutPrecision = OUT_DEFAULT_PRECIS;
 logFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;
 logFont.lfQuality = PROOF_QUALITY;
 logFont.lfPitchAndFamily = VARIABLE_PITCH | FF_ROMAN;
 strcpy(logFont.lfFaceName, “Times New Roman”);

 // Create a new font and select it into the DC.
 CFont* font = new CFont();
 font->CreateFontIndirect(&logFont);
 CFont* oldFont = pDC->SelectObject(font);

 // Initialize the position of text in the window.
 UINT position = 0;

Untitled-10 2/18/99, 2:43 PM116

117

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

 // Create and display eight example lines.
 for (int x=0; x<numLines; ++x)
 {
 // Create the string to display.
 char s[25];
 wsprintf(s, “This is line #%d”, x+1);

 // Print text with the new font.
 pDC->TextOut(20, position, s);
 position += logFont.lfHeight;
 }

 // Restore the old font to the DC, and
 // delete the font the program created.
 pDC->SelectObject(oldFont);
 delete font;
}

Build and run the Scroll application. You will see a display similar to that in Figure 5.9. No
scrollbars appear because all the lines fit in the window.

FIG. 5.9
At first, the scroll
application displays five
lines of text and no
scrollbars.

Adding Code to Increase Lines
To increase the number of lines whenever users click the window, you need to add a message
handler to handle left mouse clicks and then write the code for the handler. Right-click
CMyScrollView in ClassView and choose Add Windows Message Handler. Double-click
WM_LBUTTONDOWN to add a handler and click the Edit Existing button to change the code.
Listing 5.11 shows the completed handler. It simply increases the number of lines and calls
Invalidate() to force a redraw. Like so many message handlers, it finishes by passing the
work on to the base class version of this function.

Building the Scroll Application

Untitled-10 2/18/99, 2:43 PM117

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

118 Chapter 5 Drawing on the Screen

Listing 5.11 CMyScrollView::OnLButtonDown()

void CMyScrollView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CScrollDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // Increase number of lines to display.
 pDoc->m_NumLines += 5;

 // Redraw the window.
 Invalidate();

 CScrollView::OnLButtonDown(nFlags, point);
}

Adding Code to Decrease Lines
So that you can watch scrollbars disappear as well as appear, why not implement a way for
users to decrease the number of lines in the window? If left-clicking increases the number of
lines, it makes sense that right-clicking would decrease it. Add a handler for WM_RBUTTONDOWN
just as you did for WM_LBUTTONDOWN, and edit it until it’s just like Listing 5.12. This function is a
little more complicated because it ensures that the number of lines is never negative.

Listing 5.12 CMyScrollView::OnRButtonDown()

void CMyScrollView::OnRButtonDown(UINT nFlags, CPoint point)
{
 CScrollDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // Decrease number of lines to display.
 pDoc->m_NumLines -= 5;

 if (pDoc->m_NumLines < 0)
 {
 pDoc->m_NumLines = 0;
 }

 // Redraw the window.
 Invalidate();

 CScrollView::OnRButtonDown(nFlags, point);
}

If you build and run Scroll now and click the window, you can increase the number of lines, but
scrollbars don’t appear. You need to add some lines to OnDraw() to make that happen. Before
you do, review the way that scrollbars work. You can click three places on a vertical scrollbar:
the thumb (some people call it the elevator), above the thumb, or below it. Clicking the thumb

Untitled-10 2/18/99, 2:43 PM118

119

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

5

II
Part

Ch

does nothing, but you can click and hold to drag it up or down. Clicking above it moves you
one page (screenful) up within the data. Clicking below it moves you one page down. What’s
more, the size of the thumb is a visual representation of the size of a page in proportion to the
entire document. Clicking the up arrow at the top of the scrollbar moves you up one line in the
document; clicking the down arrow at the bottom moves you down one line.

What all this means is that the code that draws the scrollbar and handles the clicks needs to
know the size of the entire document, the page size, and the line size. You don’t have to write
code to draw scrollbars or to handle clicks on the scrollbar, but you do have to pass along some
information about the size of the document and the current view. The lines of code you need to
add to OnDraw() are in Listing 5.13; add them after the for loop and before the old font is
selected back into the DC.

Listing 5.13 Lines to Add to OnDraw()

// Calculate the document size.
CSize docSize(100, numLines*logFont.lfHeight);

// Calculate the page size.
 CRect rect;
GetClientRect(&rect);
CSize pageSize(rect.right, rect.bottom);

// Calculate the line size.
CSize lineSize(0, logFont.lfHeight);

// Adjust the scrollers.
SetScrollSizes(MM_TEXT, docSize, pageSize, lineSize);

This new code must determine the document, page, and line sizes. The document size is the
width and height of the screen area that could hold the entire document. This is calculated by
using the number of lines in the entire document and the height of a line. (CSize is an MFC
class created especially for storing the widths and heights of objects.) The page size is simply
the size of the client rectangle of this view, and the line size is the height of the font. By setting
the horizontal component of the line size to 0, you prevent horizontal scrolling.

These three sizes must be passed along to implement scrolling. Simply call SetScrollSizes(),
which takes the mapping mode, document size, page size, and line size. MFC will set the
scrollbars properly for any document and handle user interaction with the scrollbars.

Build and run Scroll again and generate some more lines. You should see a scrollbar like the
one in Figure 5.10. Add even more lines and you will see the thumb shrink as the document
size grows. Finally, resize the application horizontally so that the text won’t all fit. Notice how
no horizontal scrollbars appear, because you set the horizontal line size to 0.

Building the Scroll Application

Untitled-10 2/18/99, 2:43 PM119

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH05 LP#3

120 Chapter 5 Drawing on the Screen

FIG. 5.10
After displaying more
lines than fit in the
window, the vertical
scrollbar appears.

Untitled-10 2/18/99, 2:43 PM120

121

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

C H A P T E R

Printing and Print Preview

Understanding Basic Printing and Print Preview with MFC 122

Scaling 124

Printing Multiple Pages 126

Setting the Origin 131

MFC and Printing 133

6

In this chapter

Untitled-11 2/18/99, 2:44 PM121

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

122 Chapter 6 Printing and Print Preview

Understanding Basic Printing and Print Preview
with MFC

If you brought together 10 Windows programmers and asked them what part of creating Win-
dows applications they thought was the hardest, probably at least half of them would choose
printing documents. Although the device-independent nature of Windows makes it easier for
users to get peripherals working properly, programmers must take up some of the slack by
programming all devices in a general way. At one time, printing from a Windows application
was a nightmare that only the most experienced programmers could handle. Now, however,
thanks to application frameworks such as MFC, the job of printing documents from a Windows
application is much simpler.

MFC handles so much of the printing task for you that, when it comes to simple one-page
documents, you have little to do on your own. To see what I mean, follow these steps to create
a basic MFC application that supports printing and print preview:

1. Choose File, New; select the Projects tab and start a new AppWizard project workspace
called Print1 (see Figure 6.1).

FIG. 6.1
Start an AppWizard
project workspace
called Print1.

2. Give the new project the following settings in the AppWizard dialog boxes. The New
Project Information dialog box should then look like Figure 6.2.

Step 1: Choose Single Document.

Step 2: Don’t change the defaults presented by AppWizard.

Step 3: Don’t change the defaults presented by AppWizard.

Step 4: Turn off all features except Printing and Print Preview.

Step 5: Don’t change the defaults presented by AppWizard.

Step 6: Don’t change the defaults presented by AppWizard.

Untitled-11 2/18/99, 2:45 PM122

123

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

3. Expand the classes in ClassView, expand CPrint1View, double-click the OnDraw()
function, and add the following line of code to it, right after the comment TODO: add
draw code for native data here:

pDC->Rectangle(20, 20, 220, 220);

You’ve seen the Rectangle() function twice already: in the Recs app of Chapter 4, “Documents
and Views,” and the Paint1 app of Chapter 5, “Drawing on the Screen.” Adding this function to
the OnDraw() function of an MFC program’s view class causes the program to draw a rectangle.
This one is 200 pixels by 200 pixels, located 20 pixels down from the top of the view and 20
pixels from the left edge.

If you haven’t read Chapter 5 and aren’t comfortable with device contexts, go back and read it now.
Also, if you didn’t read Chapter 4 and aren’t comfortable with the document/view paradigm, you
should read it, too. In this chapter, you override a number of virtual functions in your view class and
work extensively with device contexts.

Believe it or not, you’ve just created a fully print-capable application that can display its data
(a rectangle) not only in its main window but also in a print preview window and on the printer.
To run the Print1 application, first compile and link the source code by choosing Build, Build
or by pressing F7. Then, choose Build, Execute to run the program. You will see the window
shown in Figure 6.3. This window contains the application’s output data, which is simply a
rectangle. Next, choose File, Print Preview. You see the print preview window, which displays
the document as it will appear if you print it (see Figure 6.4). Go ahead and print the document
(choose File, Print). These commands have been implemented for you because you chose
support for printing and print preview when you created this application with AppWizard.

FIG. 6.2
The New Project
Information dialog box.

T I P

Understanding Basic Printing and Print Preview with MFC

Untitled-11 2/18/99, 2:45 PM123

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

124 Chapter 6 Printing and Print Preview

Scaling
One thing you may notice about the printed document and the one displayed onscreen is that,
although the screen version of the rectangle takes up a fairly large portion of the application’s
window, the printed version is tiny. That’s because the pixels onscreen and the dots on your
printer are different sizes. Although the rectangle is 200 dots square in both cases, the smaller
printer dots yield a rectangle that appears smaller. This is how the default Windows MM_TEXT
graphics mapping mode works. If you want to scale the printed image to a specific size, you
might want to choose a different mapping mode. Table 6.1 lists the mapping modes from which
you can choose.

FIG. 6.3
Print1 displays a
rectangle when you first
run it.

FIG. 6.4
The Print1 application
automatically handles
print previewing, thanks
to the MFC AppWizard.

Untitled-11 2/18/99, 2:45 PM124

125

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

Table 6.1 Mapping Modes

Mode Unit X Y

MM_HIENGLISH 0.001 inch Increases right Increases up

MM_HIMETRIC 0.01 millimeter Increases right Increases up

MM_ISOTROPIC User-defined User-defined User-defined

MM_LOENGLISH 0.01 inch Increases right Increases up

MM_LOMETRIC 0.1 millimeter Increases right Increases up

MM_TEXT Device pixel Increases right Increases down

MM_TWIPS 1/1440 inch Increases right Increases up

Working with graphics in MM_TEXT mode causes problems when printers and screens can ac-
commodate a different number of pixels per page. A better mapping mode for working with
graphics is MM_LOENGLISH, which uses a hundredth of an inch, instead of a dot or pixel, as a unit
of measure. To change the Print1 application so that it uses the MM_LOENGLISH mapping mode,
replace the line you added to the OnDraw() function with the following two lines:

pDC->SetMapMode(MM_LOENGLISH);
pDC->Rectangle(20, -20, 220, -220);

The first line sets the mapping mode for the device context. The second line draws the rect-
angle by using the new coordinate system. Why the negative values? If you look at
MM_LOENGLISH in Table 6.1, you see that although X coordinates increase to the right as you
expect, Y coordinates increase upward rather than downward. Moreover, the default coordi-
nates for the window are located in the lower-right quadrant of the Cartesian coordinate sys-
tem, as shown in Figure 6.5. Figure 6.6 shows the print preview window when the application
uses the MM_LOENGLISH mapping mode. When you print the document, the rectangle is exactly
2 inches square because a unit is now 1/100 of an inch and the rectangle is 200 units square.

FIG. 6.5
The MM_LOENGLISH
mapping mode’s
default coordinates
derive from the
Cartesian coordinate
system.

Scaling

Untitled-11 2/18/99, 2:45 PM125

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

126 Chapter 6 Printing and Print Preview

Printing Multiple Pages
When your application’s document is as simple as Print1’s, adding printing and print preview-
ing capabilities to the application is virtually automatic. This is because the document is only a
single page and requires no pagination. No matter what you draw in the document window
(except bitmaps), MFC handles all the printing tasks for you. Your view’s OnDraw() function is
used for drawing onscreen, printing to the printer, and drawing the print preview screen.
Things become more complex, however, when you have larger documents that require pagina-
tion or some other special handling, such as the printing of headers and footers.

To get an idea of the problems with which you’re faced with a more complex document, modify
Print1 so that it prints lots of rectangles—so many that they can’t fit on a single page. This will
give you an opportunity to deal with pagination. Just to make things more interesting, add a
member variable to the document class to hold the number of rectangles to be drawn, and
allow the users to increase or decrease the number of rectangles by left- or right-clicking.
Follow these steps:

1. Expand CPrint1Doc in ClassView, right-click it, and choose Add Member Variable from
the shortcut menu. The variable type is int, the declaration is m_numRects, and the
access should be public. This variable will hold the number of rectangles to display.

2. Double-click the CPrint1Doc constructor and add this line to it:
m_numRects = 5;

This line arranges to display five rectangles in a brand new document.

3. Use ClassWizard to catch mouse clicks (WM_LBUTTONDOWN messages) by adding an
OnLButtonDown() function to the view class (see Figure 6.7).

4. Click the Edit Code button to edit the new OnLButtonDown() function. It should resemble
Listing 6.1. Now the number of rectangles to be displayed increases each time users
click the left mouse button.

FIG. 6.6
The rectangle to be
printed matches the
rectangle onscreen
when you use
MM_LOENGLISH as your
mapping mode.

Untitled-11 2/18/99, 2:45 PM126

127

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

Listing 6.1 print1View.cpp —CPrint1View::OnLButtonDown()

void CPrint1View::OnLButtonDown(UINT nFlags, CPoint point)
{
 CPrint1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDoc->m_numRects++;
 Invalidate();

 CView::OnLButtonDown(nFlags, point);
}

5. Use ClassWizard to add the OnRButtonDown() function to the view class, as shown in
Figure 6.8.

FIG. 6.7
Use ClassWizard to
add the
OnLButtonDown()
function.

FIG. 6.8
Use ClassWizard to
add the
OnRButtonDown()
function.

Printing Multiple Pages

Untitled-11 2/18/99, 2:46 PM127

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

128 Chapter 6 Printing and Print Preview

6. Click the Edit Code button to edit the new OnRButtonDown() function. It should resemble
Listing 6.2. Now the number of rectangles to be displayed decreases each time users
right-click.

Listing 6.2 print1View.cpp —CPrint1View::OnRButtonDown()

void CPrint1View::OnRButtonDown(UINT nFlags, CPoint point)
{
 CPrint1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 if (pDoc->m_numRects > 0)
 {
 pDoc->m_numRects--;
 Invalidate();
 }

 CView::OnRButtonDown(nFlags, point);
}

7. Rewrite the view’s OnDraw() to draw many rectangles (refer to Listing 6.3). Print1 now
draws the selected number of rectangles one below the other, which may cause the
document to span multiple pages. It also displays the number of rectangles that have
been added to the document.

Listing 6.3 print1View.cpp —CPrint1View::OnDraw()

void CPrint1View::OnDraw(CDC* pDC)
{
 CPrint1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
 pDC->SetMapMode(MM_LOENGLISH);

 char s[10];
 wsprintf(s, “%d”, pDoc->m_numRects);
 pDC->TextOut(300, -100, s);

 for (int x=0; x<pDoc->m_numRects; ++x)
 {
 pDC->Rectangle(20, -(20+x*200),
 200, -(200+x*200));
 }
}

When you run the application now, you see the window shown in Figure 6.9. The window not
only displays the rectangles but also displays the rectangle count so that you can see how many
rectangles you’ve requested. When you choose File, Print Preview, you see the print preview

Untitled-11 2/18/99, 2:46 PM128

129

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

window. Click the Two Page button to see the window shown in Figure 6.10. The five rect-
angles display properly on the first page, with the second page blank.

FIG. 6.9
Print1 now displays
multiple rectangles.

FIG. 6.10
Five rectangles are
previewed properly;
they will print on a
single page.

Now, go back to the application’s main window and click inside it three times to add three more
rectangles. Right-click to remove one. (The rectangle count displayed in the window should be
seven.) After you add the rectangles, choose File, Print Preview again to see the two-page print
preview window. Figure 6.11 shows what you see. The program hasn’t a clue how to print or
preview the additional page. The sixth rectangle runs off the bottom of the first page, but noth-
ing appears on the second page.

The first step is to tell MFC how many pages to print (or preview) by calling the SetMaxPage()
function in the view class’s OnBeginPrinting() function. AppWizard gives you a skeleton
OnBeginPrinting() that does nothing. Modify it so that it resembles Listing 6.4.

Printing Multiple Pages

Untitled-11 2/18/99, 2:46 PM129

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

130 Chapter 6 Printing and Print Preview

Listing 6.4 print1View.cpp —CPrint1View::OnBeginPrinting()

void CPrint1View::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 CPrint1Doc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 int pageHeight = pDC->GetDeviceCaps(VERTRES);
 int logPixelsY = pDC->GetDeviceCaps(LOGPIXELSY);
 int rectHeight = (int)(2.2 * logPixelsY);
 int numPages = pDoc->m_numRects * rectHeight / pageHeight + 1;
 pInfo->SetMaxPage(numPages);
}

OnBeginPrinting() takes two parameters: a pointer to the printer device context and a pointer
to a CPrintInfo object. Because the default version of OnBeginPrinting() doesn’t refer to
these two pointers, the parameter names are commented out to avoid compilation warnings,
like this:

void CPrint1View::OnBeginPrinting(CDC* /*pDC*/ , CPrintInfo* /*pInfo*/)

However, to set the page count, you need to access both the CDC and CPrintInfo objects, so
your first task is to uncomment the function’s parameters.

Now you need to get some information about the device context (which, in this case, is a
printer device context). Specifically, you need to know the page height (in single dots) and the
number of dots per inch. You obtain the page height with a call to GetDeviceCaps(), which
gives you information about the capabilities of the device context. You ask for the vertical reso-
lution (the number of printable dots from the top of the page to the bottom) by passing the
constant VERTRES as the argument. Passing HORZRES gives you the horizontal resolution. There
are 29 constants you can pass to GetDeviceCaps(), such as NUMFONTS for the number of fonts
that are supported and DRIVERVERSION for the driver version number. For a complete list, con-
sult the online Visual C++ documentation.

FIG. 6.11
Seven rectangles do not
yet appear correctly on
multiple pages.

Untitled-11 2/18/99, 2:46 PM130

131

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

Print1 uses the MM_LOENGLISH mapping mode for the device context, which means that the
printer output uses units of 1/100 of an inch. To know how many rectangles will fit on a page,
you have to know the height of a rectangle in dots so that you can divide dots per page by dots
per rectangle to get rectangles per page. (You can see now why your application must know all
about your document to calculate the page count.) You know that each rectangle is 2 inches
high with 20/100 of an inch of space between each rectangle. The total distance from the start
of one rectangle to the start of the next, then, is 2.2 inches. The call to GetDeviceCaps() with
an argument of LOGPIXELSY gives the dots per inch of this printer; multiplying by 2.2 gives the
dots per rectangle.

You now have all the information to calculate the number of pages needed to fit the requested
number of rectangles. You pass that number to SetMaxPage(), and the new OnBeginPrinting()
function is complete.

Again, build and run the program. Increase the number of rectangles to seven by clicking twice
in the main window. Now choose File, Print Preview and look at the two-page print preview
window (see Figure 6.12). Whoops! You obviously still have a problem somewhere. Although
the application is previewing two pages, as it should with seven rectangles, it’s printing exactly
the same thing on both pages. Obviously, page two should take up where page one left off,
rather than redisplay the same data from the beginning. There’s still some work to do.

FIG. 6.12
The Print1 application
still doesn’t display
multiple pages
correctly.

Setting the Origin
To get the second and subsequent pages to print properly, you have to change where MFC
believes the top of the page to be. Currently, MFC just draws the pages exactly as you told it to
do in CPrint1View::OnDraw(), which displays all seven rectangles from the top of the page to
the bottom. To tell MFC where the new top of the page should be, you first need to override
the view class’s OnPrepareDC() function.

Setting the Origin

Untitled-11 2/18/99, 2:46 PM131

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

132 Chapter 6 Printing and Print Preview

Bring up ClassWizard and choose the Message Maps tab. Ensure that CPrintView is selected
in the Class Name box, as shown in Figure 6.13. Click CPrintView in the Object IDs box and
OnPrepareDC in the Messages box, and then click Add Function. Click the Edit Code button to
edit the newly added function. Add the code shown in Listing 6.5.

FIG. 6.13
Use ClassWizard
to override the
OnPrepareDC()
function.

Listing 6.5 print1View.cpp —CPrint1View::OnPrepareDC()

void CPrint1View::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{ if (pDC->IsPrinting())
 {
 int pageHeight = pDC->GetDeviceCaps(VERTRES);
 int originY = pageHeight * (pInfo->m_nCurPage - 1);
 pDC->SetViewportOrg(0, -originY);
 }

 CView::OnPrepareDC(pDC, pInfo);
}

The MFC framework calls OnPrepareDC() right before it displays data onscreen or before it
prints the data to the printer. (One strength of the device context approach to screen display is
that the same code can often be used for display and printing.) If the application is about to
display data, you (probably) don’t want to change the default processing performed by
OnPrepareDC(). So, you must check whether the application is printing data by calling
IsPrinting(), a member function of the device context class.

If the application is printing, you must determine which part of the data belongs on the current
page. You need the height in dots of a printed page, so you call GetDeviceCaps() again.

Next, you must determine a new viewport origin (the position of the coordinates 0,0) for the
display. Changing the origin tells MFC where to begin displaying data. For page one, the origin
is zero; for page two, it’s moved down by the number of dots on a page. In general, the vertical
component is the page size times the current page minus one. The page number is a member
variable of the CPrintInfo class.

Untitled-11 2/18/99, 2:47 PM132

133

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

After you calculate the new origin, you only need to give it to the device context by calling
SetViewportOrg(). Your changes to OnPrepareDC() are complete.

To see your changes in action, build and run your new version of Print1. When the program’s
main window appears, click twice in the window to add two rectangles to the display. (The
displayed rectangle count should be seven.) Again, choose File, Print Preview and look at the
two-page print preview window (see Figure 6.14). Now the program previews the document
correctly. If you print the document, it will look the same in hard copy as it does in the preview.

FIG. 6.14
Print1 finally previews
and prints properly.

MFC and Printing
Now you’ve seen MFC’s printing and print preview support in action. As you added more func-
tionality to the Print1 application, you modified several member functions that were overridden
in the view class, including OnDraw(), OnBeginPrinting(), and OnPrepareDC(). These func-
tions are important to the printing and print preview processes. However, other functions also
enable you to add even more printing power to your applications. Table 6.2 describes the func-
tions important to the printing process.

Table 6.2 Printing Functions of a View Class

Function Description

OnBeginPrinting() Override this function to create resources, such as fonts, that
you need for printing the document. You also set the maximum
page count here.

OnDraw() This function serves triple duty, displaying data in a frame
window, a print preview window, or on the printer, depending on
the device context sent as the function’s parameter.

continues

MFC and Printing

Untitled-11 2/18/99, 2:47 PM133

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

134 Chapter 6 Printing and Print Preview

Table 6.2 Continued

Function Description

OnEndPrinting() Override this function to release resources created in
OnBeginPrinting().

OnPrepareDC() Override this function to modify the device context used to
display or print the document. You can, for example, handle
pagination here.

OnPreparePrinting() Override this function to provide a maximum page count for the
document. If you don’t set the page count here, you should set it
in OnBeginPrinting().

OnPrint() Override this function to provide additional printing services,
such as printing headers and footers, not provided in OnDraw().

To print a document, MFC calls the functions listed in Table 6.2 in a specific order. First it calls
OnPreparePrinting(), which simply calls DoPreparePrinting(), as shown in Listing 6.6.
DoPreparePrinting() is responsible for displaying the Print dialog box and creating the
printer DC.

Listing 6.6 print1View.cpp —CPrint1View::OnPreparePrinting() as Generated
by AppWizard

BOOL CPrint1View::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

As you can see, OnPreparePrinting() receives as a parameter a pointer to a CPrintInfo ob-
ject. By using this object, you can obtain information about the print job as well as initialize
attributes such as the maximum page number. Table 6.3 describes the most useful data and
function members of the CPrintInfo class.

Table 6.3 Members of the CPrintInfo Class

Member Description

SetMaxPage() Sets the document’s maximum page number.

SetMinPage() Sets the document’s minimum page number.

GetFromPage() Gets the number of the first page that users selected for printing.

Untitled-11 2/18/99, 2:47 PM134

135

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

Member Description

GetMaxPage() Gets the document’s maximum page number, which may be
changed in OnBeginPrinting().

GetMinPage() Gets the document’s minimum page number, which may be
changed in OnBeginPrinting().

GetToPage() Gets the number of the last page users selected for printing.

m_bContinuePrinting Controls the printing process. Setting the flag to FALSE ends the
print job.

m_bDirect Indicates whether the document is being directly printed.

m_bPreview Indicates whether the document is in print preview.

m_nCurPage Holds the current number of the page being printed.

m_nNumPreviewPages Holds the number of pages (1 or 2) being displayed in print
preview.

m_pPD Holds a pointer to the print job’s CPrintDialog object.

m_rectDraw Holds a rectangle that defines the usable area for the current
page.

m_strPageDesc Holds a page-number format string.

When the DoPreparePrinting() function displays the Print dialog box, users can set the value
of many data members of the CPrintInfo class. Your program then can use or set any of these
values. Usually, you’ll at least call SetMaxPage(), which sets the document’s maximum page
number, before DoPreparePrinting() so that the maximum page number displays in the Print
dialog box. If you can’t determine the number of pages until you calculate a page length based
on the selected printer, you have to wait until you have a printer DC for the printer.

After OnPreparePrinting(), MFC calls OnBeginPrinting(), which is not only another place to
set the maximum page count but also the place to create resources, such as fonts, that you
need to complete the print job. OnPreparePrinting() receives as parameters a pointer to the
printer DC and a pointer to the associated CPrintInfo object.

Next, MFC calls OnPrepareDC() for the first page in the document. This is the beginning of a
print loop that’s executed once for each page in the document. OnPrepareDC() is the place to
control what part of the whole document prints on the current page. As you saw previously,
you handle this task by setting the document’s viewport origin.

After OnPrepareDC(), MFC calls OnPrint() to print the actual page. Normally, OnPrint() calls
OnDraw() with the printer DC, which automatically directs OnDraw()’s output to the printer
rather than onscreen. You can override OnPrint() to control how the document is printed. You

MFC and Printing

Untitled-11 2/18/99, 2:48 PM135

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

136 Chapter 6 Printing and Print Preview

can print headers and footers in OnPrint() and then call the base class’s version (which in turn
calls OnDraw()) to print the body of the document, as demonstrated in Listing 6.7. (The footer
will appear below the body, even though PrintFooter() is called before OnPrint()—don’t
worry.) To prevent the base class version from overwriting your header and footer area, re-
strict the printable area by setting the m_rectDraw member of the CPrintInfo object to a rect-
angle that doesn’t overlap the header or footer.

Listing 6.7 Possible OnPrint() with Headers and Footers

void CPrint1View::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 // TODO: Add your specialized code here and/or call the base class

 // Call local functions to print a header and footer.
 PrintHeader();
 PrintFooter();

 CView::OnPrint(pDC, pInfo);
}

Alternatively, you can remove OnDraw() from the print loop entirely by doing your own printing
in OnPrint() and not calling OnDraw() at all (see Listing 6.8).

Listing 6.8 Possible OnPrint() Without OnDraw()

void CPrint1View::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 // TODO: Add your specialized code here and/or call the base class

 // Call local functions to print a header and footer.
 PrintHeader();
 PrintFooter();

 // Call a local function to print the body of the document.
 PrintDocument();
}

As long as there are more pages to print, MFC continues to call OnPrepareDC() and OnPrint()
for each page in the document. After the last page is printed, MFC calls OnEndPrinting(),
where you can destroy any resources you created in OnBeginPrinting(). Figure 6.15 summa-
rizes the entire printing process.

Untitled-11 2/18/99, 2:48 PM136

137

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH06 LP#3

6

II
Part

Ch

OnPreparePrinting()

OnBeginPrinting()

OnPrepareDC()

OnPrint()

OnEndPrinting()

FIG. 6.15
MFC calls various
member functions
during the printing
process.

MFC and Printing

Untitled-11 2/18/99, 2:48 PM137

Untitled-11 2/18/99, 2:48 PM138

139

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

C H A P T E R

Persistence and File I/O

Understanding Objects and Persistence 140

Examining the File Demo Application 140

Creating a Persistent Class 145

Reading and Writing Files Directly 150

Creating Your Own CArchive Objects 153

Using the Registry 154

7

In this chapter

Untitled-12 2/18/99, 2:49 PM139

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

140 Chapter 7 Persistence and File I/O

Understanding Objects and Persistence
One of the most important things a program must do is save users’ data after that data is
changed in some way. Without the capability to save edited data, the work a user performs with
an application exists only as long as the application is running, vanishing the instant the user
exits the application. Not a good way to get work done! In many cases, especially when using
AppWizard to create an application, Visual C++ provides much of the code necessary to save
and load data. However, in some cases—most notably when you create your own object
types—you have to do a little extra work to keep your users’ files up to date.

When you’re writing an application, you deal with a lot of different object types. Some data
objects might be simple types, such as integers and characters. Other objects might be in-
stances of classes, such as strings from the CString class or even objects created from your
own custom classes. When using objects in applications that must create, save, and load docu-
ments, you need a way to save and load the state of those objects so that you can re-create
them exactly as users left them at the end of the last session.

An object’s capability to save and load its state is called persistence. Almost all MFC classes are
persistent because they’re derived directly or indirectly from MFC’s CObject class, which
provides the basic functionality for saving and loading an object’s state. The following section
reviews how MFC makes a document object persistent.

Examining the File Demo Application
When you use Visual C++’s AppWizard to create a program, you get an application that uses
document and view classes to organize, edit, and display its data. As discussed in Chapter 4,
“Documents and Views,” the document object, derived from the CDocument class, is respon-
sible for holding the application’s data during a session and for saving and loading the data so
that the document persists from one session to another.

In this chapter, you’ll build the File Demo application, which demonstrates the basic tech-
niques behind saving and loading data of an object derived from CDocument. File Demo’s docu-
ment is a single string containing a short message, which the view displays.

Three menu items are relevant in the File Demo application. When the program first begins,
the message is automatically set to the string Default Message. Users will change this mes-
sage by choosing Edit, Change Message. The File, Save menu option saves the document, as
you’d expect, and File, Open reloads it from disk.

A Review of Document Classes
Anyone who’s written a program has experienced saving and opening files—object persistence
from the user’s point of view. In this chapter you’ll learn how persistence works. Although you
had some experience with document classes in Chapter 4, you’ll now review the basic con-
cepts with an eye toward extending those concepts to your own custom classes.

Untitled-12 2/18/99, 2:50 PM140

141

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

When working with an application created by AppWizard, you must complete several steps to
enable your document to save and load its state. Those steps are discussed in this section. The
steps are as follows:

1. Define the member variables that will hold the document’s data.

2. Initialize the member variables in the document class’s OnNewDocument() member
function.

3. Display the current document in the view class’s OnDraw() member function.

4. Provide member functions in the view class that enable users to edit the document.

5. Add to the document class’s Serialize() member function the code needed to save and
load the data that comprises the document.

When your application can handle multiple documents, you need to do a little extra work to be
sure that you use, change, or save the correct document. Luckily, most of that work is taken
care of by MFC and AppWizard.

Building the File Demo Application
To build the File Demo application, start by using AppWizard to create an SDI application. All
the other AppWizard choices should be left at their default values, so you can speed things up
by clicking Finish on Step 1 after selecting SDI and making sure that Document/View support
is selected.

Double-click CfileDemoDoc in ClassView to edit the header file for the document class. In the
Attributes section add a CString member variable called m_message, so that the Attributes
section looks like this:

// Attributes
public:
 CString m_message;

In this case, the document’s storage is nothing more than a single string object. Usually, your
document’s storage needs are much more complex. This single string, however, is enough to
demonstrate the basics of a persistent document. It’s very common for MFC programmers to
use public variables in their documents, rather than a private variable with public access func-
tions. It makes it a little simpler to write the code in the view class that will access the docu-
ment variables. It will, however, make future enhancements a little more work. These tradeoffs
are discussed in more detail in Appendix A, “C++ Review and Object-Oriented Concepts.”

This string, like all the document’s data, must be initialized. The OnNewDocument() member
function is the place to do it. Expand CFileDemoDoc in ClassView and double-click
OnNewDocument() to edit it. Add a line of code to initialize the string so that the function looks
like Listing 7.1. You should remove the TODO comments because you’ve done what they were
reminding you to do.

Examining the File Demo Application

Untitled-12 2/18/99, 2:50 PM141

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

142 Chapter 7 Persistence and File I/O

Listing 7.1 Initializing the Document’s Data

BOOL CFileDemoDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_message = “Default Message”;

 return TRUE;
}

With the document class’s m_message data member initialized, the application can display the
data in the view window. You just need to edit the view class’s OnDraw() function (see Listing
7.2). Expand CFileDemoView in ClassView and double-click OnDraw() to edit it. Again, you’re
just adding one line of code and removing the TODO comment.

Listing 7.2 Displaying the Document’s Data

void CFileDemoView::OnDraw(CDC* pDC)
{
 CFileDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(20, 20, pDoc->m_message);
}

Getting information onscreen, using device contexts, and the TextOut() function are all dis-
cussed in Chapter 5, “Drawing on the Screen.”

Build File Demo now, to make sure there are no typos, and run it. You should see Default
Message appear onscreen.

Now, you need to allow users to edit the application’s document by changing the string. In
theory, the application should display a dialog box to let the user enter any desired string at all.
For our purposes, you’re just going to have the Edit, Change Message menu option assign the
string a different, hard-coded value. ShowString, the subject of Chapter 8, “Building a Com-
plete Application: ShowString,” shows how to create a dialog box such as the one File Demo
might use.

Click the Resource tab to switch to ResourceView, expand the resources, expand Menus, and
double-click IDR_MAINFRAME to edit it. Click once on the Edit item in the menu you are editing
to drop it down. Click the blank item at the end of the list and type Change &Message. This
will add another item to the menu.

Choose View, ClassWizard to make the connection between this menu item and your code. You
should see ID_EDIT_CHANGEMESSAGE highlighted already; if not, click it in the box on the left to
highlight it. Choose CFileDemoView from the drop-down box on the upper right. Click COMMAND

Untitled-12 2/18/99, 2:50 PM142

143

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

in the lower-right box and then click the Add Function button. Accept the suggested name,
OnEditChangemessage(), by clicking OK on the dialog that appears. Click Edit Code to open
the new function in the editor and edit it to match Listing 7.3.

Listing 7.3 Changing the Document’s Data

void CFileDemoView::OnEditChangemessage()
{
 CTime now = CTime::GetCurrentTime();
 CString changetime = now.Format(“Changed at %B %d %H:%M:%S”);
 GetDocument()->m_message = changetime;
 GetDocument()->SetModifiedFlag();
 Invalidate();
}

This function, which responds to the application’s Edit, Change Message command, builds a
string from the current date and time and transfers it to the document’s data member. (The
CTime class and its Format() function are discussed in Appendix F, “Useful Classes.”) The call
to the document class’s SetModifiedFlag() function notifies the object that its contents have
been changed. The application will warn about exiting with unsaved changes as long as you
remember to call SetModifiedFlag() everywhere there might be a change to the data. Finally,
this code forces a redraw of the screen by calling Invalidate(), as discussed in Chapter 4.

If m_message was a private member variable of the document class, you could have a public
SetMessage() function that called SetModifiedFlag() and be guaranteed no programmer would
ever forget to call it. That’s one of the advantages of writing truly object-oriented programs.

The document class’s Serialize() function handles the saving and loading of the document’s
data. Listing 7.4 shows the empty shell of Serialize() generated by AppWizard.

Listing 7.4 FILEVIEW.CPP—The Document Class Serialize() Function

void CFileDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here

}
 else
 {
 // TODO: add loading code here

}
}

T I P

Examining the File Demo Application

Untitled-12 2/18/99, 2:50 PM143

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

144 Chapter 7 Persistence and File I/O

Because the CString class (of which m_message is an object) defines the >> and << operators
for transferring strings to and from an archive, it’s a simple task to save and load the document
class’s data. Simply add this line where the comment reminds you to add storing code:

ar << m_message;

Add this similar line where the loading code belongs:

ar >> m_message;

The << operator sends the CString m_message to the archive; the >> operator fills m_message
from the archive. As long as all the document’s member variables are simple data types such as
integers or characters, or MFC classes such as CString with these operators already defined,
it’s easy to save and load the data. The operators are defined for these simple data types:

■ BYTE

■ WORD

■ int

■ LONG

■ DWORD

■ float

■ double

Build File Demo and run it. Choose Edit, Change Message, and you should see the new string
onscreen, as shown in Figure 7.1. Choose File, Save and enter a filename you can remember.
Now change the message again. Choose File, New and you’ll be warned about saving your
current changes first, as in Figure 7.2. Choose File, Open and browse to your file, or just find
your filename towards the bottom of the File menu to re-open it, and you’ll see that File Demo
can indeed save and reload a string.

FIG. 7.1
File Demo changes the
string on command.

Untitled-12 2/18/99, 2:51 PM144

145

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

If you change the file, save it, change it again, and re-open it, File Demo will not ask
Revert to saved document? as some applications do. Instead, it will bail out of the

File Open process partway through and leave you with your most recent changes. This behavior is built
in to MFC. If the name of the file you are opening matches the name of the file that is already open,
you will not revert to the saved document. ■

Creating a Persistent Class
What if you’ve created your own custom class for holding the elements of a document? How
can you make an object of this class persistent? You find the answers to these questions in this
section.

Suppose that you now want to enhance the File Demo application so that it contains its data in a
custom class called CMessages. The member variable is now called m_messages and is an in-
stance of CMessages. This class holds three CString objects, each of which must be saved and
loaded for the application to work correctly. One way to arrange this is to save and load each
individual string, as shown in Listing 7.5.

Listing 7.5 One Possible Way to Save the New Class’s Strings

void CFileDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_messages.m_message1;
 ar << m_messages.m_message2;
 ar << m_messages.m_message3;
 }
 else
 {

FIG. 7.2
Your users will never
lose unsaved data
again.

N O T E

continues

Creating a Persistent Class

Untitled-12 2/18/99, 2:51 PM145

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

146 Chapter 7 Persistence and File I/O

Listing 7.5 Continued

 ar >> m_messages.m_message1;
 ar >> m_messages.m_message2;
 ar >> m_messages.m_message3;
}
}

You can write the code in Listing 7.5 only if the three member variables of the CMessages class
are public and if you know the implementation of the class itself. Later, if the class is changed
in any way, this code also has to be changed. It’s more object oriented to delegate the work of
storing and loading to the CMessages class itself. This requires some preparation. The following
basic steps create a class that can serialize its member variables:

1. Derive the class from CObject.

2. Place the DECLARE_SERIAL() macro in the class declaration.

3. Place the IMPLEMENT_SERIAL() macro in the class implementation.

4. Override the Serialize() function in the class.

5. Provide an empty, default constructor for the class.

In the following section, you build an application that creates persistent objects in just this way.

The File Demo 2 Application
The next sample application, File Demo 2, demonstrates the steps you take to create a class
from which you can create persistent objects. It will have an Edit, Change Messages command
that changes all three strings. Like File Demo, it will save and reload the document when the
user chooses File, Save or File, Open.

Build an SDI application called MultiString just as you built File Demo. Add a member variable
to the document, as before, so that the Attributes section of MultiStringDoc.h reads

// Attributes
public:
 CMessages m_messages;

The next step is to write the CMessages class.

Looking at the CMessages Class
Before you can understand how the document class manages to save and load its contents
successfully, you have to understand how the CMessages class, of which the document class’s
m_messages data member is an object, works. As you work with this class, you will see how to
implement the preceding five steps for creating a persistent class.

To create the CMessages class, first choose Insert, New Class. Change the class type to generic
class and name it CMessages. In the area at the bottom of the screen, enter CObject as the base
class name and leave the As column set to public, as shown in Figure 7.3.

Untitled-12 2/18/99, 2:51 PM146

147

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

This will create two files: messages.h for the header and messages.cpp for the code. It also
adds some very simple code to these files for you. (You may get a warning about not being able
to find the header file for CObject: just click OK and ignore it because CObject, like all MFC
files, is available to you without including extra headers.)

Switch back to Multistringdoc.h and add this line before the class definition:

#include “Messages.h”

This will ensure the compiler knows about the CMessages class when it compiles the document
class. You can build the project now if you want to be sure you haven’t forgotten anything. Now
switch back to Messages.h and add these lines:

 DECLARE_SERIAL(CMessages)

protected:
 CString m_message1;
 CString m_message2;
 CString m_message3;

public:
 void SetMessage(UINT msgNum, CString msg);
 CString GetMessage(UINT msgNum);
 void Serialize(CArchive& ar);

The DECLARE_SERIAL() macro provides the additional function and member variable declara-
tions needed to implement object persistence.

Next come the class’s data members, which are three objects of the CString class. Notice that
they are protected member variables. The public member functions are next. SetMessage(),
whose arguments are the index of the string to set and the string’s new value, changes a data
member. GetMessage() is the complementary function, enabling a program to retrieve the
current value of any of the strings. Its single argument is the number of the string to retrieve.

FIG. 7.3
Create a new class to
hold the messages.

Creating a Persistent Class

Untitled-12 2/18/99, 2:51 PM147

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

148 Chapter 7 Persistence and File I/O

Finally, the class overrides the Serialize() function, where all the data saving and loading
takes place. The Serialize() function is the heart of a persistent object, with each persistent
class implementing it in a different way. Listing 7.6 shows the code for each of these new mem-
ber functions. Add it to messages.cpp.

Listing 7.6 MESSAGES.CPP—The CMessages Class Implementation File

void CMessages::SetMessage(UINT msgNum, CString msg)
{
 switch (msgNum)
 {
 case 1:
 m_message1 = msg;
 break;

 case 2:
 m_message2 = msg;
 break;

 case 3:
 m_message3 = msg;
 break;
 }
 SetModifiedFlag();
}

CString CMessages::GetMessage(UINT msgNum)
{
 switch (msgNum)
 {
 case 1:
 return m_message1;
 case 2:
 return m_message2;
 case 3:
 return m_message3;
 default:
 return “”;
 }
}

void CMessages::Serialize(CArchive& ar)
{
 CObject::Serialize(ar);

 if (ar.IsStoring())
 {
 ar << m_message1 << m_message2 << m_message3;
 }
 else
 {
 ar >> m_message1 >> m_message2 >> m_message3;
 }
}

Untitled-12 2/18/99, 2:52 PM148

149

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

There’s nothing tricky about the SetMessage() and GetMessage() functions, which perform
their assigned tasks precisely. The Serialize() function, however, may inspire a couple of
questions. First, note that the first line of the body of the function calls the base class’s Serial-
ize() function. This is a standard practice for many functions that override functions of a base
class. In this case, the call to CObject::Serialize() doesn’t do much because the CObject
class’s Serialize() function is empty. Still, calling the base class’s Serialize() function is a
good habit to get into because you may not always be working with classes derived directly
from CObject.

After calling the base class’s version of the function, Serialize() saves and loads its data in
much the same way a document object does. Because the data members that must be serial-
ized are CString objects, the program can use the >> and << operators to write the strings to
the disk.

Towards the top of messages.cpp, after the include statements, add this line:

IMPLEMENT_SERIAL(CMessages, CObject, 0)

The IMPLEMENT_SERIAL() macro is partner to the DECLARE_SERIAL() macro, providing imple-
mentation for the functions that give the class its persistent capabilities. The macro’s three
arguments are the name of the class, the name of the immediate base class, and a schema
number, which is like a version number. In most cases, you use 0 or 1 for the schema number.

Using the CMessages Class in the Program
Now that CMessages is defined and implemented, member functions of the MultiString docu-
ment and view classes can work with it. First, expand CMultiStringDoc and double-click
OnNewDocument() to edit it. Add these lines in place of the TODO comments.

 m_messages.SetMessage(1, “Default Message 1”);
 m_messages.SetMessage(2, “Default Message 2”);
 m_messages.SetMessage(3, “Default Message 3”);

Because the document class can’t directly access the data object’s protected data members, it
initializes each string by calling the CMessages class’s SetMessage() member function.

Expand CMultiStringView and double-click OnDraw() to edit it. Here’s how it should look when
you’re finished:

void CMultiStringView::OnDraw(CDC* pDC)
{
 CMultiStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(20, 20, pDoc->m_messages.GetMessage(1));
 pDC->TextOut(20, 40, pDoc->m_messages.GetMessage(2));
 pDC->TextOut(20, 60, pDoc->m_messages.GetMessage(3));
}

As you did for File Demo, add a “Change Messages” item to the Edit menu. Connect it to a
view function called OnEditChangemessages. This function will change the data by calling the
CMessages object’s member functions, as in Listing 7.7. The view class’s OnDraw() function also
calls the GetMessage() member function to access the CMessages class’s strings.

Creating a Persistent Class

Untitled-12 2/18/99, 2:52 PM149

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

150 Chapter 7 Persistence and File I/O

Listing 7.7 Editing the Data Strings

void CMultiStringView::OnEditChangemessages()
{
 CMultiStringDoc* pDoc = GetDocument();
 CTime now = CTime::GetCurrentTime();
 CString changetime = now.Format(“Changed at %B %d %H:%M:%S”);

 pDoc->m_messages.SetMessage(1, CString(“String 1 “) + changetime);
 pDoc->m_messages.SetMessage(2, CString(“String 2 “) + changetime);
 pDoc->m_messages.SetMessage(3, CString(“String 3 “) + changetime);
 pDoc->SetModifiedFlag();
 Invalidate();

}

All that remains is to write the document class’s Serialize() function, where the m_messages
data object is serialized out to disk. You just delegate the work to the data object’s own Serial-
ize() function, as in Listing 7.8.

Listing 7.8 Serializing the Data Object

void CMultiStringDoc::Serialize(CArchive& ar)
{
 m_messages.Serialize(ar);
 if (ar.IsStoring())
 {
 }
 else
 {
 }
}

As you can see, after serializing the m_messages data object, not much is left to do in the docu-
ment class’s Serialize() function. Notice that the call to m_messages.Serialize() passes the
archive object as its single parameter. Build MultiString now and test it as you tested File
Demo. It should do everything you expect.

Reading and Writing Files Directly
Although using MFC’s built-in serialization capabilities is a handy way to save and load data,
sometimes you need more control over the file-handling process. For example, you might need
to deal with your files nonsequentially, something the Serialize() function and its associated
CArchive object can’t handle because they do stream I/O. In this case, you can handle files
almost exactly as they’re handled by non-Windows programmers: creating, reading, and writ-
ing files directly. Even when you need to dig down to this level of file handling, MFC offers
help. Specifically, you can use the CFile class and its derived classes to handle files directly.

Untitled-12 2/18/99, 2:52 PM150

151

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

The CFile Class
MFC’s CFile class encapsulates all the functions you need to handle any type of file. Whether
you want to perform common sequential data saving and loading or construct a random access
file, the CFile class gets you there. Using the CFile class is a lot like handling files the old-
fashioned C-style way, except that the class hides some of the busy-work details from you so
that you can get the job done quickly and easily. For example, you can create a file for reading
with only a single line of code. Table 7.1 shows the CFile class’s member functions and their
descriptions.

Table 7.1 Member Functions of the CFile Class

Function Description

CFile Creates the CFile object. If passed a filename, it opens the file.

Destructor Cleans up a CFile object that’s going out of scope. If the file is open,
it closes that file.

Abort() Immediately closes the file with no regard for errors.

Close() Closes the file.

Duplicate() Creates a duplicate file object.

Flush() Flushes data from the stream.

GetFileName() Gets the file’s filename.

GetFilePath() Gets the file’s full path.

GetFileTitle() Gets the file’s title (the filename without the extension).

GetLength() Gets the file’s length.

GetPosition() Gets the current position within the file.

GetStatus() Gets the file’s status.

LockRange() Locks a portion of the file.

Open() Opens the file.

Read() Reads data from the file.

Remove() Deletes a file.

Rename() Renames the file.

Seek() Sets the position within the file.

SeekToBegin() Sets the position to the beginning of the file.

SeekToEnd() Sets the position to the end of the file.

SetFilePath() Sets the file’s path.

continues

Reading and Writing Files Directly

Untitled-12 2/18/99, 2:53 PM151

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

152 Chapter 7 Persistence and File I/O

Table 7.1 Continued

Function Description

SetLength() Sets the file’s length.

SetStatus() Sets the file’s status.

UnlockRange() Unlocks a portion of the file.

Write() Writes data to the file.

As you can see from Table 7.1, the CFile class offers plenty of file-handling power. This section
demonstrates how to call a few of the CFile class’s member functions. However, most of the
other functions are just as easy to use.

Here’s a sample snippet of code that creates and opens a file, writes a string to it, and then
gathers some information about the file:

 // Create the file.
 CFile file(“TESTFILE.TXT”, CFile::modeCreate | CFile::modeWrite);

 // Write data to the file.
 CString message(“Hello file!”);
 int length = message.GetLength();
 file.Write((LPCTSTR)message, length);

 // Obtain information about the file.
 CString filePath = file.GetFilePath();
 Int fileLength = file.GetLength();

Notice that you don’t have to explicitly open the file when you pass a filename to the construc-
tor, whose arguments are the name of the file and the file access mode flags. You can use sev-
eral flags at a time simply by ORing their values together, as in the little snippet above. These
flags, which describe how to open the file and which specify the types of valid operations, are
defined as part of the CFile class and are described in Table 7.2.

Table 7.2 The File Mode Flags

Flag Description

CFile::modeCreate Creates a new file or truncates an existing file to length 0

CFile::modeNoInherit Disallows inheritance by a child process

CFile::modeNoTruncate When creating the file, doesn’t truncate the file if it already
exists

CFile::modeRead Allows read operations only

CFile::modeReadWrite Allows both read and write operations

CFile::modeWrite Allows write operations only

Untitled-12 2/18/99, 2:53 PM152

153

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

Flag Description

CFile::shareCompat Allows other processes to open the file

CFile::shareDenyNone Allows other processes read or write operations on the file

CFile::shareDenyRead Disallows read operations by other processes

CFile::shareDenyWrite Disallows write operations by other processes

CFile::shareExclusive Denies all access to other processes

CFile::typeBinary Sets binary mode for the file

CFile::typeText Sets text mode for the file

CFile::Write() takes a pointer to the buffer containing the data to write and the number of
bytes to write. Notice the LPCTSTR casting operator in the call to Write(). This operator is
defined by the CString class and extracts the string from the class.

One other thing about the code snippet: There is no call to Close()—the CFile destructor
closes the file automatically when file goes out of scope.

Reading from a file isn’t much different from writing to one:

 // Open the file.
 CFile file(“TESTFILE.TXT”, CFile::modeRead);

 // Read data from the file.
 char s[81];
 int bytesRead = file.Read(s, 80);
 s[bytesRead] = 0;
 CString message = s;

This time the file is opened by the CFile::modeRead flag, which opens the file for read opera-
tions only, after which the code creates a character buffer and calls the file object’s Read()
member function to read data into the buffer. The Read() function’s two arguments are the
buffer’s address and the number of bytes to read. The function returns the number of bytes
actually read, which in this case is almost always less than the 80 requested. By using the num-
ber of bytes read, the program can add a 0 to the end of the character data, thus creating a
standard C-style string that can be used to set a CString variable.

The code snippets you’ve just seen use a hard-coded filename. To get filenames from your user
with little effort, be sure to look up the MFC class CFileDialog in the online help. It’s simple to
use and adds a very nice touch to your programs.

Creating Your Own CArchive Objects
Although you can use CFile objects to read from and write to files, you can also go a step far-
ther and create your own CArchive object and use it exactly as you use the CArchive object in
the Serialize() function. This lets you take advantage of Serialize functions already written
for other objects, passing them a reference to your own archive object.

Creating Your Own CArchive Objects

Untitled-12 2/18/99, 2:54 PM153

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

154 Chapter 7 Persistence and File I/O

To create an archive, create a CFile object and pass it to the CArchive constructor. For ex-
ample, if you plan to write out objects to a file through an archive, create the archive like this:

CFile file(“FILENAME.EXT”, CFile::modeWrite);
CArchive ar(&file, CArchive::store);

After creating the archive object, you can use it just like the archive objects that MFC creates
for you, for example, calling Serialize() yourself and passing the archive to it. Because you
created the archive with the CArchive::store flag, any calls to IsStoring() return TRUE, and
the code that dumps objects to the archive executes. When you’re through with the archive
object, you can close the archive and the file like this:

ar.Close();
file.Close();

If the objects go out of scope soon after you’re finished with them, you can safely omit the calls
to Close() because both CArchive and CFile have Close() calls in the destructor.

Using the Registry
In the early days of Windows programming, applications saved settings and options in initializa-
tion files, typically with the .INI extension. The days of huge WIN.INI files or myriad private
.INI files are now gone—when an application wants to store information about itself, it does so
by using a centralized system Registry. Although the Registry makes sharing information
between processes easier, it can make things more confusing for programmers. In this section,
you uncover some of the mysteries of the Registry and learn how to manage it in your
applications.

How the Registry Is Set Up
Unlike .INI files, which are plain text files that can be edited with any text editor, the Registry
contains binary and ASCII information that can be edited only by using the Registry Editor or
special API function calls created specifically for managing the Registry. If you’ve ever used the
Registry Editor to browse your system’s Registry, you know that it contains a huge amount of
information that’s organized into a tree structure. Figure 7.4 shows how the Registry appears
when you first run the Registry Editor. (On Windows 95, you can find the Registry Editor,
REGEDIT.EXE, in your main Windows folder, or you can run it from the Start menu by choos-
ing Run, typing regedit, and then clicking OK. Under Windows NT, it’s REGEDT32.EXE.)

The far left window lists the Registry’s predefined keys. The plus marks next to the keys in the
tree indicate that you can open the keys and view more detailed information associated with
them. Keys can have subkeys, and subkeys themselves can have subkeys. Any key or subkey
may or may not have a value associated with it. If you explore deep enough in the hierarchy,
you see a list of values in the far right window. In Figure 7.5, you can see the values associated
with the current user’s screen appearance. To see these values yourself, browse from
HKEY_CURRENT_USER to Control Panel to Appearance to Schemes, and you’ll see the desktop
schemes installed on your system.

Untitled-12 2/18/99, 2:54 PM154

155

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

The Predefined Keys
To know where things are stored in the Registry, you need to know about the predefined keys
and what they mean. From Figure 7.4, you can see that the six predefined keys are

■ HKEY_CLASSES_ROOT

■ HKEY_CURRENT_USER

FIG. 7.4
The Registry Editor
displays the Registry.

FIG. 7.5
The Registry is
structured as a tree
containing a huge
amount of information.

Using the Registry

Untitled-12 2/18/99, 2:54 PM155

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

156 Chapter 7 Persistence and File I/O

■ HKEY_LOCAL_MACHINE

■ HKEY_USERS

■ HKEY_CURRENT_CONFIG

■ HKEY_DYN_DATA

The HKEY_CLASSES_ROOT key holds document types and properties, as well as class information
about the various applications installed on the machine. For example, if you explored this key
on your system, you’d probably find an entry for the .DOC file extension, under which you’d
find entries for the applications that can handle this type of document (see Figure 7.6).

FIG. 7.6
The
HKEY_CLASSES_ROOT
key holds document
information.

The HKEY_CURRENT_USER key contains all the system settings the current user has established,
including color schemes, printers, and program groups. The HKEY_LOCAL_MACHINE key, on the
other hand, contains status information about the computer, and the HKEY_USERS key organizes
information about each user of the system, as well as the default configuration. Finally, the
HKEY_CURRENT_CONFIG key holds information about the hardware configuration, and the
HKEY_DYN_DATA key contains information about dynamic Registry data, which is data that
changes frequently. (You may not always see this key on your system.)

Using the Registry in an MFC Application
Now that you know a little about the Registry, let me say that it would take an entire book to
explain how to fully access and use it. As you may imagine, the Win32 API features many func-
tions for manipulating the Registry. If you’re going to use those functions, you had better know
what you’re doing! Invalid Registry settings can crash your machine, make it unbootable, and
perhaps force you to reinstall Windows to recover.

Untitled-12 2/18/99, 2:54 PM156

157

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

7

II
Part

Ch

However, you can easily use the Registry with your MFC applications to store information that
the application needs from one session to another. To make this task as easy as possible, MFC
provides the CWinApp class with the SetRegistryKey() member function, which creates (or
opens) a key entry in the Registry for your application. All you have to do is supply a key name
(usually a company name) for the function to use, like this:

SetRegistryKey(“MyCoolCompany”);

You should call SetRegistryKey() in the application class’s InitInstance() member function,
which is called once at program startup.

After you call SetRegistryKey(), your application can create the subkeys and values it needs
by calling one of two functions. The WriteProfileString() function adds string values to the
Registry, and the WriteProfileInt() function adds integer values to the Registry. To get val-
ues from the Registry, you can use the GetProfileString() and GetProfileInt() functions.
(You also can use RegSetValueEx() and RegQueryValueEx() to set and retrieve Registry val-
ues.)

When they were first written, the WriteProfileString(), WriteProfileInt(),
GetProfileString(), and GetProfileInt() functions transferred information to

and from an .INI file. Used alone, they still do. But when you call SetRegistryKey() first, MFC
reroutes these profile functions to the Registry, making using the Registry an almost painless
process. ■

The Sample Applications Revisited
In this chapter, you’ve already built applications that used the Registry. Here’s an excerpt from
CMultiStringApp::InitInstance()—this code was generated by AppWizard and is also in
CFileDemoApp::InitInstance().

// Change the registry key under which our settings are stored.
// You should modify this string to be something appropriate
// such as the name of your company or organization.
SetRegistryKey(_T(“Local AppWizard-Generated Applications”));

LoadStdProfileSettings(); // Load standard INI file options (including MRU)

MRU stands for Most Recently Used and refers to the list of files that appears on the File menu
after you open files with an application. Figure 7.7 shows the Registry Editor displaying the key
that stores this information, HKEY_CURRENT_USER\Software\Local AppWizard-Generated
Applications\MultiString\Recent File List. In the foreground, MultiString’s File menu
shows the single entry in the MRU list.

N O T E

Using the Registry

Untitled-12 2/18/99, 2:55 PM157

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH07 LP#3

158 Chapter 7 Persistence and File I/O

FIG. 7.7
The most recently used
files list is stored in the
Registry automatically.

Untitled-12 2/18/99, 2:55 PM158

159

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

C H A P T E R

Building a Complete Application:
ShowString

8

In this chapter

Building an Application That Displays a String 160

Building the ShowString Menus 164

Building the ShowString Dialog Boxes 166

Making the Menu Work 169

Making the Dialog Box Work 174

Adding Appearance Options to the Options Dialog Box 175

Untitled-13 2/18/99, 2:56 PM159

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

160 Chapter 8 Building a Complete Application: ShowString

Building an Application That Displays a String
In this chapter you pull together the concepts demonstrated in previous chapters to create an
application that really does something. You add a menu, a menu item, a dialog box, and persis-
tence to an application that draws output based on user settings. In subsequent chapters this
application serves as a base for more advanced work.

The sample application you will build is very much like the traditional “Hello, world!” of C
programming. It simply displays a text string in the main window. The document (what you
save in a file) contains the string and a few settings. There is a new menu item to bring up a
dialog box to change the string and the settings, which control the string’s appearance. This is
a deliberately simple application so that the concepts of adding menu items and adding dialogs
are not obscured by trying to understand the actual brains of the application. So, bring up
Developer Studio and follow along.

Creating an Empty Shell with AppWizard
First, use AppWizard to create the starter application. (Chapter 1, “Building Your First
Windows Application,” covers AppWizard and creating starter applications.) Choose File, New
and the Project tab. Select an MFC AppWizard (exe) application, name the project ShowString
so that your classnames will match those shown throughout this chapter, and click OK.

In Step 1 of AppWizard, it doesn’t matter much whether you choose SDI or MDI, but MDI will
enable you to see for yourself how little effort is required to have multiple documents open at
once. So, choose MDI. Choose U.S. English, and then click Next.

The ShowString application needs no database support and no compound document support,
so click Next on Step 2 and Step 3 without changing anything. In AppWizard’s Step 4 dialog
box, select a docking toolbar, initial status bar, printing and print preview, context-sensitive
help, and 3D controls, and then click Next. Choose source file comments and shared DLL, and
then click Next. The classnames and filenames are all fine, so click Finish. Figure 8.1 shows
the final confirmation dialog box. Click OK.

FIG. 8.1
AppWizard summarizes
the design choices for
ShowString.

Untitled-13 2/18/99, 2:56 PM160

161

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

Displaying a String
The ShowString application displays a string that will be kept in the document. You need to add
a member variable to the document class, CShowStringDoc, and add loading and saving code to
the Serialize() function. You can initialize the string by adding code to OnNewDocument() for
the document and, in order to actually display it, override OnDraw() for the view. Documents
and views are introduced in Chapter 4, “Documents and Views.”

Member Variable and Serialization Add a private variable to the document and a public
function to get the value by adding these lines to ShowStringDoc.h:

private:
 CString string;
public:
 CString GetString() {return string;}

The inline function gives other parts of your application a copy of the string to use whenever
necessary but makes it impossible for other parts to change the string.

Next, change the skeleton CShowStringDoc::Serialize() function provided by AppWizard to
look like Listing 8.1. (Expand CShowStringDoc in ClassView and double-click Serialize() to
edit the code.) Because you used the MFC CString class, the archive has operators << and >>
already defined, so this is a simple function to write. It fills the archive from the string when
you are saving the document and fills the string from the archive when you are loading the
document from a file. Chapter 7, “Persistence and File I/O,” introduces serialization.

Listing 8.1 SHOWSTRINGDOC.CPP—CShowStringDoc::Serialize()

void CShowStringDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << string;
 }
 else
 {
 ar >> string;
 }
}

Initializing the String Whenever a new document is created, you want your application to
initialize string to “Hello, world!”. A new document is created when the user chooses File,
New. This message is caught by CShowStringApp (the message map is shown in Listing 8.2,
you can see it yourself by scrolling toward the top of ShowString.cpp) and handled by
CWinApp::OnFileNew(). (Message maps and message handlers are discussed in Chapter 3,
“Messages and Commands.”) Starter applications generated by AppWizard call OnFileNew() to
create a blank document when they run. OnFileNew() calls the document’s OnNewDocument(),
which actually initializes the member variables of the document.

Building an Application That Displays a String

Untitled-13 2/18/99, 2:57 PM161

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

162 Chapter 8 Building a Complete Application: ShowString

Listing 8.2 SHOWSTRING.CPP—Message Map

BEGIN_MESSAGE_MAP(CShowStringApp, CWinApp)
 //{{AFX_MSG_MAP(CShowStringApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - The ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file-based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

AppWizard gives you the simple OnNewDocument() shown in Listing 8.3. To see yours in the
editor, double-click OnNewDocument() in ClassView—you may have to expand CshowStringDoc
first.

Listing 8.3 SHOWSTRINGDOC.CPP—CShowStringDoc::OnNewDocument()

BOOL CShowStringDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}

Take away the comments and add this line in their place:

string = “Hello, world!”;

(What else could it say, after all?) Leave the call to CDocument::OnNewDocument() because that
will handle all other work involved in making a new document.

Getting the String Onscreen As you learned in Chapter 5, “Drawing on the Screen,” a view’s
OnDraw() function is called whenever that view needs to be drawn, such as when your applica-
tion is first started, resized, or restored or when a window that had been covering it is taken
away. AppWizard has provided a skeleton, shown in Listing 8.4. To edit this function, expand
CShowStringView in ClassView and then double-click OnDraw().

Listing 8.4 SHOWSTRINGVIEW.CPP—CShowStringView::OnDraw()

void CShowStringView::OnDraw(CDC* pDC)
{
 CShowStringDoc* pDoc = GetDocument();

Untitled-13 2/18/99, 2:57 PM162

163

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
}

OnDraw() takes a pointer to a device context, as discussed in Chapter 5. The device context
class, CDC, has a member function called DrawText() that draws text onscreen. It is declared
like this:

int DrawText(const CString& str, LPRECT lpRect, UINT nFormat)

◊ See “Understanding Device Contexts,” p. 98

The CString to be passed to this function is going to be the string from the document class,
which can be accessed as pDoc->GetString(). The lpRect is the client rectangle of the view,
returned by GetClientRect(). Finally, nFormat is the way the string should display; for ex-
ample, DT_CENTER means that the text should be centered from left to right within the view.
DT_VCENTER means that the text should be centered up and down, but this works only for single
lines of text that are identified with DT_SINGLELINE. Multiple format flags can be combined with
|, so DT_CENTER|DT_VCENTER|DT_SINGLELINE is the nFormat that you want. The drawing code
to be added to CShowStringView::OnDraw() looks like this:

CRect rect;
GetClientRect(&rect);
pDC->DrawText(pDoc->GetString(), &rect, DT_CENTER|DT_VCENTER|DT_SINGLELINE);

This sets up a CRect and passes its address to GetClientRect(), which sets the CRect to the
client area of the view. DrawText() draws the document’s string in the rectangle, centered
vertically and horizontally.

At this point, the application should display the string properly. Build and execute it, and you
will see something like Figure 8.2. You have a lot of functionality—menus, toolbars, status bar,
and so on—but nothing that any other Windows application doesn’t have, yet. Starting with the
next section, that changes.

FIG. 8.2
ShowString starts
simply, with the usual
greeting.

Building an Application That Displays a String

Untitled-13 2/18/99, 2:57 PM163

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

164 Chapter 8 Building a Complete Application: ShowString

Building the ShowString Menus
AppWizard creates two menus for you, shown in the ResourceView window in Figure 8.3.
IDR_MAINFRAME is the menu shown when no file is open; IDR_SHOWSTTYPE is the menu shown
when a ShowString document is open. Notice that IDR_MAINFRAME has no Window menus and
that the File menu is much shorter than the one on the IDR_SHOWSTTYPE menu, with only New,
Open, Print Setup, recent files, and Exit items.

You are going to add a menu item to ShowString, so the first decision is where to add it. The
user will be able to edit the string that displays and to set the string’s format. You could add a
Value item to the Edit menu that brings up a small dialog box for only the string and then cre-
ate a Format menu with one item, Appearance, that brings up the dialog box to set the appear-
ance. The choice you are going to see here, though, is to combine everything into one dialog
box and then put it on a new Tools menu, under the Options item.

You may have noticed already that more and more Windows applications are standardizing
Tools, Options as the place for miscellaneous settings. ■

Do you need to add the item to both menus? No. When there is no document open, there is
nowhere to save the changes made with this dialog box. So only IDR_SHOWSTTYPE needs to have
a menu added. Open the menu by double-clicking it in the ResourceView window. At the far
right of the menu, after Help, is an empty menu. Click it and type &Tools. The Properties
dialog box appears; pin it to the background by clicking the pushpin. The Caption box contains
&Tools. The menu at the end becomes the Tools menu, with an empty item underneath it;
another empty menu then appears to the right of the Tools menu, as shown in Figure 8.4.

FIG. 8.3
AppWizard creates two
menus for ShowString.

N O T E

Untitled-13 2/18/99, 2:58 PM164

165

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

Click the new Tools menu and drag it between the View and Window menus, corresponding to
the position of Tools in products like Developer Studio and Microsoft Word. Next, click the
empty sub-item. The Properties dialog box changes to show the blank properties of this item;
change the caption to &Options and enter a sensible prompt, as shown in Figure 8.5. The
prompt will be shown on the status bar when the user pauses the mouse over the menu item or
moves the highlight over it with the cursor.

The & in the Caption edit box precedes the letter that serves as the mnemonic key for selecting that
menu with the keyboard (for example, Alt+T in the case of Tools). This letter appears underlined in the
menu. There is no further work required on your part. You can opt to select a different mnemonic key by
moving the & so that it precedes a different letter in the menu or menu item name (for example,
T&ools changes the key from T to o). You should not use the same mnemonic letter for two menus or
for two items on the same menu.

All menu items have a resource ID, and this resource ID is the way the menu items are con-
nected to your code. Developer Studio will choose a good one for you, but it doesn’t appear
right away in the Properties dialog box. Click some other menu item, and then click Options
again; you see that the resource ID is ID_TOOLS_OPTIONS. Alternatively, press Enter when you
are finished, and the highlight moves down to the empty menu item below Options. Press the
up-arrow cursor key to return the highlight to the Options item.

If you’d like to provide an accelerator, like the Ctrl+C for Edit, Copy that the system provides,
this is a good time to do it. Click the + next to Accelerator in the ResourceView window and
then double-click IDR_MAINFRAME, the only Accelerator table in this application. At a glance, you
can see what key combinations are already in use. Ctrl+O is already taken, but Ctrl+T is avail-
able. To connect Ctrl+T to Tools, Options, follow these steps:

FIG. 8.4
Adding the Tools menu
is easy in the
ResourceView window.

Building the ShowString Menus

T I P

Untitled-13 2/18/99, 2:58 PM165

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

166 Chapter 8 Building a Complete Application: ShowString

1. Click the empty line at the bottom of the Accelerator table. If you have closed the
Properties dialog box, bring it back by choosing View, Properties and then pin it in
place. (Alternatively, double-click the empty line to bring up the Properties dialog box.)

2. Click the drop-down list box labeled ID and choose ID_TOOLS_OPTIONS from the list,
which is in alphabetical order. (There are a lot of entries before ID_TOOLS_OPTIONS; drag
the elevator down to almost the bottom of the list or start typing the resource ID—by the
time you type ID_TO, the highlight will be in the right place.)

3. Type T in the Key box; then make sure that the Ctrl check box is selected and that the
Alt and Shift boxes are deselected. Alternatively, click the Next Key Typed button and
then type Ctrl+T, and the dialog box will be filled in properly.

4. Click another line in the Accelerator table to commit the changes.

Figure 8.6 shows the Properties dialog box for this accelerator after again clicking the newly
entered line.

What happens when the user chooses this new menu item, Tools, Options? A dialog box dis-
plays. So, tempting as it may be to start connecting this menu to code, it makes more sense to
build the dialog box first.

Building the ShowString Dialog Boxes
Chapter 2, “Dialogs and Controls,” introduces dialog boxes. This section builds on that back-
ground. ShowString is going to have two custom dialog boxes: one brought up by Tools, Op-
tions and also an About dialog box. An About dialog box has been provided by AppWizard, but
it needs to be changed a little; you build the Options dialog box from scratch.

FIG. 8.5
The menu command
Tools, Options controls
everything that
ShowString does.

Untitled-13 2/18/99, 2:58 PM166

167

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

ShowString’s About Dialog Box
Figure 8.7 shows the About dialog box that AppWizard makes for you; it contains the applica-
tion name and the current year. To view the About dialog box for ShowString, click the
ResourceView tab in the project workspace window, expand the Dialogs list by clicking the +
icon next to the word Dialogs, and then double-click IDD_ABOUTBOX to bring up the About dialog
box resource.

FIG. 8.6
Keyboard accelerators
are connected to
resource IDs.

FIG. 8.7
AppWizard makes an
About dialog box for
you.

Building the ShowString Dialog Boxes

Untitled-13 2/18/99, 2:58 PM167

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

168 Chapter 8 Building a Complete Application: ShowString

You might want to add a company name to your About dialog box. Here’s how to add Que
Books, as an example. Click the line of text that reads Copyright© 1998, and it will be sur-
rounded by a selection box. Bring up the Properties dialog box, if it isn’t up. Edit the caption
to add Que Books at the end; the changes are reflected immediately in the dialog box.

If the rulers you see in Figure 8.7 don’t appear when you open IDD_ABOUTBOX in Developer Studio,
you can turn them on by choosing Layout, Guide Settings and then selecting the Rulers and Guides
radio button in the top half of the Guide Settings dialog box.

I decided to add a text string to remind users what book this application is from. Here’s how to
do that:

1. Size the dialog box a little taller by clicking the whole dialog box to select it, clicking the
sizing square in the middle of the bottom border, and dragging the bottom border down
a little. (This visual editing is what gave Visual C++ its name when it first came out.)

2. In the floating toolbar called Controls, click the button labeled Aa to get a static control,
which means a piece of text that the user cannot change, perfect for labels like this. Click
within the dialog box under the other text to insert the static text there.

3. In the Properties dialog box, change the caption from Static to Using Visual C++ 6.
The box automatically resizes to fit the text.

4. Hold down the Ctrl key and click the other two static text lines in the dialog box. Choose
Layout, Align Controls, Left, which aligns the edges of the three selected controls. The
one you select last stays still, and the others move to align with it.

5. Choose Layout, Space Evenly, Down. These menu options can save you a great deal of
dragging, squinting at the screen, and then dragging again.

The About dialog box will resemble Figure 8.8.

T I P

All the Layout menu items are on the Dialog toolbar.

ShowString’s Options Dialog Box
The Options dialog box is simple to build. First, make a new dialog box by choosing Insert,
Resource and then double-clicking Dialog. An empty dialog box called Dialog1 appears, with an
OK button and a Cancel button, as shown in Figure 8.9.

FIG. 8.8
In a matter of minutes,
you can customize your
About dialog box.

T I P

Untitled-13 2/18/99, 2:58 PM168

169

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

Next, follow these steps to convert the empty dialog box into the Options dialog box:

1. Change the ID to IDD_OPTIONS and the caption to Options.

2. In the floating toolbar called Controls, click the button labeled ab| to get an edit box in
which the user can enter the new value for the string. Click inside the dialog box to place
the control and then change the ID to IDC_OPTIONS_STRING. (Control IDs should all start
with IDC and then mention the name of their dialog box and an identifier that is unique to
that dialog box.)

3. Drag the sizing squares to resize the edit box as wide as possible.

4. Add a static label above the edit box and change that caption to String:.

You will revisit this dialog box later, when adding the appearance capabilities, but for now it’s
ready to be connected. It will look like Figure 8.10.

FIG. 8.9
A new dialog box
always has OK and
Cancel buttons.

Making the Menu Work
When the user chooses Tools, Options, the Options dialog box should display. You use
ClassWizard to arrange for one of your functions to be called when the item is chosen, and

FIG. 8.10
The Options dialog box
is the place to change
the string.

Making the Menu Work

Untitled-13 2/18/99, 2:59 PM169

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

170 Chapter 8 Building a Complete Application: ShowString

then you write the function, which creates an object of your dialog box class and then
displays it.

The Dialog Box Class
ClassWizard makes the dialog box class for you. While the window displaying the IDD_OPTIONS
dialog box has focus, choose View, ClassWizard. ClassWizard realizes there is not yet a class
that corresponds to this dialog box and offers to create one, as shown in Figure 8.11.

Leave Create a New Class selected and then click OK. The New Class dialog box, shown in
Figure 8.12, appears.

FIG. 8.11
Create a C++ class to
go with the new dialog
box.

Fill in the dialog box as follows:

1. Choose a sensible name for the class, one that starts with C and contains the word
Dialog; this example uses COptionsDialog.

2. The base class defaults to CDialog, which is perfect for this case.

3. Click OK to create the class.

The ClassWizard dialog box has been waiting behind these other dialog boxes, and now you
use it. Click the Member Variables tab and connect IDC_OPTIONS_STRING to a CString called
m_string, just as you connected controls to member variables of the dialog box class in Chap-
ter 2. Click OK to close ClassWizard.

FIG. 8.12
The dialog box class
inherits from CDialog.

Untitled-13 2/18/99, 2:59 PM170

171

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

Perhaps you’re curious about what code was created for you when ClassWizard made the
class. The header file is shown in Listing 8.5.

Listing 8.5 OPTIONSDIALOG.H—Header File for COptionsDialog

// OptionsDialog.h : header file
//

///
// COptionsDialog dialog

class COptionsDialog : public CDialog
{
// Construction
public:
 COptionsDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(COptionsDialog)
 enum { IDD = IDD_OPTIONS };
 CString m_string;
 //}}AFX_DATA
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(COptionsDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(COptionsDialog)
 // NOTE: The ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

There are an awful lot of comments here to help ClassWizard find its way around in the file
when the time comes to add more functionality, but there is only one member variable,
m_string; one constructor; and one member function, DoDataExchange(), which gets the con-
trol value into the member variable, or vice versa. The source file isn’t much longer; it’s shown
in Listing 8.6.

Listing 8.6 OPTIONSDIALOG.CPP—Implementation File for COptionsDialog

// OptionsDialog.cpp : implementation file
//

#include “stdafx.h”
#include “ShowString.h”
#include “OptionsDialog.h”

continues

Making the Menu Work

Untitled-13 2/18/99, 2:59 PM171

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

172 Chapter 8 Building a Complete Application: ShowString

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
///
// COptionsDialog dialog
COptionsDialog::COptionsDialog(CWnd* pParent /*=NULL*/)
 : CDialog(COptionsDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(COptionsDialog)
 m_string = _T(“”);
 //}}AFX_DATA_INIT
}
void COptionsDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(COptionsDialog)
 DDX_Text(pDX, IDC_OPTIONS_STRING, m_string);
 //}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(COptionsDialog, CDialog)
 //{{AFX_MSG_MAP(COptionsDialog)
 // NOTE: The ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The constructor sets the string to an empty string; this code is surrounded by special
ClassWizard comments that enable it to add other variables later. The DoDataExchange()
function calls DDX_Text() to transfer data from the control with the resource ID
IDC_OPTIONS_STRING to the member variable m_string, or vice versa. This code, too, is sur-
rounded by ClassWizard comments. Finally, there is an empty message map because
COptionsDialog doesn’t catch any messages.

Catching the Message
The next step in building ShowString is to catch the command message sent when the user
chooses Tools, Options. There are seven classes in ShowString: CAboutDlg, CChildFrame,
CMainFrame, COptionsDialog, CShowStringApp, CShowStringDoc, and CShowStringView. Which
one should catch the command? The string and the options will be saved in the document and
displayed in the view, so one of those two classes should handle the changing of the string. The
document owns the private variable and will not let the view change the string unless you
implement a public function to set the string. So, it makes the most sense to have the document
catch the message.

Often the hardest part of catching these messages is deciding which class should catch
them. The decision between View and Document is frequently a very difficult one. If the

message handler will need access to a private member of either class, that’s the class to catch the
message. ■

Listing 8.6 Continued

N O T E

Untitled-13 2/18/99, 3:00 PM172

173

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

To catch the message, follow these steps:

1. Open ClassWizard (if it isn’t already open).

2. Click the Message Maps tab.

3. Select CShowStringDoc from the Class Name drop-down list box.

4. Select ID_TOOLS_OPTIONS from the Object IDs list box on the left, and select COMMAND
from the Messages list box on the right.

5. Click Add Function to add a function to handle this command.

6. The Add Member Function dialog box, shown in Figure 8.13, appears, giving you an op-
portunity to change the function name from the usual one. Do not change it; just click OK.

You should almost never change the names that ClassWizard suggests for message catchers. If you find
that you have to (perhaps because the suggested name is too long or conflicts with another function
name in the same object), be sure to choose a name that starts with On. Otherwise the next developer
to work on your project is going to have a very hard time finding the message handlers.

Click Edit Code to close ClassWizard and edit the newly added function. What happened to
CShowStringDoc when you arranged for the ID_TOOLS_OPTIONS message to be caught? The new
message map in the header file is shown in Listing 8.7.

Listing 8.7 SHOWSTRINGDOC.H—Message Map for CShowStringDoc

// Generated message map functions
protected:
 //{{AFX_MSG(CShowStringDoc)
 afx_msg void OnToolsOptions();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

This is just declaring the function. In the source file, ClassWizard changed the message maps
shown in Listing 8.8.

Listing 8.8 SHOWSTRINGDOC.CPP—Message Map for CShowStringDoc

BEGIN_MESSAGE_MAP(CShowStringDoc, CDocument)
 //{{AFX_MSG_MAP(CShowStringDoc)
 ON_COMMAND(ID_TOOLS_OPTIONS, OnToolsOptions)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

FIG. 8.13
ClassWizard suggests
a good name for the
message-catching
function.

T I P

Making the Menu Work

Untitled-13 2/18/99, 3:00 PM173

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

174 Chapter 8 Building a Complete Application: ShowString

This arranges for OnToolsOptions() to be called when the command ID_TOOLS_OPTIONS is
sent. ClassWizard also added a skeleton for OnToolsOptions():

void CShowStringDoc::OnToolsOptions()
{
 // TODO: Add your command handler code here

}

Making the Dialog Box Work
OnToolsOptions() should initialize and display the dialog box and then do something with the
value that the user provided. (This process was first discussed in Chapter 2. You have already
connected the edit box to a member variable, m_string, of the dialog box class. You initialize
this member variable before displaying the dialog box and use it afterwards.

OnToolsOptions(), shown in Listing 8.9, displays the dialog box. Add this code to the empty
function ClassWizard generated for you when you arranged to catch the message.

Listing 8.9 SHOWSTRINGDOC.CPP—OnToolsOptions()

void CShowStringDoc::OnToolsOptions()
{
 COptionsDialog dlg;
 dlg.m_string = string;
 if (dlg.DoModal() == IDOK)
 {
 string = dlg.m_string;
 SetModifiedFlag();
 UpdateAllViews(NULL);
 }

}

This code fills the member variable of the dialog box with the document’s member variable
(ClassWizard added m_string as a public member variable of COptionsDialog, so the docu-
ment can change it) and then brings up the dialog box by calling DoModal(). If the user clicks
OK, the member variable of the document changes, the modified flag is set (so that the user is
prompted to save the document on exit), and the view is asked to redraw itself with a call to
UpdateAllViews(). For this to compile, of course, the compiler must know what a
COptionsDialog is, so add this line at the beginning of ShowStringDoc.cpp:

#include “OptionsDialog.h”

At this point, you can build the application and run it. Choose Tools, Options and change the
string. Click OK and you see the new string in the view. Exit the application; you are asked
whether to save the file. Save it, restart the application, and open the file again. The default
“Hello, world!” document remains open, and the changed document is open with a different
string. The application works, as you can see in Figure 8.14 (the windows are resized to let
them both fit in the figure).

Untitled-13 2/18/99, 3:00 PM174

175

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

Adding Appearance Options to the Options
Dialog Box

ShowString doesn’t have much to do, just demonstrate menus and dialog boxes. However, the
only dialog box control that ShowString uses is an edit box. In this section, you add a set of
radio buttons and check boxes to change the way the string is drawn in the view.

Changing the Options Dialog Box
It is quite simple to incorporate a full-fledged Font dialog box into an application, but the ex-
ample in this section is going to do something much simpler. A group of radio buttons will give
the user a choice of several colors. One check box will enable the user to specify that the text
should be centered horizontally, and another that the text be centered vertically. Because these
are check boxes, the text can be either, neither, or both.

Open the IDD_OPTIONS dialog box by double-clicking it in the ResourceView window, and then
add the radio buttons by following these steps:

1. Stretch the dialog box taller to make room for the new controls.

2. Click the radio button in the Controls floating toolbar, and then click the Options dialog
box to drop the control.

3. Choose View, Properties and then pin the Properties dialog box in place.

4. Change the resource ID of the first radio button to IDC_OPTIONS_BLACK, and change the
caption to &Black.

5. Select the Group box to indicate that this is the first of a group of radio buttons.

6. Add another radio button with resource ID IDC_OPTIONS_RED and &Red as the caption.
Do not select the Group box because the Red radio button doesn’t start a new group but
is part of the group that started with the Black radio button.

FIG. 8.14
ShowString can change
the string, save it to a
file, and reload it.

Adding Appearance Options to the Options Dialog Box

Untitled-13 2/18/99, 3:01 PM175

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

176 Chapter 8 Building a Complete Application: ShowString

7. Add a third radio button with resource ID IDC_OPTIONS_GREEN and &Green as the
caption. Again, do not select Group.

8. Drag the three radio buttons into a horizontal arrangement, and select all three by
clicking on one and then holding Ctrl while clicking the other two.

9. Choose Layout, Align Controls, Bottom (to even them up).

10. Choose Layout, Space Evenly, Across to space the controls across the dialog box.

Next, add the check boxes by following these steps:

1. Click the check box in the Controls floating toolbar and then click the Options dialog
box, dropping a check box onto it.

2. Change the resource ID of this check box to IDC_OPTIONS_HORIZCENTER and the caption
to Center &Horizontally.

3. Select the Group box to indicate the start of a new group after the radio buttons.

4. Drop another check box onto the dialog box as in step 1 and give it the resource ID
IDC_OPTIONS_VERTCENTER and the caption Center &Vertically.

5. Arrange the check boxes under the radio buttons.

6. Click the Group box on the Controls floating toolbar, and then click and drag a group
box around the radio buttons. Change the caption to Text Color.

7. Move the OK and Cancel buttons down to the bottom of the dialog box.

8. Select each horizontal group of controls and use Layout, Center in Dialog, Horizontal to
make things neater.

9. Choose Edit, Select All, and then drag all the controls up toward the top of the dialog
box. Shrink the dialog box to fit around the new controls. It should now resemble
Figure 8.15.

If you don’t recognize the icons on the Controls toolbar, use the ToolTips. If you hold the cursor over any
of the toolbar buttons, a tip pops up after a few seconds, telling you what control the button repre-
sents.

Finally, set the tab order by choosing Layout, Tab Order and then clicking the controls, in this
order:

FIG. 8.15
The Options dialog box
for ShowString has been
expanded.

T I P

Untitled-13 2/18/99, 3:01 PM176

177

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

1. IDC_OPTIONS_STRING

2. IDC_OPTIONS_BLACK

3. IDC_OPTIONS_RED

4. IDC_OPTIONS_GREEN

5. IDC_OPTIONS_HORIZCENTER

6. IDC_OPTIONS_VERTCENTER

7. IDOK

8. IDCANCEL

Then click away from the dialog box to leave the two static text controls as positions 9 and 10.

Adding Member Variables to the Dialog Box Class
Having added controls to the dialog box, you need to add corresponding member variables to
the COptionsDialog class. Bring up ClassWizard, select the Member Variable tab, and add
member variables for each control. Figure 8.16 shows the summary of the member variables
created. The check boxes are connected to BOOL variables; these member variables are TRUE if
the box is selected and FALSE if it isn’t. The radio buttons are handled differently. Only the
first—the one with the Group box selected in its Properties dialog box—is connected to a
member variable. That integer is a zero-based index that indicates which button is selected. In
other words, when the Black button is selected, m_color is 0; when Red is selected, m color is
1; and when Green is selected, m_color is 2.

Adding Member Variables to the Document
The variables to be added to the document are the same ones that were added to the dialog
box. You add them to the CShowStringDoc class definition in the header file, to
OnNewDocument(), and to Serialize(). Add the lines in Listing 8.10 at the top of the
CShowStringDoc definition in ShowStringDoc.h, replacing the previous definition of string and
GetString(). Make sure that the variables are private and the functions are public.

FIG. 8.16
Member variables in
the dialog box class are
connected to individual
controls or the group of
radio buttons.

Adding Appearance Options to the Options Dialog Box

Untitled-13 2/18/99, 3:01 PM177

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

178 Chapter 8 Building a Complete Application: ShowString

Listing 8.10 SHOWSTRINGDOC.H—CShowStringDoc Member Variables

private:
 CString string;
 int color;
 BOOL horizcenter;
 BOOL vertcenter;
public:
 CString GetString() {return string;}
 int GetColor() {return color;}
 BOOL GetHorizcenter() {return horizcenter;}
 BOOL GetVertcenter() {return vertcenter;}

As with string, these are private variables with public get functions but no set functions. All
these options should be serialized; the new Serialize() is shown in Listing 8.11. Change your
copy by double-clicking the function name in ClassView and adding the new code.

Listing 8.11 SHOWSTRINGDOC.CPP—Serialize()

void CShowStringDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << string;
 ar << color;
 ar << horizcenter;
 ar << vertcenter;
 }
 else
 {
 ar >> string;
 ar >> color;
 ar >> horizcenter;
 ar >> vertcenter;
 }
}

Finally, you need to initialize these variables in OnNewDocument(). What are good defaults for
these new member variables? Black text, centered in both directions, was the old behavior, and
it makes sense to use it as the default. The new OnNewDocument() is shown in Listing 8.12.

Listing 8.12 SHOWSTRINGDOC.CPP—OnNewDocument()

BOOL CShowStringDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 string = “Hello, world!”;
 color = 0; //black
 horizcenter = TRUE;

Untitled-13 2/18/99, 3:01 PM178

179

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

 vertcenter = TRUE;

 return TRUE;
}

Of course, at the moment, users cannot change these member variables from the defaults.
To allow the user to change the variables, you have to change the function that handles the
dialog box.

Changing OnToolsOptions()
The OnToolsOptions() function sets the values of the dialog box member variables from the
document member variables and then displays the dialog box. If the user clicks OK, the docu-
ment member variables are set from the dialog box member variables and the view is redrawn.
Having just added three member variables to the dialog box and the document, you have three
lines to add before the dialog box displays and then three more to add in the block that’s called
after OK is clicked. The new OnToolsOptions() is shown in Listing 8.13.

Listing 8.13 SHOWSTRINGDOC.CPP—OnToolsOptions()

void CShowStringDoc::OnToolsOptions()
{
 COptionsDialog dlg;
 dlg.m_string = string;
 dlg.m_color = color;
 dlg.m_horizcenter = horizcenter;
 dlg.m_vertcenter = vertcenter;

 if (dlg.DoModal() == IDOK)
 {
 string = dlg.m_string;
 color = dlg.m_color;
 horizcenter = dlg.m_horizcenter;
 vertcenter = dlg.m_vertcenter;
 SetModifiedFlag();
 UpdateAllViews(NULL);
 }

}

What happens when the user opens the dialog box and changes the value of a control, say, by
deselecting Center Horizontally? The framework—through Dialog Data Exchange (DDX), as
set up by ClassWizard—changes the value of COptionsDialog::m_horizcenter to FALSE. This
code in OnToolsOptions() changes the value of CShowStringDoc::horizcenter to FALSE.
When the user saves the document, Serialize() saves horizcenter. This is all good, but none
of this code actually changes the way the view is drawn. That involves OnDraw().

Adding Appearance Options to the Options Dialog Box

Untitled-13 2/18/99, 3:02 PM179

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

180 Chapter 8 Building a Complete Application: ShowString

Changing OnDraw()
The single call to DrawText() in OnDraw() becomes a little more complex now. The document
member variables are used to set the view’s appearance. Edit OnDraw() by expanding
CShowStringView in the ClassView and double-clicking OnDraw().

The color is set with CDC::SetTextColor() before the call to DrawText(). You should always
save the old text color and restore it when you are finished. The parameter to SetTextColor()
is a COLORREF, and you can directly specify combinations of red, green, and blue as hex num-
bers in the form 0x00bbggrr, so that, for example, 0x000000FF is bright red. Most people prefer
to use the RGB macro, which takes hex numbers from 0x0 to 0xFF, specifying the amount of
each color; bright red is RGB(FF,0,0), for instance. Add the lines shown in Listing 8.14 before
the call to DrawText() to set up everything.

Listing 8.14 SHOWSTRINGDOC.CPP—OnDraw() Additions Before DrawText() Call

 COLORREF oldcolor;
 switch (pDoc->GetColor())
 {
 case 0:
 oldcolor = pDC->SetTextColor(RGB(0,0,0)); //black
 break;
 case 1:
 oldcolor = pDC->SetTextColor(RGB(0xFF,0,0)); //red
 break;
 case 2:
 oldcolor = pDC->SetTextColor(RGB(0,0xFF,0)); //green
 break;
 }

Add this line after the call to DrawText():

pDC->SetTextColor(oldcolor);

There are two approaches to setting the centering flags. The brute-force way is to list the four
possibilities (neither, horizontal, vertical, and both) and have a different DrawText() statement
for each. If you were to add other settings, this would quickly become unworkable. It’s better to
set up an integer to hold the DrawText() flags and OR in each flag, if appropriate. Add the lines
shown in Listing 8.15 before the call to DrawText().

Listing 8.15 SHOWSTRINGDOC.CPP—OnDraw() Additions After DrawText() Call

 int DTflags = 0;
 if (pDoc->GetHorizcenter())
 {
 DTflags |= DT_CENTER;
 }
 if (pDoc->GetVertcenter())
 {
 DTflags |= (DT_VCENTER|DT_SINGLELINE);
 }

Untitled-13 2/18/99, 3:02 PM180

181

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

8

II
Part

Ch

The call to DrawText() now uses the DTflags variable:

pDC->DrawText(pDoc->GetString(), &rect, DTflags);

Now the settings from the dialog box have made their way to the dialog box class, to the docu-
ment, and finally to the view, to actually affect the appearance of the text string. Build and
execute ShowString and then try it. Any surprises? Be sure to change the text, experiment with
various combinations of the centering options, and try all three colors. ●

Adding Appearance Options to the Options Dialog Box

Untitled-13 2/18/99, 3:02 PM181

B3A3 swg4 UsingVisual C++ 1539-2 7.20.98 Ayanna chapter 8 LP#3

182 Chapter 8 Building a Complete Application: ShowString

Untitled-13 2/18/99, 3:02 PM182

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptIII LP#3

IIIP A R T

Improving Your User Interface

9 Status Bars and Toolbars 185

10 Common Controls 205

11 Help 243

12 Property Pages and Sheets 267

Untitled-14 2/18/99, 3:05 PM183

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptIII LP#3

Untitled-14 2/18/99, 3:05 PM184

185

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

C H A P T E R

Status Bars and Toolbars

Working with Toolbars 186

Working with Status Bars 193

Working with Rebars 201

9

In this chapter

Untitled-15 2/18/99, 3:06 PM185

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

186 Chapter 9 Status Bars and Toolbars

Building a good user interface is half the battle of programming a Windows application. Luck-
ily, Visual C++ and its AppWizard supply an amazing amount of help in creating an application
that supports all the expected user-interface elements, including menus, dialog boxes, toolbars,
and status bars. The subjects of menus and dialog boxes are covered in Chapters 2, “Dialogs
and Controls,” and 8, “Building a Complete Application: ShowString.” In this chapter, you learn
how to get the most out of toolbars and status bars.

Working with Toolbars
The buttons on a toolbar correspond to commands, just as the items on a menu do. Although
you can add a toolbar to your application with AppWizard, you still need to use a little program-
ming polish to make things just right. This is because every application is different and
AppWizard can create only the most generally useful toolbar for most applications. When you
create your own toolbars, you will probably want to add or delete buttons to support your
application’s unique command set.

For example, when you create a standard AppWizard application with a toolbar, AppWizard
creates the toolbar shown in Figure 9.1. This toolbar provides buttons for the commonly used
commands in the File and Edit menus, as well as a button for displaying the About dialog box.
What if your application doesn’t support these commands? It’s up to you to modify the default
toolbar to fit your application.

FIG. 9.1
The default toolbar
provides buttons for
commonly used
commands.

Deleting Toolbar Buttons
Create a multiple document interface application with a toolbar by choosing File, New; select-
ing the Project tab; highlighting MFC AppWizard (exe); naming the application Tool; and
accepting the defaults in every dialog box. If you like, you can click the Finish button in step 1
to speed up the process. AppWizard provides a docking toolbar by default. Build and run the
application, and you should see a toolbar of your own, just like Figure 9.1.

Untitled-15 2/18/99, 3:06 PM186

187

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Before moving on, play with this toolbar a little. On the View menu, you can toggle whether the
toolbar is displayed. Turn it off and then on again. Now click and hold on the toolbar between
buttons and pull it down into the working area of your application. Let it go, and it’s a floating
palette. Drag it around and drop it at the bottom of the application or one of the sides—it will
dock against any side of the main window. Watch the tracking rectangle change shape to show
you it will dock if you drop it. Drag it back off again so that it’s floating and close it by clicking
the small x in the upper-right corner. Bring it back with the View menu and notice that it comes
back right where you left it. All this functionality is yours free from AppWizard and MFC.

The first step in modifying the toolbar is to delete buttons you no longer need. To do this, first
select the ResourceView tab to display your application’s resources by clicking on the + next to
Tool Resources. Click the + next to Toolbar and double-click the IDR_MAINFRAME toolbar re-
source to edit it, as shown in Figure 9.2. (The Graphics and Colors palettes, shown floating in
Figure 9.2, are docked by default. You can move them around by grabbing the wrinkles at the
top.)

ResourceView tab

FIG. 9.2
Use the toolbar editor
to customize your
application’s toolbar.

Toolbar being edited

Toolbar editor

ResourceView
window

After you have the toolbar editor on the screen, deleting buttons is as easy as dragging the
unwanted buttons from the toolbar. Place your mouse pointer on the button, hold down the left
mouse button, and drag the unwanted button away from the toolbar. When you release the
mouse button, the toolbar button disappears. In the Tool application, delete all the buttons
except the Help button with a yellow question mark. Figure 9.3 shows the edited toolbar with
only the Help button remaining. The single blank button template is only a starting point for
the next button you want to create. If you leave it blank, it doesn’t appear in the final toolbar.

Working with Toolbars

Untitled-15 2/18/99, 3:06 PM187

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

188 Chapter 9 Status Bars and Toolbars

Adding Buttons to a Toolbar
Adding buttons to a toolbar is a two-step process: First you draw the button’s icon, and then
you match the button with its command. To draw a new button, first click the blank button
template in the toolbar. The blank button appears enlarged in the edit window, as shown in
Figure 9.4.

FIG. 9.3
This edited toolbar has
only a single button left
(not counting the blank
button template).

Template for next
button to add

Single remaining
button

FIG. 9.4
Click the button
template to open it
in the button editor.

Button editor

Button template

Untitled-15 2/18/99, 3:06 PM188

189

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Suppose you want to create a toolbar button that draws a red circle in the application’s window.
Draw a red circle on the blank button with the Ellipse tool, and you’ve created the button’s
icon. Open the properties box and give the button an appropriate ID, such as ID_CIRCLE in this
case.

Now you need to define the button’s description and ToolTip. The description appears in the
application’s status bar. In this case, a description of “Draws a red circle in the window” might
be good. The ToolTip appears whenever the user leaves the mouse pointer over the button for
a second or two, acting as a reminder of the button’s purpose. A ToolTip of Circle would be
appropriate for the circle button. Type these two text strings into the Prompt box. The
description comes first, followed by the newline character (\n) and the ToolTip, as shown in
Figure 9.5.

FIG. 9.5
After drawing the
button, specify its
properties.

You’ve now defined a command ID for your new toolbar button. Usually, you use the command
ID of an existing menu item already connected to some code. In these cases, simply choose the
existing command ID from the drop-down box, and your work is done. The prompt is taken
from the properties of the menu item, and the message handler has already been arranged for
the menu item. You will already be handling the menu item, and that code will handle the
toolbar click, too. In this application, the toolbar button doesn’t mirror a menu item, so you will
associate the ID with a message-handler function that MFC automatically calls when the user
clicks the button.

To do this, follow these steps:

1. Make sure the button for which you want to create a message handler is selected in the
custom toolbar, and then open ClassWizard.

Working with Toolbars

Untitled-15 2/18/99, 3:06 PM189

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

190 Chapter 9 Status Bars and Toolbars

2. The MFC ClassWizard property sheet appears, with the button’s ID already selected
(see Figure 9.6). To add the message-response function, select in the Class Name box
the class to which you want to add the function (the sample application uses the view
class).

3. Double-click the COMMAND selection in the Messages box.

4. Accept the function name that MFC suggests in the next message box, and you’re all set.
Click OK to finalize your changes.

If you haven’t defined a message-response function for a toolbar button, or if there is no
instance of the class that catches the message, MFC disables the button when you run the

application. For example, if the message is caught by the document or view in an MDI application and
there is no open document, the button is disabled. The same is true for menu commands—in fact, for
all intents and purposes, toolbar buttons are menu commands. ■

N O T E

FIG. 9.6
You can use
ClassWizard to catch
messages from your
toolbar buttons.

Ordinarily, toolbar buttons duplicate menu commands, providing a quicker way for the user
to select commonly used commands in the menus. In that case, the menu item and the

toolbar button both represent the exact same command, and you give both the same ID. Then the
same message-response function is called, whether the user selects the command from the menu bar
or the toolbar. ■

If you compile and run the application now, you will see the window shown in Figure 9.7. In the
figure, you can see the new toolbar button, as well as its ToolTip and description line. The
toolbar looks sparse in this example, but you can add as many buttons as you like.

You can create as many buttons as you need; just follow the same procedure for each. After you
have created the buttons, you’re through with the toolbar resources and ready to write the
code that responds to the buttons. For example, in the previous example, a circle button was
added to the toolbar, and a message-response function, called OnCircle(), was added to the
program. MFC calls that message-response function whenever the user clicks the associated
button. However, right now, that function doesn’t do anything, as shown in Listing 9.1.

N O T E

Untitled-15 2/18/99, 3:07 PM190

191

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Listing 9.1 An Empty Message-Response Function

void CToolView::OnCircle()
{
 // TODO: Add your command handler code here

}

Although the circle button is supposed to draw a red circle in the window, you can see that the
OnCircle() function is going to need a little help accomplishing that task. Add the lines shown
in Listing 9.2 to the function so that the circle button will do what it’s supposed to do, as shown
in Figure 9.8. This drawing code makes a brush, selects it into the DC, draws an ellipse with it,
and then restores the old brush. The details of drawing are discussed in Chapter 5, “Drawing
on the Screen.”

Listing 9.2 CToolView::OnCircle()

void CToolView::OnCircle()
{
 CClientDC clientDC(this);
 CBrush newBrush(RGB(255,0,0));
 CBrush* oldBrush = clientDC.SelectObject(&newBrush);
 clientDC.Ellipse(20, 20, 200, 200);
 clientDC.SelectObject(oldBrush);
}

The CToolBar Class’s Member Functions
In most cases, after you have created your toolbar resource and associated its buttons with the
appropriate command IDs, you don’t need to bother any more with the toolbar. The code gen-
erated by AppWizard creates the toolbar for you, and MFC takes care of calling the buttons’

FIG. 9.7
The new toolbar button
shows its ToolTip and
description.

Working with Toolbars

Untitled-15 2/18/99, 3:07 PM191

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

192 Chapter 9 Status Bars and Toolbars

response functions for you. However, at times you might want to change the toolbar’s default
behavior or appearance in some way. In those cases, you can call on the CToolBar class’s mem-
ber functions, which are listed in Table 9.1 along with their descriptions. The toolbar is acces-
sible from the CMainFrame class as the m_wndToolBar member variable. Usually, you change the
toolbar behavior in CMainFrame::OnCreate().

FIG. 9.8
After adding code to
OnCircle(), the new
toolbar button actually
does something.

Table 9.1 Member Functions of the CToolBar Class

Function Description

CommandToIndex() Obtains the index of a button, given its ID

Create() Creates the toolbar

GetButtonInfo() Obtains information about a button

GetButtonStyle() Obtains a button’s style

GetButtonText() Obtains a button’s text label

GetItemID() Obtains the ID of a button, given its index

GetItemRect() Obtains an item’s display rectangle, given its index

GetToolBarCtrl() Obtains a reference to the CToolBarCtrl object represented by
the CToolBar object

LoadBitmap() Loads the toolbar’s button images

LoadToolBar() Loads a toolbar resource

Untitled-15 2/18/99, 3:07 PM192

193

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Function Description

SetBitmap() Sets a new toolbar button bitmap

SetButtonInfo() Sets a button’s ID, style, and image number

SetButtons() Sets the IDs for the toolbar buttons

SetButtonStyle() Sets a button’s style

SetButtonText() Sets a button’s text label

SetHeight() Sets the toolbar’s height

SetSizes() Sets the button sizes

Normally, you don’t need to call the toolbar’s methods, but you can achieve some unusual
results when you do, such as the extra high toolbar shown in Figure 9.9. (The buttons are the
same size, but the toolbar window is bigger.) This toolbar resulted from a call to the toolbar
object’s SetHeight() member function. The CToolBar class’s member functions enable you to
perform this sort of toolbar trickery, but use them with great caution.

FIG. 9.9
You can use a toolbar
object’s member
functions to change
how the toolbar looks
and acts.

Working with Status Bars
Status bars are mostly benign objects that sit at the bottom of your application’s window, doing
whatever MFC instructs them to do. This consists of displaying command descriptions and the
status of various keys on the keyboard, including the Caps Lock and Scroll Lock keys. In fact,
status bars are so mundane from the programmer’s point of view (at least they are in an
AppWizard application) that they aren’t even represented by a resource that you can edit like a
toolbar. When you tell AppWizard to incorporate a status bar into your application, there’s not
much left for you to do.

Working with Status Bars

Untitled-15 2/18/99, 3:07 PM193

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

194 Chapter 9 Status Bars and Toolbars

Or is there? A status bar, just like a toolbar, must reflect the interface needs of your specific
application. For that reason, the CStatusBar class features a set of methods with which you can
customize the status bar’s appearance and operation. Table 9.2 lists the methods along with
brief descriptions.

Table 9.2 Methods of the CStatusBar Class

Method Description

CommandToIndex() Obtains an indicator’s index, given its ID

Create() Creates the status bar

GetItemID() Obtains an indicator’s ID, given its index

GetItemRect() Obtains an item’s display rectangle, given its index

GetPaneInfo() Obtains information about an indicator

GetPaneStyle() Obtains an indicator’s style

GetPaneText() Obtains an indicator’s text

GetStatusBarCtrl() Obtains a reference to the CStatusBarCtrl object represented
by the CStatusBar object

SetIndicators() Sets the indicators’ IDs

SetPaneInfo() Sets the indicators’ IDs, widths, and styles

SetPaneStyle() Sets an indicator’s style

SetPaneText() Sets an indicator’s text

When you create a status bar as part of an AppWizard application, you see a window similar to
that shown in Figure 9.10. (To make your own, create a project called Status and accept all the
defaults, as you did for the Tool application.) The status bar has several parts, called panes, that
display certain information about the status of the application and the system. These panes,
which are marked in Figure 9.10, include indicators for the Caps Lock, Num Lock, and Scroll
Lock keys, as well as a message area for showing status text and command descriptions. To
see a command description, place your mouse pointer over a button on the toolbar (see
Figure 9.11).

The most common way to customize a status bar is to add new panes. To add a pane to a status
bar, complete these steps:

1. Create a command ID for the new pane.

2. Create a default string for the pane.

3. Add the pane’s command ID to the status bar’s indicators array.

4. Create a command-update handler for the pane.

The following sections cover these steps in detail.

Untitled-15 2/18/99, 3:08 PM194

195

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Creating a New Command ID
This step is easy, thanks to Visual C++’s symbol browser. To add the command ID, start by
choosing View, Resource Symbols. When you do, you see the Resource Symbols dialog box
(see Figure 9.12), which displays the currently defined symbols for your application’s re-
sources. Click the New button, and the New Symbol dialog box appears. Type the new ID,
ID_MYNEWPANE, into the Name box (see Figure 9.13). Usually, you can accept the value that
MFC suggests for the ID.

Scroll Lock
indicator

FIG. 9.11
The message area is
mainly used for
command descriptions.

FIG. 9.10
The default MFC status
bar contains a number
of informative panes.

Message area
Caps Lock indicator

Num Lock indicator

ToolTip

Command description

Working with Status Bars

Untitled-15 2/18/99, 3:08 PM195

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

196 Chapter 9 Status Bars and Toolbars

Click the OK and Close buttons to finalize your selections, and your new command ID is
defined.

Creating the Default String
You have now defined a resource ID, but it isn’t being used. To represent a status bar pane, the
ID must have a default string defined for it. To define the string, first go to the ResourceView
window (by clicking the ResourceView tab in the workspace pane) and double-click the String
Table resource to open it in the string table editor, as shown in Figure 9.14.

Now, choose Insert, New String to open the String Properties dialog box. Type the new pane’s
command ID ID_MYNEWPANE into the ID box (or choose it from the drop-down list) and the
default string (Default string in this case) into the Caption box (see Figure 9.15).

Adding the ID to the Indicators Array
When MFC constructs your status bar, it uses an array of IDs to determine which panes to
display and where to display them. This array of IDs is passed as an argument to the status
bar’s SetIndicators() member function, which is called in the CMainFrame class’s OnCreate()
function. You find this array of IDs, shown in Listing 9.3, near the top of the MainFrm.cpp file.
One way to reach these lines in the source code editor is to switch to ClassView, expand
CMainFrame, double-click OnCreate(), and scroll up one page. Alternatively, you could use
FileView to open MainFrm.cpp and scroll down to this code.

FIG. 9.12
Use the Resource
Symbols dialog box to
add new command IDs
to your application.

FIG. 9.13
Type the new ID’s name
and value into the New
Symbol dialog box.

Untitled-15 2/18/99, 3:08 PM196

197

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Listing 9.3 MainFrm.cpp—The Indicator Array

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

To add your new pane to the array, type the pane’s ID into the array at the position in which
you want it to appear in the status bar, followed by a comma. (The first pane, ID_SEPARATOR,
should always remain in the first position.) Listing 9.4 shows the indicator array with the new
pane added.

FIG. 9.14
Define the new pane’s
default string in the
string table.

String table editor

ResourceView tab

ResourceView window

Double-click here to
open the string table
editor

FIG. 9.15
Use the String
Properties dialog box to
define the new pane’s
default string.

Working with Status Bars

Untitled-15 2/18/99, 3:08 PM197

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

198 Chapter 9 Status Bars and Toolbars

Listing 9.4 MainFrm.cpp—The Expanded Indicator Array

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_MYNEWPANE,
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

Creating the Pane’s Command-Update Handler
MFC doesn’t automatically enable new panes when it creates the status bar. Instead, you must
create a command-update handler for the new pane and enable the pane yourself. (You first
learned about command-update handlers in Chapter 4, “Messages and Commands.”) Also, for
most applications, the string displayed in the pane is calculated on-the-fly—the default string
you defined in an earlier step is only a placeholder.

Normally, you use ClassWizard to arrange for messages to be caught, but ClassWizard doesn’t
help you catch status bar messages. You must add the handler entries to the message map
yourself and then add the code for the handler. You add entries to the message map in the
header file and the map in the source file, and you add them outside the special AFX_MSG_MAP
comments used by ClassWizard.

Double-click CMainFrame in ClassView to open the header file, and scroll to the bottom. Edit
the message map so that it resembles Listing 9.5. When you write your own applications, you
will use a variety of function names to update status bar panes, but the rest of the declaration
will always be the same.

Listing 9.5 MainFrm.h—Message Map

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 afx_msg void OnUpdateMyNewPane(CCmdUI *pCmdUI);
 DECLARE_MESSAGE_MAP()

Next, you add the handler to the source message map to associate the command ID with the
handler. Open any CMainFrame function and scroll upwards until you find the message map;
then edit it so that it looks like Listing 9.6.

Untitled-15 2/18/99, 3:09 PM198

199

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

Listing 9.6 MainFrm.cpp—Message Map

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
 ON_UPDATE_COMMAND_UI(ID_MYNEWPANE, OnUpdateMyNewPane)
END_MESSAGE_MAP()

You have now arranged for the CMainFrame member function OnUpdateMyNewPane() to be
called whenever the status bar pane ID_MYNEWPANE needs to be updated.

Now you’re ready to write the new command-update handler. In the handler, you will enable
the new pane and set its contents. Listing 9.7 shows the command-update handler for the new
pane; add this code to mainfrm.cpp. As you can see, it uses a member variable called
m_paneString. Update handlers should be very quick—the job of making sure that
m_paneString holds the right string should be tackled in a function that is called less often.

Command update handlers are discussed in Chapter 3, “Messages and Commands,” in the “Under-
standing Command Updates” section. They have to be quick because the system calls them whenever
it refreshes the display.

Listing 9.7 CMainFrame::OnUpdateMyNewPane()

void CMainFrame::OnUpdateMyNewPane(CCmdUI *pCmdUI)
{
 pCmdUI->Enable();
 pCmdUI->SetText(m_paneString);
}

Setting the Status Bar’s Appearance
To add the last touch to your status bar demonstration application, you will want a way to set
m_paneString. To initialize it, double-click on the CMainFrame constructor to edit it, and add
this line:

 m_paneString = “Default string”;

The value you entered in the string table is only to assure Visual Studio that the resource ID
you created is in use. Right-click CMainFrame in ClassView and choose Add Member Variable to
add m_paneString as a private member variable. The type should be CString.

T I P

Working with Status Bars

Untitled-15 2/18/99, 3:09 PM199

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

200 Chapter 9 Status Bars and Toolbars

To set up the status bar for the first time, add these lines to CMainFrame::OnCreate(), just
before the return statement:

 CClientDC dc(this);
 SIZE size = dc.GetTextExtent(m_paneString);
 int index = m_wndStatusBar.CommandToIndex(ID_MYNEWPANE);
 m_wndStatusBar.SetPaneInfo(index,ID_MYNEWPANE, SBPS_POPOUT, size.cx);

These lines set the text string and the size of the pane. You set the size of the pane with a call to
SetPaneInfo(), which needs the index of the pane and the new size. CommandToIndex() ob-
tains the index of the pane, and GetTextExtent() obtains the size. As a nice touch, the call to
SetPaneInfo() uses the SBPS_POPOUT style to create a pane that seems to stick out from the
status bar, rather than be indented.

The user will change the string by making a menu selection. Open the IDR_STATUSTYPE menu
in the resource editor and add a Change String item to the File menu. (Working with menus is
discussed for the first time in Chapter 8.) Let Developer Studio assign it the resource ID
ID_FILE_CHANGESTRING.

Open ClassWizard and add a handler for this command; it should be caught by CMainFrame
because that’s where the m_paneString variable is kept. ClassWizard offers to call the handler
OnFileChangestring(), and you should accept this name. Click OK twice to close
ClassWizard.

Insert a new dialog box into the application and call it IDD_PANEDLG. The title should be
Change Pane String. Add a single edit box, stretched the full width of the dialog box, and
leave the ID as IDC_EDIT1. Add a static text item just above the edit box with the caption New
String:. With the dialog box open in the resource editor, open ClassWizard. Create a new class
for the dialog box called CPaneDlg, and associate the edit control, IDC_EDIT1, with a CString
member variable of the dialog class called m_paneString.

Adding dialog boxes to applications and associating them with classes are discussed in more depth in
several earlier chapters, including Chapters 2 and 8.

Switch to ClassView, expand CMainFrame, and double-click OnFileChangeString() to edit it.
Add the code shown in Listing 9.8.

Listing 9.8 CMainFrame::OnFileChangestring()

void CMainFrame::OnFileChangestring()
{
 CPaneDlg dialog(this);
 dialog.m_paneString = m_paneString;

 int result = dialog.DoModal();

 if (result == IDOK)
 {

T I P

Untitled-15 2/18/99, 3:09 PM200

201

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

 m_paneString = dialog.m_paneString;
 CClientDC dc(this);
 SIZE size = dc.GetTextExtent(m_paneString);
 int index = m_wndStatusBar.CommandToIndex(ID_MYNEWPANE);
 m_wndStatusBar.SetPaneInfo(index,
 ID_MYNEWPANE, SBPS_POPOUT, size.cx);
 }
}

This code displays the dialog box, and, if the user exits the dialog box by clicking OK, changes
the text string and resets the size of the pane. The code is very similar to the lines you added to
OnCreate(). Scroll up to the top of MainFrm.cpp and add this line:

#include “panedlg.h”

This tells the compiler what the CPaneDlg class is. Build and run the Status application, and you
should see the window shown in Figure 9.16. As you can see, the status bar contains an extra
panel displaying the text Default string. If you choose File, Change String, a dialog box
appears into which you can type a new string for the panel. When you exit the dialog box via
the OK button, the text appears in the new panel, and the panel resizes itself to accommodate
the new string (see Figure 9.17).

FIG. 9.16
The Status Bar Demo
application shows how
to add and manage a
status bar panel.

Working with Rebars
Rebars are toolbars that contain controls other than toolbar buttons. It was possible to add
other controls to normal toolbars in the past, but difficult. With rebars, it’s simple.

Start by using AppWizard to make a project call ReBar. Accept all the defaults on each step, or
click Finish on step 1 to speed the process a little. When the project is generated, double-click
CMainFrame in ClassView to edit the header file. This frame holds the open documents and is

Working with Rebars

Untitled-15 2/18/99, 3:09 PM201

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

202 Chapter 9 Status Bars and Toolbars

where a classic toolbar goes. The rebar for this sample will go here, too. Add the rebar as a
public member variable:

CReBar m_rebar;

FIG. 9.17
The panel resizes itself
to fit the new string.

In this sample application, you will add a check box to the bar—you can add any kind of control
at all. A check box, a radio button, and a command button (like the OK or Cancel button on a
dialog) are all represented by the CButton class, with slightly different styles. Add the check
box to the header file right after the rebar, like this:

CButton m_check;

You saw in the previous section that an application’s toolbar is created and initialized in the
OnCreate() function of the mainframe class. The same is true for rebars. Expand CMainFrame
in ClassView, and double-click OnCreate() to edit it. Add these lines just before the final
return statement:

 if (!m_rebar.Create(this))
 {
 TRACE0(“Failed to create rebar\n”);
 return -1; // fail to create
 }

The check box control will need a resource ID. When you create a control with the dialog
editor, the name you give the control is automatically associated with a number. This control
will be created in code, so you will have to specify the resource ID yourself, as you did for the
new pane in the status bar earlier in this chapter. Choose View, Resource Symbols and click the
New button. Type the name IDC_CHECK and accept the number suggested. This adds a line to
resource.h, defining IDC_CHECK, and assures you that other controls will not reuse this re-
source ID.

Back in CMainFrame::OnCreate(), add these lines to create the check box (note the styles
carefully):

 if (!m_check.Create(“Check Here”,
 WS_CHILD|WS_VISIBLE|BS_AUTOCHECKBOX,

Untitled-15 2/18/99, 3:10 PM202

203

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

9

III
Part

Ch

 CRect(0,0,20,20), this, IDC_CHECK))
 {
 TRACE0(“Failed to create checkbox\n”);
 return -1; // fail to create
 }

Finally, add this line to add a band containing the check box control to the rebar:

 m_rebar.AddBar(&m_check, “On The Bar”, NULL,
 RBBS_BREAK | RBBS_GRIPPERALWAYS);

AddBar() takes four parameters: a pointer to the control that will be added, some text to put
next to it, a pointer to a bitmap to use for the background image on the rebar, and a rebar style,
made by combining any of these style flags:

■ RBBS_BREAK puts the band on a new line, even if there’s room for it at the end of an
existing line.

■ RBBS_CHILDEDGE puts the band against a child window of the frame.

■ RBBS_FIXEDBMP prevents moving the bitmap if the band is resized by the user.

■ RBBS_FIXEDSIZE prevents the user from resizing the band.

■ RBBS_GRIPPERALWAYS guarantees sizing wrinkles are present.

■ RBBS_HIDDEN hides the band.

■ RBBS_NOGRIPPER suppresses sizing wrinkles.

■ RBBS_NOVERT hides the band when the rebar is vertical.

■ RBBS_VARIABLEHEIGHT enables the band to be resized by the rebar.

At this point, you can build the project and run it. You should see your rebar, as in Figure 9.18.
The check box works in that you can select and deselect it, but nothing happens when you do.

FIG. 9.18
The rebar contains a
check box.

To react when the user clicks the button, you need to catch the message and do something
based on the message. The simplest thing to do is change what is drawn in the view’s
OnDraw(), so the view should catch the message. Double click CRebarView in ClassView to edit

Working with Rebars

Untitled-15 2/18/99, 3:10 PM203

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH09 LP#3

204 Chapter 9 Status Bars and Toolbars

the header file, and scroll to the message map. Between the closing AFX_MSG and the
DECLARE_MESSAGE_MAP, add this line:

afx_msg void OnClick();

Expand CRebarView in ClassView and double-click OnDraw(), which you will edit in a moment.
After it, add this function:

void CRebarView::OnClick()
{
 Invalidate();
}

This causes the view to redraw whenever the user selects or deselects the check box. Scroll up
in the file until you find the message map, and add (after the three entries related to printing)
this line:

 ON_BN_CLICKED(IDC_CHECK, OnClick)

At the top of the file, after the other include statements, add this one:

#include “mainFrm.h”

Now add these lines to OnDraw() in place of the TODO comment:

 CString message;
 if (((CMainFrame*)(AfxGetApp()->m_pMainWnd))->m_check.GetCheck())
 message = “The box is checked”;
 else
 message = “The box is not checked”;
 pDC->TextOut(20,20,message);

The if statement obtains a pointer to the main window, casts it to a CMainFrame*, and asks the
check box whether it is selected. Then the message is set appropriately.

Build the project and run it. As you select and deselect the check box, you should see the
message change, as in Figure 9.19.

FIG. 9.19
Clicking the check box
changes the view.

Untitled-15 2/18/99, 3:10 PM204

205

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

C H A P T E R

Common Controls

10

In this chapter

The Progress Bar Control 208

The Slider Control 210

The Up-Down Control 213

The Image List Control 214

The List View Control 217

The Tree View Control 227

The Rich Edit Control 233

IP Address Control 238

The Date Picker Control 238

Month Calendar Control 240

Scrolling the View 240

Untitled-16 2/18/99, 3:13 PM205

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

206 Chapter 10 Common Controls

As a Windows user, you’re accustomed to seeing controls such as buttons, list boxes, menus,
and edit boxes. As Windows developed, however, Microsoft noticed that developers routinely
create other types of controls in their programs: toolbars, status bars, progress bars, tree
views, and others. To make life easier for Windows programmers, Microsoft included these
popular controls as part of the operating environment of Windows 95 (as well as later versions
of Windows NT and then Windows 98). Now Windows programmers no longer need to create
from scratch their own versions of these controls. This chapter introduces you to many of the
32-bit Windows common controls. The toolbar and status bar controls are covered in Chapter
9, “Status Bars and Toolbars,” and property sheets are covered in Chapter 12, “Property Pages
and Sheets.”

This chapter’s sample program is called Common. It demonstrates nine of the Windows 95
common controls: the progress bar, slider, up-down, list view, tree view, rich edit, IP address,
date picker, and month calendar controls, all of which are shown in Figure 10.1. In the follow-
ing sections, you learn the basics of creating and using these controls in your own applications.

To make Common, create a new project with AppWizard and name it Common. Choose a
single-document interface (SDI) application in Step 1 and accept all the defaults until Step 6.
Drop down the Base Class box and choose CScrollView from the list. This ensures that users
can see all the controls in the view, even if they have to scroll to do so. Click Finish and then
OK to complete the process.

The controls themselves are declared as data members of the view class. Double-click
CCommonView in ClassView to edit the header file and add the lines in Listing 10.1 in the At-
tributes section. As you can see, the progress bar is an object of the CProgressCtrl class. It’s
discussed in the next section, and the other controls are discussed in later sections of this
chapter.

FIG. 10.1
The Common sample
application demon-
strates nine Windows 95
common controls.

Untitled-16 2/18/99, 3:13 PM206

207

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Listing 10.1 CommonView.h—Declaring the Controls

protected:
 //Progress Bar
 CProgressCtrl m_progressBar;

 //Trackbar or Slider
 CSliderCtrl m_trackbar;
 BOOL m_timer;

 // Up-Down or Spinner
 CSpinButtonCtrl m_upDown;
 CEdit m_buddyEdit;

 // List View
 CListCtrl m_listView;
 CImageList m_smallImageList;
 CImageList m_largeImageList;
 CButton m_smallButton;
 CButton m_largeButton;
 CButton m_listButton;
 CButton m_reportButton;

 // Tree View
 CTreeCtrl m_treeView;
 CImageList m_treeImageList;

 // Rich Edit
 CRichEditCtrl m_richEdit;
 CButton m_boldButton;
 CButton m_leftButton;
 CButton m_centerButton;
 CButton m_rightButton;
 // IP Address
 CIPAddressCtrl m_ipaddress;
 // Date Picker
 CDateTimeCtrl m_date;
 // Month Calendar
 CMonthCalCtrl m_month;

Expand the CCommonView class. Double-click CCommonView::OnDraw() in ClassView and replace
the TODO comment with these lines:

pDC->TextOut(20, 22, “Progress Bar Control”);
pDC->TextOut(270, 22, “Trackbar Control:”);
pDC->TextOut(20, 102, “Up-Down Control”);
pDC->TextOut(160, 102, “List View Control”);
pDC->TextOut(20, 240, “Tree View Control”);
pDC->TextOut(180, 240, “Rich Edit Control”);
pDC->TextOut(470, 22, “IP Address Control”);
pDC->TextOut(470, 102, “Date Picker Control”);
pDC->TextOut(470, 240, “Month Calendar Control”);

These label the controls that you will add to CCommonView in this chapter.

Common Controls

Untitled-16 2/18/99, 3:13 PM207

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

208 Chapter 10 Common Controls

The Progress Bar Control
The common control that’s probably easiest to use is the progress bar, which is nothing more
than a rectangle that slowly fills in with colored blocks. The more colored blocks that are filled
in, the closer the task is to being complete. When the progress bar is completely filled in, the
task associated with the progress bar is also complete. You might use a progress bar to show
the status of a sorting operation or to give the user visual feedback about a large file that’s
being loaded.

Creating the Progress Bar
Before you can use a progress bar, you must create it. Often in an MFC program, the controls
are created as part of a dialog box. However, Common displays its controls in the application’s
main window, the view of this single-document interface (SDI) application. Documents and
views are introduced in Chapter 4, “Documents and Views.” All the controls are created in the
view class OnCreate() function, which responds to the WM_CREATE Windows message. To set up
this function, right-click CCommonView in ClassView and choose Add Windows Message Han-
dler. Choose WM_CREATE from the list on the left and click Add and Edit. Add this line in place of
the TODO comment:

CreateProgressBar();

Right-click CCommonView in ClassView again and this time choose Add Member Function. Enter
void for the Function Type and enter CreateProgressBar() for the Function Declaration.
Leave the access as Public. Click OK to add the function; then add the code in
Listing 10.2.

Listing 10.2 CommonView.cpp—CCommonView::CreateProgressBar()

void CCommonView::CreateProgressBar()
{
 m_progressBar.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
 CRect(20, 40, 250, 80), this, IDC_PROGRESSBAR);

 m_progressBar.SetRange(1, 100);
 m_progressBar.SetStep(10);
 m_progressBar.SetPos(50);
 m_timer = FALSE;

}

CreateProgressBar() first creates the progress bar control by calling the control’s Create()
function. This function’s four arguments are the control’s style flags, the control’s size (as a
CRect object), a pointer to the control’s parent window, and the control’s ID. The resource ID,
IDC_PROGRESSBAR, is added by hand. To add resource symbols to your own applications, choose
View, Resource Symbols and click the New button. Type in a resource ID Name, such as
IDC_PROGRESSBAR, and accept the default Value Visual Studio provides.

Untitled-16 2/18/99, 3:13 PM208

209

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

The style constants are the same constants that you use for creating any type of window (a
control is nothing more than a special kind of window, after all). In this case, you need at least
the following:

■ WS_CHILD Indicates that the control is a child window

■ WS_VISIBLE Ensures that the user can see the control

The WS_BORDER is a nice addition because it adds a dark border around the control, setting it off
from the rest of the window.

Initializing the Progress Bar
To initialize the control, CCommonView::CreateProgressBar() calls SetRange(), SetStep(),
and SetPos(). Because the range and the step rate are related, a control with a range of 1–10
and a step rate of 1 works almost identically to a control with a range of 1–100 and a step rate
of 10.

When this sample application starts, the progress bar is already half filled with colored blocks.
(This is purely for aesthetic reasons. Usually a progress bar begins its life empty.) It’s half full
because CreateProgressBar() calls SetPos() with the value of 50, which is the midpoint of the
control’s range.

Manipulating the Progress Bar
Normally you update a progress bar as a long task moves toward completion. In this sample,
you will fake it by using a timer. When the user clicks in the background of the view, start a
timer that generates WM_TIMER messages periodically. Catch these messages and advance the
progress bar. Here’s what to do:

1. Open ClassWizard. Make sure that CCommonView is selected in the upper-right drop-
down box.

2. Scroll most of the way through the list box on the right until you find WM_LBUTTONDOWN,
the message generated when the user clicks on the view. Select it.

3. Click Add Function; then click Edit Code.

4. Edit OnLButtonDown() so that it looks like this:
void CCommonView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_timer)
 {
 KillTimer(1);
 m_timer = FALSE;
 }
 else
 {
 SetTimer(1, 500, NULL);
 m_timer = TRUE;
 }

 CView::OnLButtonDown(nFlags, point);
}

The Progress Bar Control

Untitled-16 2/18/99, 3:14 PM209

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

210 Chapter 10 Common Controls

This code enables users to turn the timer on or off with a click. The parameter of 500 in the
SetTimer call is the number of milliseconds between WM_TIMER messages: This timer will send
a message twice a second.

5. In case a timer is still going when the view closes, you should override OnDestroy() to
kill the timer. Right-click CCommonView in ClassView yet again and choose Add Windows
Message Handler. Select WM_DESTROY and click Add and Edit. Replace the TODO comment
with this line:
KillTimer(1);

6. Now, catch the timer messages. Open ClassWizard and, as before, scroll through the list
of messages in the far right list box. WM_TIMER is the second-to-last message in the
alphabetic list, so drag the elevator all the way to the bottom and select WM_TIMER. Click
Add Function and then click Edit Code. Replace the TODO comment with this line:
m_progressBar.StepIt();

The StepIt() function increments the progress bar control’s value by the step rate, causing
new blocks to be displayed in the control as the control’s value setting counts upward. When
the control reaches its maximum, it automatically starts over.

Notice that no CProgressCtrl member functions control the size or number of blocks
that will fit into the control. These attributes are indirectly controlled by the size of the

control. ■

Build Common and execute it to see the progress bar in action. Be sure to try stopping the
timer as well as starting it.

The Slider Control
Many times in a program you might need the user to enter a value within a specific range. For
this sort of task, you use MFC’s CSliderCtrl class to create a slider (also called trackbar)
control. For example, suppose you need the user to enter a percentage. In this case, you want
the user to enter values only in the range of 0–100. Other values would be invalid and could
cause problems in your program.

By using the slider control, you can force the user to enter a value in the specified range. Al-
though the user can accidentally enter a wrong value (a value that doesn’t accomplish what the
user wants to do), there is no way to enter an invalid value (one that brings your program
crashing down like a stone wall in an earthquake).

For a percentage, you create a slider control with a minimum value of 0 and a maximum value
of 100. Moreover, to make the control easier to position, you might want to place tick marks at
each setting that’s a multiple of 10, providing 11 tick marks in all (including the one at 0). Com-
mon creates exactly this type of slider.

To use a slider, the user clicks the slider’s slot. This moves the slider forward or backward, and
often the selected value appears near the control. When a slider has the focus, the user can also
control it with the Up and Down arrow keys and the Page Up and Page Down keys.

N O T E

Untitled-16 2/18/99, 3:14 PM210

211

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Creating the Trackbar
You are going to need a resource symbol for the trackbar control, so just as you did for the
progress bar, choose View, Resource Symbols and click New. Enter IDC_TRACKBAR for the
resource ID Name and accept the suggested Value. In CCommonView::OnCreate(), add a call to
CreateTrackbar(). Then add the new member function as you added CreateProgressBar()
and type in the code in Listing 10.3.

Listing 10.3 CommonView.cpp—CCommonView::CreateTrackBar()

void CCommonView::CreateTrackbar()
{
 m_trackbar.Create(WS_CHILD | WS_VISIBLE | WS_BORDER |
 TBS_AUTOTICKS | TBS_BOTH | TBS_HORZ,
 CRect(270, 40, 450, 80), this, IDC_TRACKBAR);
 m_trackbar.SetRange(0, 100, TRUE);
 m_trackbar.SetTicFreq(10);
 m_trackbar.SetLineSize(1);
 m_trackbar.SetPageSize(10);
}

As with the progress bar, the first step is to create the slider control by calling its Create()
member function. This function’s four arguments are the control’s style flags, the control’s size
(as a CRect object), a pointer to the control’s parent window, and the control’s ID. The style
constants include the same constants that you would use for creating any type of window, with
the addition of special styles used with sliders. Table 10.1 lists these special styles.

Table 10.1 Slider Styles

Style Description

TBS_AUTOTICKS Enables the slider to automatically draw its tick marks

TBS_BOTH Draws tick marks on both sides of the slider

TBS_BOTTOM Draws tick marks on the bottom of a horizontal slider

TBS_ENABLESELRANGE Enables a slider to display a subrange of values

TBS_HORZ Draws the slider horizontally

TBS_LEFT Draws tick marks on the left side of a vertical slider

TBS_NOTICKS Draws a slider with no tick marks

TBS_RIGHT Draws tick marks on the right side of a vertical slider

TBS_TOP Draws tick marks on the top of a horizontal slider

TBS_VERT Draws a vertical slider

The Slider Control

Untitled-16 2/18/99, 3:14 PM211

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

212 Chapter 10 Common Controls

Initializing the Trackbar
Usually, when you create a slider control, you want to set the control’s range and tick fre-
quency. If the user is going to use the control from the keyboard, you also need to set the
control’s line and page size. In Common, the program initializes the trackbar with calls to
SetRange(), SetTicFreq(), SetLineSize(), and SetPageSize(), as you saw in Listing 10.3.
The call to SetRange() sets the trackbar’s minimum and maximum values to 0 and 100. The
arguments are the minimum value, the maximum value, and a Boolean value indicating
whether the slider should redraw itself after setting the range. Notice that the tick frequency
and page size are then set to be the same. This isn’t absolutely required, but it’s a very good
idea. Most people assume that the tick marks indicate the size of a page, and you will confuse
your users if the tick marks are more or less than a page apart.

A number of other functions can change the size of your slider, the size of the thumb, the cur-
rent selection, and more. You can find all the details in the online documentation.

Manipulating the Slider
A slider is really just a special scrollbar control. When the user moves the slider, the control
generates WM_HSCROLL messages, which you will arrange to catch. Open ClassWizard, select
the Message Maps tab, make sure CCommonView is selected in the upper-right box, and find
WM_HSCROLL in the list on the right. Select it, click Add Function, and then click Edit Code. Type
in the code in Listing 10.4.

Listing 10.4 CommonView.cpp—CCommonView::OnHScroll()

void CCommonView::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
 CSliderCtrl* slider = (CSliderCtrl*)pScrollBar;
 int position = slider->GetPos();
 char s[10];
 wsprintf(s, “%d “, position);
 CClientDC clientDC(this);
 clientDC.TextOut(390, 22, s);
 CScrollView::OnHScroll(nSBCode, nPos, pScrollBar);
}

Looking at this code, you see that the control itself doesn’t display the current position as a
number nearby; it’s the OnHScroll() function that displays the number. Here’s how it works:

1. OnHScroll()’s fourth parameter is a pointer to the scroll object that generated the
WM_HSCROLL message.

2. The function first casts this pointer to a CSliderCtrl pointer; then it gets the current
position of the trackbar’s slider by calling the CSliderCtrl member function GetPos().

3. After the program has the slider’s position, it converts the integer to a string and displays
that string in the window with TextOut().

Untitled-16 2/18/99, 3:15 PM212

213

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

To learn how to make text appear onscreen, refer to Chapter 5, “Drawing on the Screen.”
Before moving on to the next control, build Common and test it. Click around on the slider
and watch the number change.

If you have Windows set to Large Fonts (perhaps because you have a high screen resolution), the
current slider value might not be displayed in quite the right place because the string “Trackbar
Control” takes up more space on the screen with large fonts. If this happens, simply change the
TextOut call to write the current slider value a little farther to the right.

The Up-Down Control
The trackbar control isn’t the only way you can get a value in a predetermined range from the
user. If you don’t need the trackbar for visual feedback, you can use an up-down control, which
is little more than a couple of arrows that the user clicks to increase or decrease the control’s
setting. Typically, an edit control next to the up-down control, called a buddy edit control or just
a buddy control, displays the value to the user.

In the Common application, you can change the setting of the up-down control by clicking
either of its arrows. When you do, the value in the attached edit box changes, indicating the up-
down control’s current setting. After the control has the focus, you can also change its value by
pressing your keyboard’s Up and Down arrow keys.

Creating the Up-Down Control
Add another call to CCommonView::OnCreate(), this time calling it CreateUpDownCtrl(). Add
the member function and the code in Listing 10.5. Also add resource symbols for
IDC_BUDDYEDIT and IDC_UPDOWN.

Listing 10.5 CommonView.cpp—CCommonView::CreateUpDownCtrl()

void CCommonView::CreateUpDownCtrl()
{
 m_buddyEdit.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
 CRect(50, 120, 110, 160), this, IDC_BUDDYEDIT);
 m_upDown.Create(WS_CHILD | WS_VISIBLE | WS_BORDER |
 UDS_ALIGNRIGHT | UDS_SETBUDDYINT | UDS_ARROWKEYS,
 CRect(0, 0, 0, 0), this, IDC_UPDOWN);
 m_upDown.SetBuddy(&m_buddyEdit);
 m_upDown.SetRange(1, 100);
 m_upDown.SetPos(50);
}

The program creates the up-down control by first creating the associated buddy control to
which the up-down control communicates its current value. In most cases, including this
one, the buddy control is an edit box, created by calling the CEdit class’s Create() member

T I P

The Up-Down Control

Untitled-16 2/18/99, 3:15 PM213

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

214 Chapter 10 Common Controls

function. This function’s four arguments are the control’s style flags, the control’s size, a
pointer to the control’s parent window, and the control’s ID. If you recall the control declara-
tions, m_buddyEdit is an object of the CEdit class.

Now that the program has created the buddy control, it can create the up-down control in
much the same way, by calling the object’s Create() member function. As you can probably
guess by now, this function’s four arguments are the control’s style flags, the control’s size, a
pointer to the control’s parent window, and the control’s ID. As with most controls, the style
constants include the same constants that you use for creating any type of window. The
CSpinButtonCtrl class, of which m_upDown is an object, however, defines special styles to be
used with up-down controls. Table 10.2 lists these special styles.

Table 10.2 Up-Down Control Styles

Styles Description

UDS_ALIGNLEFT Places the up-down control on the left edge of the buddy control

UDS_ALIGNRIGHT Places the up-down control on the right edge of the buddy control

UDS_ARROWKEYS Enables the user to change the control’s values by using the
keyboard’s Up and Down arrow keys

UDS_AUTOBUDDY Makes the previous window the buddy control

UDS_HORZ Creates a horizontal up-down control

UDS_NOTHOUSANDS Eliminates separators between each set of three digits

UDS_SETBUDDYINT Displays the control’s value in the buddy control

UDS_WRAP Causes the control’s value to wrap around to its minimum when
the maximum is reached, and vice versa

This chapter’s sample application establishes the up-down control with calls to SetBuddy(),
SetRange(), and SetPos(). Thanks to the UDS_SETBUDDYINT flag passed to Create() and the
call to the control’s SetBuddy() member function, Common doesn’t need to do anything else
for the control’s value to appear on the screen. The control automatically handles its buddy.
Try building and testing now.

You might want up-down controls that move faster or slower than in this sample or that use hex
numbers rather than base-10 numbers. Look at the member functions of this control in the
online documentation, and you will see how to do that.

The Image List Control
Often you need to use images that are related in some way. For example, your application
might have a toolbar with many command buttons, each of which uses a bitmap for its icon. In
a case like this, it would be great to have some sort of program object that could not only hold

Untitled-16 2/18/99, 3:15 PM214

215

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

the bitmaps but also organize them so that they can be accessed easily. That’s exactly what an
image list control does for you—it stores a list of related images. You can use the images any
way that you see fit in your program. Several common controls rely on image lists. These con-
trols include the following:

■ List view controls

■ Tree view controls

■ Property pages

■ Toolbars

You will undoubtedly come up with many other uses for image lists. You might, for example,
have an animation sequence that you’d like to display in a window. An image list is the perfect
storage place for the frames that make up an animation, because you can easily access any
frame just by using an index.

If the word index makes you think of arrays, you’re beginning to understand how an image list
stores images. An image list is very similar to an array that holds pictures rather than integers
or floating-point numbers. Just as with an array, you initialize each “element” of an image list
and thereafter can access any part of the “array” by using an index.

You won’t, however, see an image list control in your running application in the same way that
you can see a status bar or a progress bar control. This is because (again, similar to an array)
an image list is only a storage structure for pictures. You can display the images stored in an
image list, but you can’t display the image list itself. Figure 10.2 shows how an image list is
organized.

Picture 5Picture 4Picture 3Picture 2Picture 1

Creating the Image List
In the Common Controls App application, image lists are used with the list view and tree view
controls, so the image lists for the controls are created in the CreateListView() and
CreateTreeView() local member functions and are called from CCommonView::OnCreate(). Just
as with the other controls, add calls to these functions to OnCreate() and then add the func-
tions to the class. You will see the full code for those functions shortly, but because they are
long, this section presents the parts that are relevant to the image list.

A list view uses two image lists: one for small images and the other for large ones. The member
variables for these lists have already been added to the class, so start coding
CreateListView() with a call to each list’s Create() member function, like this:

m_smallImageList.Create(16, 16, FALSE, 1, 0);
m_largeImageList.Create(32, 32, FALSE, 1, 0);

FIG. 10.2
An image list is much
like an array of pictures.

The Image List Control

Untitled-16 2/18/99, 3:16 PM215

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

216 Chapter 10 Common Controls

The Create() function’s five arguments are

■ The width of the pictures in the control

■ The height of the pictures

■ A Boolean value indicating whether the images contain a mask

■ The number of images initially in the list

■ The number of images by which the list can dynamically grow

This last value is 0 to indicate that the list isn’t allowed to grow during runtime. The Create()
function is overloaded in the CImageList class so that you can create image lists in various
ways. You can find the other versions of Create() in your Visual C++ online documentation.

Initializing the Image List
After you create an image list, you will want to add images to it. After all, an empty image list
isn’t of much use. The easiest way to add the images is to include the images as part of your
application’s resource file and load them from there. Add these four lines to CreateListView()
to fill each list with images:

HICON hIcon = ::LoadIcon (AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDI_ICON1));
m_smallImageList.Add(hIcon);
hIcon = ::LoadIcon (AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDI_ICON2));
m_largeImageList.Add(hIcon);

Here the program first gets a handle to the icon. Then it adds the icon to the image list by
calling the image list’s Add() member function. (In this case, the list includes only one icon. In
other applications, you might have a list of large icons for folders, text files, and so on, as well
as another list of small icons for the same purposes.) To create the first icon, choose Insert,
Resource and double-click Icon. Then edit the new blank icon in the Resource Editor. (It will
automatically be called IDI_ICON1.) Click the New Device Image toolbar button next to the
drop-down box that says Standard (32×32) and choose Small (16×16) on the dialog that ap-
pears; click OK. You can spend a long time making a beautiful icon or just quickly fill in the
whole grid with black and then put a white circle on it with the Ellipse tool. Add another icon,
IDI_ICON2, and leave it as 32×32. Draw a similar symbol on this icon.

You can use many member functions to manipulate an object of the CImageList class, adjusting
colors, removing images, and much more. The online documentation provides more details on
these member functions.

You can write the first few lines of CreateTreeView() now. It uses one image list that starts
with three images. Here’s the code to add:

 m_treeImageList.Create(13, 13, FALSE, 3, 0);
 HICON hIcon = ::LoadIcon(AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDI_ICON3));
 m_treeImageList.Add(hIcon);
 hIcon = ::LoadIcon(AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDI_ICON4));

Untitled-16 2/18/99, 3:16 PM216

217

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

 m_treeImageList.Add(hIcon);
 hIcon = ::LoadIcon(AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDI_ICON5));
 m_treeImageList.Add(hIcon);

Create IDI_ICON3, IDI_ICON4, and IDI_ICON5 the same way you did the first two icons. All
three are 32×32. Draw circles as before. If you leave the background the same murky green
you started with, rather than fill it with black, the circles will appear on a transparent back-
ground—a nice effect.

The List View Control
A list view control simplifies the job of building an application that works with lists of objects
and organizes those objects in such a way that the program’s user can easily determine each
object’s attributes. For example, consider a group of files on a disk. Each file is a separate ob-
ject associated with a number of attributes, including the file’s name, size, and the most recent
modification date. When you explore a folder, you see files either as icons in a window or as a
table of entries, each entry showing the attributes associated with the files. You have full con-
trol over the way that the file objects are displayed, including which attributes are shown and
which are unlisted. The common controls include something called a list view control, so you
can organize lists in exactly the same way. If you’d like to see an example of a full-fledged list
view control, open the Windows Explorer (see Figure 10.3). The right side of the window
shows how the list view control can organize objects in a window. (The left side of the window
contains a tree view control, which you will learn about later in this chapter in the section titled
“The Tree View Control.”) In the figure, the list view is currently set to the report view, in
which each object in the list receives its own line, showing not only the object’s name but also
the attributes associated with that object.

FIG. 10.3
Windows Explorer uses
a list view control to
organize file informa-
tion.

The List View Control

Untitled-16 2/18/99, 3:16 PM217

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

218 Chapter 10 Common Controls

The user can change the way objects are organized in a list view control. Figure 10.4, for ex-
ample, shows the list view portion of the Explorer set to the large-icon setting, and Figure 10.5
shows the small-icon setting, which enables the user to see more objects (in this case, files) in
the window. With a list view control, the user can edit the names of objects in the list and in the
report view can sort objects, based on data displayed in a particular column.

FIG. 10.4
Here’s Explorer’s list
view control set to large
icons.

FIG. 10.5
Here’s Explorer’s list
view control set to small
icons.

Untitled-16 2/18/99, 3:16 PM218

219

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Common will also sport a list view control, although not as fancy as Explorer’s. You will add a
list view and some buttons to switch between the small-icon, large-icon, list, and report views.

Creating the List View
How does all this happen? Well, it does require more work than the progress bar, trackbar, or
up-down controls (it could hardly take less). You will write the rest of CreateListView(), which
performs the following tasks:

1. Creates and fills the image list controls

2. Creates the list view control itself

3. Associates the image lists with the list view

4. Creates the columns

5. Sets up the columns

6. Creates the items

7. Sets up the items

8. Creates the buttons

After creating the image lists, CreateListView() goes on to create the list view control by
calling the class’s Create() member function, as usual. Add these lines to CreateListView():

// Create the List View control.
 m_listView.Create(WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_REPORT | LVS_NOSORTHEADER | LVS_EDITLABELS,
 CRect(160, 120, 394, 220), this, IDC_LISTVIEW);

The CListCtrl class, of which m_listView is an object, defines special styles to be used with
list view controls. Table 10.3 lists these special styles and their descriptions.

Table 10.3 List View Styles

Style Description

LVS_ALIGNLEFT Left-aligns items in the large-icon and small-icon views

LVS_ALIGNTOP Top-aligns items in the large-icon and small-icon views

LVS_AUTOARRANGE Automatically arranges items in the large-icon and small-icon
views

LVS_EDITLABELS Enables the user to edit item labels

LVS_ICON Sets the control to the large-icon view

LVS_LIST Sets the control to the list view

LVS_NOCOLUMNHEADER Shows no column headers in report view

LVS_NOITEMDATA Stores only the state of each item

LVS_NOLABELWRAP Disallows multiple-line item labels

continues

The List View Control

Untitled-16 2/18/99, 3:17 PM219

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

220 Chapter 10 Common Controls

LVS_NOSCROLL Turns off scrolling

LVS_NOSORTHEADER Turns off the button appearance of column headers

LVS_OWNERDRAWFIXED Enables owner-drawn items in report view

LVS_REPORT Sets the control to the report view

LVS_SHAREIMAGELISTS Prevents the control from destroying its image lists when the
control no longer needs them

LVS_SINGLESEL Disallows multiple selection of items

LVS_SMALLICON Sets the control to the small-icon view

LVS_SORTASCENDING Sorts items in ascending order

LVS_SORTDESCENDING Sorts items in descending order

The third task in CreateListView() is to associate the control with its image lists with two calls
to SetImageList(). Add these lines to CreateListView():

m_listView.SetImageList(&m_smallImageList, LVSIL_SMALL);
m_listView.SetImageList(&m_largeImageList, LVSIL_NORMAL);

This function takes two parameters: a pointer to the image list and a flag indicating how the list
is to be used. Three constants are defined for this flag: LVSIL_SMALL (which indicates that the
list contains small icons), LVSIL_NORMAL (large icons), and LVSIL_STATE (state images). The
SetImageList() function returns a pointer to the previously set image list, if any.

Creating the List View’s Columns
The fourth task is to create the columns for the control’s report view. You need one main col-
umn for the item itself and one column for each sub-item associated with an item. For example,
in Explorer’s list view, the main column holds file and folder names. Each additional column
holds the sub-items for each item, such as the file’s size, type, and modification date. To create
a column, you must first declare a LV_COLUMN structure. You use this structure to pass informa-
tion to and from the system. After you add the column to the control with InsertColumn(), you
can use the structure to create and insert another column. Listing 10.6 shows the LV_COLUMN
structure.

Listing 10.6 The LV_COLUMN Structure, Defined by MFC

typedef struct _LV_COLUMN
{
 UINT mask; // Flags indicating valid fields
 int fmt; // Column alignment
 int cx; // Column width

Table 10.3 Continued

Style Description

Untitled-16 2/18/99, 3:17 PM220

221

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

 LPSTR pszText; // Address of string buffer
 int cchTextMax; // Size of the buffer
 int iSubItem; // Subitem index for this column
} LV_COLUMN;

The mask member of the structure tells the system which members of the structure to use and
which to ignore. The flags you can use are

■ LVCF_FMT fmt is valid.

■ LVCF_SUBITEM iSubItem is valid.

■ LVCF_TEXT pszText is valid.

■ LVCF_WIDTH cx is valid.

The fmt member denotes the column’s alignment and can be LVCFMT_CENTER, LVCFMT_LEFT, or
LVCFMT_RIGHT. The alignment determines how the column’s label and items are positioned in
the column.

The first column, which contains the main items, is always aligned to the left. The other
columns in the report view can be aligned however you like. ■

The cx field specifies the width of each column, whereas pszText is the address of a string
buffer. When you’re using the structure to create a column (you also can use this structure to
obtain information about a column), this string buffer contains the column’s label. The
cchTextMax member denotes the size of the string buffer and is valid only when retrieving
information about a column.

CreateListView() creates a temporary LV_COLUMN structure, sets the elements, and then in-
serts it into the list view as column 0, the main column. This process is repeated for the other
two columns. Add these lines to CreateListView():

// Create the columns.
 LV_COLUMN lvColumn;
 lvColumn.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
 lvColumn.fmt = LVCFMT_CENTER;
 lvColumn.cx = 75;

 lvColumn.iSubItem = 0;
 lvColumn.pszText = “Column 0”;
 m_listView.InsertColumn(0, &lvColumn);
 lvColumn.iSubItem = 1;
 lvColumn.pszText = “Column 1”;
 m_listView.InsertColumn(1, &lvColumn);
 lvColumn.iSubItem = 2;
 lvColumn.pszText = “Column 2”;
 m_listView.InsertColumn(1, &lvColumn);

Creating the List View’s Items
The fifth task in CreateListView() is to create the items that will be listed in the columns
when the control is in its report view. Creating items is not unlike creating columns. As with

N O T E

The List View Control

Untitled-16 2/18/99, 3:18 PM221

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

222 Chapter 10 Common Controls

columns, Visual C++ defines a structure that you must initialize and pass to the function that
creates the items. This structure is called LV_ITEM and is defined as shown in Listing 10.7.

Listing 10.7 The LV_ITEM Structure, Defined by MFC

typedef struct _LV_ITEM
{
 UINT mask; // Flags indicating valid fields
 int iItem; // Item index
 int iSubItem; // Sub-item index
 UINT state; // Item’s current state
 UINT stateMask; // Valid item states.
 LPSTR pszText; // Address of string buffer
 int cchTextMax; // Size of string buffer
 int iImage; // Image index for this item
 LPARAM lParam; // Additional information as a 32-bit value
} LV_ITEM;

In the LV_ITEM structure, the mask member specifies the other members of the structure that
are valid. The flags you can use are

■ LVIF_IMAGE iImage is valid.

■ LVIF_PARAM lParam is valid.

■ LVIF_STATE state is valid.

■ LVIF_TEXT pszText is valid.

The iItem member is the index of the item, which you can think of as the row number in re-
port view (although the items’ position can change when they’re sorted). Each item has a
unique index. The iSubItem member is the index of the sub-item, if this structure is defining a
sub-item. You can think of this value as the number of the column in which the item will appear.
For example, if you’re defining the main item (the first column), this value should be 0.

The state and stateMask members hold the item’s current state and its valid states, which can
be one or more of the following:

■ LVIS_CUT The item is selected for cut and paste.

■ LVIS_DROPHILITED The item is a highlighted drop target.

■ LVIS_FOCUSED The item has the focus.

■ LVIS_SELECTED The item is selected.

The pszText member is the address of a string buffer. When you use the LV_ITEM structure to
create an item, the string buffer contains the item’s text. When you are obtaining information
about the item, pszText is the buffer where the information will be stored, and cchTextMax is
the size of the buffer. If pszText is set to LPSTR_TEXTCALLBACK, the item uses the callback
mechanism. Finally, the iImage member is the index of the item’s icon in the small-icon and
large-icon image lists. If set to I_IMAGECALLBACK, the iImage member indicates that the item
uses the callback mechanism.

Untitled-16 2/18/99, 3:18 PM222

223

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

CreateListView() creates a temporary LV_ITEM structure, sets the elements, and then inserts
it into the list view as item 0. Two calls to SetItemText() add sub-items to this item so that
each column has some text in it, and the whole process is repeated for two other items. Add
these lines:

// Create the items.
 LV_ITEM lvItem;
 lvItem.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_STATE;
 lvItem.state = 0;
 lvItem.stateMask = 0;
 lvItem.iImage = 0;

 lvItem.iItem = 0;
 lvItem.iSubItem = 0;
 lvItem.pszText = “Item 0”;
 m_listView.InsertItem(&lvItem);
 m_listView.SetItemText(0, 1, “Sub Item 0.1”);
 m_listView.SetItemText(0, 2, “Sub Item 0.2”);

 lvItem.iItem = 1;
 lvItem.iSubItem = 0;
 lvItem.pszText = “Item 1”;
 m_listView.InsertItem(&lvItem);
 m_listView.SetItemText(1, 1, “Sub Item 1.1”);
 m_listView.SetItemText(1, 2, “Sub Item 1.2”);

 lvItem.iItem = 2;
 lvItem.iSubItem = 0;
 lvItem.pszText = “Item 2”;
 m_listView.InsertItem(&lvItem);
 m_listView.SetItemText(2, 1, “Sub Item 2.1”);
 m_listView.SetItemText(2, 2, “Sub Item 2.2”);

Now you have created a list view with three columns and three items. Normally the values
wouldn’t be hard-coded, as this was, but instead would be filled in with values calculated by
the program.

Manipulating the List View
You can set a list view control to four different types of views: small icon, large icon, list, and
report. In Explorer, for example, the toolbar features buttons that you can click to change the
view, or you can select the view from the View menu. Although Common doesn’t have a snazzy
toolbar like Explorer, it will include four buttons (labeled Small, Large, List, and Report) that
you can click to change the view. Those buttons are created as the sixth step in
CreateListView(). Add these lines to complete the function:

// Create the view-control buttons.
 m_smallButton.Create(“Small”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 120, 450, 140), this, IDC_LISTVIEW_SMALL);
 m_largeButton.Create(“Large”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 145, 450, 165), this, IDC_LISTVIEW_LARGE);
 m_listButton.Create(“List”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 170, 450, 190), this, IDC_LISTVIEW_LIST);
 m_reportButton.Create(“Report”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 195, 450, 215), this, IDC_LISTVIEW_REPORT);

The List View Control

Untitled-16 2/18/99, 3:18 PM223

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

224 Chapter 10 Common Controls

If you’re using large fonts, these buttons will need to be more than 50 pixels wide. This code creates
each button from position 400 to 450—make the second number larger to widen the buttons.

Edit the message map in CommonView.h to declare the handlers for each of these buttons so
that it looks like this:

// Generated message map functions
protected:
 //{{AFX_MSG(CCommonView)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnDestroy();
 afx_msg void OnTimer(UINT nIDEvent);
 afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar);
 //}}AFX_MSG
 afx_msg void OnSmall();
 afx_msg void OnLarge();
 afx_msg void OnList();
 afx_msg void OnReport();
 DECLARE_MESSAGE_MAP()
};

Edit the message map in CommonView.cpp to associate the messages with the functions:

BEGIN_MESSAGE_MAP(CCommonView, CScrollView)
 //{{AFX_MSG_MAP(CCommonView)
 ON_WM_CREATE()
 ON_WM_LBUTTONDOWN()
 ON_WM_DESTROY()
 ON_WM_TIMER()
 ON_WM_HSCROLL()
 //}}AFX_MSG_MAP
 ON_COMMAND(IDC_LISTVIEW_SMALL, OnSmall)
 ON_COMMAND(IDC_LISTVIEW_LARGE, OnLarge)
 ON_COMMAND(IDC_LISTVIEW_LIST, OnList)
 ON_COMMAND(IDC_LISTVIEW_REPORT, OnReport)
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

Choose View, Resource Symbols and click New to add new IDs for each constant referred to in
this new code:

■ IDC_LISTVIEW

■ IDC_LISTVIEW_SMALL

■ IDC_LISTVIEW_LARGE

■ IDC_LISTVIEW_LIST

■ IDC_LISTVIEW_REPORT

T I P

Untitled-16 2/18/99, 3:18 PM224

225

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

The four handlers will each call SetWindowLong(), which sets a window’s attribute. Its argu-
ments are the window’s handle, a flag that specifies the value to be changed, and the new value.
For example, passing GWL_STYLE as the second value means that the window’s style should be
changed to the style given in the third argument. Changing the list view control’s style (for
example, to LVS_SMALLICON) changes the type of view that it displays. With that in mind, add
the four handler functions to the bottom of CommonView.cpp:

void CCommonView::OnSmall()
{
 SetWindowLong(m_listView.m_hWnd, GWL_STYLE,
 WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_SMALLICON | LVS_EDITLABELS);
}

void CCommonView::OnLarge()
{
 SetWindowLong(m_listView.m_hWnd, GWL_STYLE,
 WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_ICON | LVS_EDITLABELS);
}

void CCommonView::OnList()
{
 SetWindowLong(m_listView.m_hWnd, GWL_STYLE,
 WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_LIST | LVS_EDITLABELS);
}

void CCommonView::OnReport()
{
 SetWindowLong(m_listView.m_hWnd, GWL_STYLE,
 WS_VISIBLE | WS_CHILD | WS_BORDER |
 LVS_REPORT | LVS_EDITLABELS);
}

In addition to changing the view, you can program a number of other features for your list view
controls. When the user does something with the control, Windows sends a WM_NOTIFY mes-
sage to the parent window. The most common notifications sent by a list view control are the
following:

■ LVN_COLUMNCLICK Indicates that the user clicked a column header

■ LVN_BEGINLABELEDIT Indicates that the user is about to edit an item’s label

■ LVN_ENDLABELEDIT Indicates that the user is ending the label-editing process

Why not have Common allow editing of the first column in this list view? You start by overrid-
ing the virtual function OnNotify() that was inherited by CCommonView from CScrollView.
Right-click CCommonView in ClassView and choose Add Virtual Function. Select OnNotify()
from the list on the left and click Add and Edit; then add these lines of code at the beginning of
the function, replacing the TODO comment:

The List View Control

Untitled-16 2/18/99, 3:18 PM225

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

226 Chapter 10 Common Controls

LV_DISPINFO* lv_dispInfo = (LV_DISPINFO*) lParam;

 if (lv_dispInfo->hdr.code == LVN_BEGINLABELEDIT)
 {
 CEdit* pEdit = m_listView.GetEditControl();
 // Manipulate edit control here.
 }
 else if (lv_dispInfo->hdr.code == LVN_ENDLABELEDIT)
 {
 if ((lv_dispInfo->item.pszText != NULL) &&
 (lv_dispInfo->item.iItem != -1))
 {
 m_listView.SetItemText(lv_dispInfo->item.iItem,
 0, lv_dispInfo->item.pszText);
 }
 }

The three parameters received by OnNotify() are the message’s WPARAM and LPARAM values and
a pointer to a result code. In the case of a WM_NOTIFY message coming from a list view control,
the WPARAM is the list view control’s ID. If the WM_NOTIFY message is the LVN_BEGINLABELEDIT or
LVN_ENDLABELEDIT notification, the LPARAM is a pointer to an LV_DISPINFO structure, which
itself contains NMHDR and LV_ITEM structures. You use the information in these structures to
manipulate the item that the user is trying to edit.

If the notification is LVN_BEGINLABELEDIT, your program can do whatever pre-editing initializa-
tion it needs to do, usually by calling GetEditControl() and then working with the pointer
returned to you. This sample application shows you only how to get that pointer.

When handling label editing, the other notification to watch out for is LVN_ENDLABELEDIT, which
means that the user has finished editing the label, by either typing the new label or canceling
the editing process. If the user has canceled the process, the LV_DISPINFO structure’s
item.pszText member will be NULL, or the item.iItem member will be –1. In this case, you
need do nothing more than ignore the notification. If, however, the user completed the editing
process, the program must copy the new label to the item’s text, which OnNotify() does with a
call to SetItemText(). The CListCtrl object’s SetItemText() member function requires three
arguments: the item index, the sub-item index, and the new text.

At this point you can build Common again and test it. Click each of the four buttons to change
the view style. Also, try editing one of the labels in the first column of the list view.

Figure 10.1 already showed you the report view for this list view. Figure 10.6 shows the
application’s list view control displaying small icons, and Figure 10.7 shows the large icons.
(Some controls in these figures have yet to be covered in this chapter.)

You can do a lot of other things with a list view control. A little time invested in exploring and
experimenting can save you a lot of time writing your user interface.

Untitled-16 2/18/99, 3:19 PM226

227

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

The Tree View Control
In the preceding section, you learned how to use the list view control to organize the display of
many items in a window. The list view control enables you to display items both as objects in a
window and objects in a report organized into columns. Often, however, the data you’d like to
organize for your application’s user is best placed in a hierarchical view. That is, elements of

FIG. 10.6
Here’s the sample
application’s list view
control set to small
icons.

FIG. 10.7
Here’s the sample
application’s list view
control set to large
icons.

The Tree View Control

Untitled-16 2/18/99, 3:19 PM227

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

228 Chapter 10 Common Controls

the data are shown as they relate to one other. A good example of a hierarchical display is the
directory tree used by Windows to display directories and the files that they contain.

MFC provides this functionality in the CTreeCtrl class. This versatile control displays data in
various ways, all the while retaining the hierarchical relationship between the data objects in
the view.

If you’d like to see an example of a tree view control, revisit Windows Explorer (see Figure
10.8). The left side of the window shows how the tree view control organizes objects in a win-
dow. (The right side of the window contains a list view control, which you learned about in the
preceding section). In the figure, the tree view displays not only the storage devices on the
computer but also the directories and files stored on those devices. The tree clearly shows the
hierarchical relationship between the devices, directories, and files, and it enables the user to
open and close branches on the tree to explore different levels.

Creating the Tree View
Tree views are a little simpler than list views. You will write the rest of CreateTreeView(),
which performs the following tasks:

1. Creates an image list

2. Creates the tree view itself

3. Associates the image list with the list view

4. Creates the root item

5. Creates child items

FIG. 10.8
A tree view control
displays a hierarchical
relationship between
items.

Untitled-16 2/18/99, 3:19 PM228

229

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Creating the image list, creating the tree control, and associating the control with the image list
are very similar to the steps completed for the image list. You’ve already written the code to
create the image list, so add these lines to CreateTreeView():

// Create the Tree View control.
 m_treeView.Create(WS_VISIBLE | WS_CHILD | WS_BORDER |
 TVS_HASLINES | TVS_LINESATROOT | TVS_HASBUTTONS |
 TVS_EDITLABELS, CRect(20, 260, 160, 360), this,
 IDC_TREEVIEW);
 m_treeView.SetImageList(&m_treeImageList, TVSIL_NORMAL);

(Remember to add a resource ID for IDC_TREEVIEW.) The CTreeCtrl class, of which
m_treeView is an object, defines special styles to be used with tree view controls. Table 10.4
lists these special styles.

Table 10.4 Tree View Control Styles

Style Description

TVS_DISABLEDRAGDROP Disables drag-and-drop operations

TVS_EDITLABELS Enables the user to edit labels

TVS_HASBUTTONS Gives each parent item a button

TVS_HASLINES Adds lines between items in the tree

TVS_LINESATROOT Adds a line between the root and child items

TVS_SHOWSELALWAYS Forces a selected item to stay selected when losing focus

TVS_NOTOOLTIPS Suppresses ToolTips for the tree items

TVS_SINGLEEXPAND Expands or collapses tree items with a single click rather than a
double click

Creating the Tree View’s Items
Creating items for a tree view control is much like creating items for a list view control. As with
the list view, Visual C++ defines a structure that you must initialize and pass to the function that
creates the items. This structure is called TVITEM and is defined in Listing 10.8.

Listing 10.8 The TVITEM Structure, Defined by MFC

typedef struct _TVITEM
{
 UINT mask;
 HTREEITEM hItem;
 UINT state;
 UINT stateMask;
 LPSTR pszText;
 int cchTextMax;

continues

The Tree View Control

Untitled-16 2/18/99, 3:19 PM229

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

230 Chapter 10 Common Controls

 int iImage;
 int iSelectedImage;
 int cChildren;
 LPARAM lParam;
} TV_ITEM;

In the TVITEM structure, the mask member specifies the other structure members that are valid.
The flags you can use are as follows:

■ TVIF_CHILDREN cChildren is valid.

■ TVIF_HANDLE hItem is valid.

■ TVIF_IMAGE iImage is valid.

■ TVIF_PARAM lParam is valid.

■ TVIF_SELECTEDIMAGE iSelectedImage is valid.

■ TVIF_STATE state and stateMask are valid.

■ TVIF_TEXT pszText and cchTextMax are valid.

The hItem member is the handle of the item, whereas the state and stateMask members hold
the item’s current state and its valid states, which can be one or more of TVIS_BOLD, TVIS_CUT,
TVIS_DROPHILITED, TVIS_EXPANDED, TVIS_EXPANDEDONCE, TVIS_FOCUSED, TVIS_OVERLAYMASK,
TVIS_SELECTED, TVIS_STATEIMAGEMASK, and TVIS_USERMASK.

The pszText member is the address of a string buffer. When using the TVITEM structure to
create an item, the string buffer contains the item’s text. When obtaining information about the
item, pszText is the buffer where the information will be stored, and cchTextMax is the size of
the buffer. If pszText is set to LPSTR_TEXTCALLBACK, the item uses the callback mechanism.
Finally, the iImage member is the index of the item’s icon in the image list. If set to
I_IMAGECALLBACK, the iImage member indicates that the item uses the callback mechanism.

The iSelectedImage member is the index of the icon in the image list that represents the item
when the item is selected. As with iImage, if this member is set to I_IMAGECALLBACK, the
iSelectedImage member indicates that the item uses the callback mechanism. Finally,
cChildren specifies whether there are child items associated with the item.

In addition to the TVITEM structure, you must initialize a TVINSERTSTRUCT structure that holds
information about how to insert the new structure into the tree view control. That structure is
declared in Listing 10.9.

Listing 10.9 The TVINSERTSTRUCT Structure, Defined by MFC

typedef struct tagTVINSERTSTRUCT {
 HTREEITEM hParent;
 HTREEITEM hInsertAfter;
#if (_WIN32_IE >= 0x0400)
 union

Listing 10.8 Continued

Untitled-16 2/18/99, 3:20 PM230

231

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

 {
 TVITEMEX itemex;
 TVITEM item;
 } DUMMYUNIONNAME;
#else
 TVITEM item;
#endif
} TVINSERTSTRUCT, FAR *LPTVINSERTSTRUCT;

In this structure, hParent is the handle to the parent tree-view item. A value of NULL or
TVI_ROOT specifies that the item should be placed at the root of the tree. The hInsertAfter
member specifies the handle of the item after which this new item should be inserted. It can
also be one of the flags TVI_FIRST (beginning of the list), TVI_LAST (end of the list), or
TVI_SORT (alphabetical order). Finally, the item member is the TVITEM structure containing
information about the item to be inserted into the tree.

Common first initializes the TVITEM structure for the root item (the first item in the tree). Add
these lines:

// Create the root item.
 TVITEM tvItem;
 tvItem.mask =
 TVIF_TEXT | TVIF_IMAGE | TVIF_SELECTEDIMAGE;
 tvItem.pszText = “Root”;
 tvItem.cchTextMax = 4;
 tvItem.iImage = 0;
 tvItem.iSelectedImage = 0;
 TVINSERTSTRUCT tvInsert;
 tvInsert.hParent = TVI_ROOT;
 tvInsert.hInsertAfter = TVI_FIRST;
 tvInsert.item = tvItem;
 HTREEITEM hRoot = m_treeView.InsertItem(&tvInsert);

The CTreeCtrl member function InsertItem() inserts the item into the tree view control. Its
single argument is the address of the TVINSERTSTRUCT structure.

CreateTreeView() then inserts the remaining items into the tree view control. Add these lines
to insert some hard-coded sample items into the tree view:

// Create the first child item.
 tvItem.pszText = “Child Item 1”;
 tvItem.cchTextMax = 12;
 tvItem.iImage = 1;
 tvItem.iSelectedImage = 1;
 tvInsert.hParent = hRoot;
 tvInsert.hInsertAfter = TVI_FIRST;
 tvInsert.item = tvItem;
 HTREEITEM hChildItem = m_treeView.InsertItem(&tvInsert);

 // Create a child of the first child item.
 tvItem.pszText = “Child Item 2”;
 tvItem.cchTextMax = 12;
 tvItem.iImage = 2;
 tvItem.iSelectedImage = 2;

The Tree View Control

Untitled-16 2/18/99, 3:20 PM231

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

232 Chapter 10 Common Controls

 tvInsert.hParent = hChildItem;
 tvInsert.hInsertAfter = TVI_FIRST;
 tvInsert.item = tvItem;
 m_treeView.InsertItem(&tvInsert);

 // Create another child of the root item.
 tvItem.pszText = “Child Item 3”;
 tvItem.cchTextMax = 12;
 tvItem.iImage = 1;
 tvItem.iSelectedImage = 1;
 tvInsert.hParent = hRoot;
 tvInsert.hInsertAfter = TVI_LAST;
 tvInsert.item = tvItem;
 m_treeView.InsertItem(&tvInsert);

Manipulating the Tree View
Just as with the list view control, you can edit the labels of the items in Common’s tree view.
Also, like the list view control, this process works because the tree view sends WM_NOTIFY mes-
sages that trigger a call to the program’s OnNotify() function.

OnNotify() handles the tree-view notifications in almost exactly the same way as the list-view
notifications. The only difference is in the names of the structures used. Add these lines to
OnNotify() before the return statement:

TV_DISPINFO* tv_dispInfo = (TV_DISPINFO*) lParam;

 if (tv_dispInfo->hdr.code == TVN_BEGINLABELEDIT)
 {
 CEdit* pEdit = m_treeView.GetEditControl();
 // Manipulate edit control here.
 }
 else if (tv_dispInfo->hdr.code == TVN_ENDLABELEDIT)
 {
 if (tv_dispInfo->item.pszText != NULL)
 {
 m_treeView.SetItemText(tv_dispInfo->item.hItem,
 tv_dispInfo->item.pszText);
 }
 }

The tree view control sends a number of other notification messages, including TVN_BEGINDRAG,
TVN_BEGINLABELEDIT, TVN_BEGINRDRAG, TVN_DELETEITEM, TVN_ENDLABELEDIT, TVN_GETDISPINFO,
TVN_GETINFOTIP, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_KEYDOWN, TVN_SELCHANGED,
TVN_SELCHANGING, TVN_SETDISPINFO, and TVN_SINGLEEXPAND. Check your Visual C++ online
documentation for more information about handling these notification messages.

Now is a good time to again build and test Common. Be sure to try expanding and collapsing
the levels of the tree and editing a label. If you can’t see all the control, maximize the applica-
tion and adjust your screen resolution if you can. The application will eventually scroll but not
just yet.

Untitled-16 2/18/99, 3:21 PM232

233

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

The Rich Edit Control
If you took all the energy expended on writing text-editing software and you concentrated that
energy on other, less mundane programming problems, computer science would probably be a
decade ahead of where it is now. Although that might be an exaggeration, it is true that when it
comes to text editors, a huge amount of effort has been dedicated to reinventing the wheel.
Wouldn’t it be great to have one piece of text-editing code that all programmers could use as
the starting point for their own custom text editors?

With Visual C++’s CRichEditCtrl control, you get a huge jump on any text-editing functionality
that you need to install in your applications. The rich edit control is capable of handling fonts,
paragraph styles, text color, and other types of tasks that are traditionally found in text editors.
In fact, a rich edit control (named for the fact that it handles text in Rich Text Format) provides
a solid starting point for any text-editing tasks that your application must handle. Your users
can

■ Type text.

■ Edit text, using cut-and-paste and sophisticated drag-and-drop operations.

■ Set text attributes such as font, point size, and color.

■ Apply underline, bold, italic, strikethrough, superscript, and subscript properties to text.

■ Format text, using various alignments and bulleted lists.

■ Lock text from further editing.

■ Save and load files.

As you can see, a rich edit control is powerful. It is, in fact, almost a complete word-processor-
in-a-box that you can plug into your program and use immediately. Of course, because a rich
edit control offers so many features, there’s a lot to learn. This section gives you a quick intro-
duction to creating and manipulating a rich edit control.

Creating the Rich Edit Control
Add a call to CreateRichEdit() to the view class’s OnCreate() function and then add the func-
tion to the class. Listing 10.10 shows the code you should add to the function. Add resource
IDs for IDC_RICHEDIT, IDC_RICHEDIT_ULINE, IDC_RICHEDIT_LEFT, IDC_RICHEDIT_CENTER, and
IDC_RICHEDIT_RIGHT.

Listing 10.10 CommonView.cpp—CCommonView::CreateRichEdit()

void CCommonView::CreateRichEdit()
{
 m_richEdit.Create(WS_CHILD | WS_VISIBLE | WS_BORDER |
 ES_AUTOVSCROLL | ES_MULTILINE,
 CRect(180, 260, 393, 360), this, IDC_RICHEDIT);

 m_boldButton.Create(“ULine”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 260, 450, 280), this, IDC_RICHEDIT_ULINE);

continues

The Rich Edit Control

Untitled-16 2/18/99, 3:21 PM233

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

234 Chapter 10 Common Controls

 m_leftButton.Create(“Left”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 285, 450, 305), this, IDC_RICHEDIT_LEFT);
 m_centerButton.Create(“Center”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 310, 450, 330), this, IDC_RICHEDIT_CENTER);
 m_rightButton.Create(“Right”, WS_VISIBLE | WS_CHILD | WS_BORDER,
 CRect(400, 335, 450, 355), this, IDC_RICHEDIT_RIGHT);
}

As usual, things start with a call to the control’s Create() member function. The style con-
stants include the same constants that you would use for creating any type of window, with the
addition of special styles used with rich edit controls. Table 10.5 lists these special styles.

Table 10.5 Rich Edit Styles

Style Description

ES_AUTOHSCROLL Automatically scrolls horizontally

ES_AUTOVSCROLL Automatically scrolls vertically

ES_CENTER Centers text

ES_LEFT Left-aligns text

ES_LOWERCASE Lowercases all text

ES_MULTILINE Enables multiple lines

ES_NOHIDESEL Doesn’t hide selected text when losing the focus

ES_OEMCONVERT Converts from ANSI characters to OEM characters and back to ANSI

ES_PASSWORD Displays characters as asterisks

ES_READONLY Disables editing in the control

ES_RIGHT Right-aligns text

ES_UPPERCASE Uppercases all text

ES_WANTRETURN Inserts return characters into text when Enter is pressed

Initializing the Rich Edit Control
The rich edit control is perfectly usable as soon as it is created. Member functions manipulate
the control extensively, formatting and selecting text, enabling and disabling many control
features, and more. As always, check your online documentation for all the details on these
member functions.

Listing 10.10 Continued

Untitled-16 2/18/99, 3:21 PM234

235

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Manipulating the Rich Edit Control
This sample application shows you the basics of using the rich edit control by setting character
attributes and paragraph formats. When you include a rich edit control in an application, you
will probably want to give the user some control over its contents. For this reason, you usually
create menu and toolbar commands for selecting the various options that you want to support
in the application. In Common, the user can click four buttons to control the rich edit control.

You’ve already added the code to create these buttons. Add lines to the message map in the
header file to declare the handlers:

afx_msg void OnULine();
afx_msg void OnLeft();
afx_msg void OnCenter();
afx_msg void OnRight();

Similarly, add these lines to the message map in the source file:

ON_COMMAND(IDC_RICHEDIT_ULINE, OnULine)
ON_COMMAND(IDC_RICHEDIT_LEFT, OnLeft)
ON_COMMAND(IDC_RICHEDIT_CENTER, OnCenter)
ON_COMMAND(IDC_RICHEDIT_RIGHT, OnRight)

Each of these functions is simple. Add them each to CommonView.cpp. OnULine() looks
like this:

void CCommonView::OnULine()
{
 CHARFORMAT charFormat;
 charFormat.cbSize = sizeof(CHARFORMAT);
 charFormat.dwMask = CFM_UNDERLINE;
 m_richEdit.GetSelectionCharFormat(charFormat);

 if (charFormat.dwEffects & CFM_UNDERLINE)
 charFormat.dwEffects = 0;
 else
 charFormat.dwEffects = CFE_UNDERLINE;

 m_richEdit.SetSelectionCharFormat(charFormat);
 m_richEdit.SetFocus();
}

OnULine() creates and initializes a CHARFORMAT structure, which holds information about char-
acter formatting and is declared in Listing 10.11.

Listing 10.11 The CHARFORMAT Structure, Defined by MFC

typedef struct _charformat
{
 UINT cbSize;
 _WPAD _wPad1;
 DWORD dwMask;
 DWORD dwEffects;
 LONG yHeight;

continues

The Rich Edit Control

Untitled-16 2/18/99, 3:22 PM235

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

236 Chapter 10 Common Controls

 LONG yOffset;
 COLORREF crTextColor;
 BYTE bCharSet;
 BYTE bPitchAndFamily;
 TCHAR szFaceName[LF_FACESIZE];
 _WPAD _wPad2;
} CHARFORMAT;

In a CHARFORMAT structure, cbSize is the size of the structure. dwMask indicates which members
of the structure are valid (can be a combination of CFM_BOLD, CFM_CHARSET, CFM_COLOR,
CFM_FACE, CFM_ITALIC, CFM_OFFSET, CFM_PROTECTED, CFM_SIZE, CFM_STRIKEOUT, and
CFM_UNDERLINE). dwEffects is the character effects (can be a combination of CFE_AUTOCOLOR,
CFE_BOLD, CFE_ITALIC, CFE_STRIKEOUT, CFE_UNDERLINE, and CFE_PROTECTED). yHeight is the
character height, and yOffset is the character baseline offset (for super- and subscript charac-
ters). crTextColor is the text color. bCharSet is the character set value (see the ifCharSet
member of the LOGFONT structure). bPitchAndFamily is the font pitch and family, and
szFaceName is the font name.

After initializing the CHARFORMAT structure, as needed, to toggle underlining, OnULine() calls
the control’s GetSelectionCharFormat() member function. This function, whose single argu-
ment is a reference to the CHARFORMAT structure, fills the character format structure. OnULine()
checks the dwEffects member of the structure to determine whether to turn underlining on or
off. The bitwise and operator, &, is used to test a single bit of the variable.

Finally, after setting the character format, OnULine() returns the focus to the rich edit control.
By clicking a button, the user has removed the focus from the rich edit control. You don’t want
to force the user to keep switching back manually to the control after every button click, so you
do it by calling the control’s SetFocus() member function.

Common also enables the user to switch between the three types of paragraph alignment. This
is accomplished similarly to toggling character formats. Listing 10.12 shows the three func-
tions—OnLeft(), OnRight(), and OnCenter()—that handle the alignment commands. Add the
code for these functions to CommonView.cpp. As you can see, the main difference is the use of
the PARAFORMAT structure instead of CHARFORMAT and the call to SetParaFormat() instead of
SetSelectionCharFormat().

Listing 10.12 CommonView.cpp—Changing Paragraph Formats

void CCommonView::OnLeft()
{
 PARAFORMAT paraFormat;
 paraFormat.cbSize = sizeof(PARAFORMAT);
 paraFormat.dwMask = PFM_ALIGNMENT;
 paraFormat.wAlignment = PFA_LEFT;
 m_richEdit.SetParaFormat(paraFormat);
 m_richEdit.SetFocus();
}

Listing 10.11 Continued

Untitled-16 2/18/99, 3:22 PM236

237

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

void CCommonView::OnCenter()
{
 PARAFORMAT paraFormat;
 paraFormat.cbSize = sizeof(PARAFORMAT);
 paraFormat.dwMask = PFM_ALIGNMENT;
 paraFormat.wAlignment = PFA_CENTER;
 m_richEdit.SetParaFormat(paraFormat);
 m_richEdit.SetFocus();
}
void CCommonView::OnRight()
{
 PARAFORMAT paraFormat;
 paraFormat.cbSize = sizeof(PARAFORMAT);
 paraFormat.dwMask = PFM_ALIGNMENT;
 paraFormat.wAlignment = PFA_RIGHT;
 m_richEdit.SetParaFormat(paraFormat);
 m_richEdit.SetFocus();
}

After adding all that code, it’s time to build and test again. First, click in the text box to give it
the focus. Then, start typing. Want to try out character attributes? Click the ULine button to
add underlining to either selected text or the next text you type. To try out paragraph format-
ting, click the Left, Center, or Right button to specify paragraph alignment. (Again, if you’re
using large text, adjust the button size if the labels don’t fit.) Figure 10.9 shows the rich edit
control with some different character and paragraph styles used.

FIG. 10.9
A rich edit control is
almost a complete
word processor.

The Rich Edit Control

Untitled-16 2/18/99, 3:22 PM237

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

238 Chapter 10 Common Controls

IP Address Control
If you’re writing an Internet-aware program, you might have already wondered how you’re
going to validate certain kinds of input from your users. One thing you could ask for is an IP
address, like this one:

205.210.40.1

IP addresses always have four parts, separated by dots, and each part is always a number be-
tween 1 and 255. The IP address picker guarantees that the user will give you information that
meets this format.

To try it out, add yet another line to OnCreate(), this time a call to CreateIPAddress(). Add
the function to the class. The code is really simple; just add a call to Create():

void CCommonView::CreateIPAddress()
{
 m_ipaddress.Create(WS_CHILD | WS_VISIBLE | WS_BORDER,
 CRect(470,40,650,65), this, IDC_IPADDRESS);
}

Remember to add a resource ID for IDC_IPADDRESS. No special styles are related to this simple
control. There are some useful member functions to get, set, clear, or otherwise manipulate the
address. Check them out in the online documentation.

Build and run Common, and try entering numbers or letters into the parts of the field. Notice
how the control quietly fixes bad values (enter 999 into one part, for example) and how it
moves you along from part to part as you enter the third digit or type a dot. It’s a simple con-
trol, but if you need to obtain IP addresses from the user, this is the only way to fly.

The Date Picker Control
How many different applications ask users for dates? It can be annoying to have to type a date
according to some preset format. Many users prefer to click on a calendar to select a day. Oth-
ers find this very slow and would rather type the date, especially if they’re merely changing an
existing date. The date picker control, in the MFC class CDateTimeCtrl, gives your users the
best of both worlds.

Start, as usual, by adding a call to CreateDatePicker() to CCommonView::OnCreate() and then
adding the function to the class. Add the resource ID for IDC_DATE. Like the IP Address con-
trol, the date picker needs only to be created. Add this code to CommonView.cpp:

void CCommonView::CreateDatePicker()
{
 m_date.Create(WS_CHILD | WS_VISIBLE | DTS_SHORTDATEFORMAT,
 CRect(470,120,650,150), this, IDC_DATE);
}

The CDateTimeCtrl class, of which m_date is an object, defines special styles to be used with
date picker controls. Table 10.6 lists these special styles.

Untitled-16 2/18/99, 3:23 PM238

239

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Table 10.6 Date Picker Control Styles

Style Description

DTS_APPCANPARSE Instructs the date control to give more control to your application
while the user edits dates.

DTS_LONGDATEFORMAT After the date is picked, displays it like Monday, May 18, 1998 or
whatever your locale has defined for long dates.

DTS_RIGHTALIGN Aligns the calendar with the right edge of the control (if you don’t
specify this style, it will align with the left edge).

DTS_SHOWNONE A date is optional: A check box indicates that a date has been
selected.

DTS_SHORTDATEFORMAT After the date is picked, displays it like 5/18/98 or whatever your
locale has defined for short dates.

DTS_TIMEFORMAT Displays the time as well as the date.

DTS_UPDOWN Uses an up-down control instead of a calendar for picking.

There are a number of member functions that you might use to set colors and fonts for this
control, but the most important function is GetTime(), which gets you the date and time en-
tered by the user. It fills in a COleDateTime or CTime object, or a SYSTEMTIME structure, which
you can access by individual members. Here’s the declaration of SYSTEMTIME:

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME;

If you want to do anything with this date, you’re probably going to find it easier to work with as
a CTime object. The CTime class is discussed in Appendix F, “Useful Classes.”

For now, you probably just want to see how easy it is to use the control, so build and test Com-
mon yet again. Click the drop-down box next to the short date, and you will see how the date
picker got its name. Choose a date and see the short date change. Edit the date and then drop
the month down again, and you will see that the highlight has moved to the day you entered.
Notice, also, that today’s date is circled on the month part of this control.

This month calendar is a control of its own. One is created by the date picker, but you will
create another one in the next section.

The Date Picker Control

Untitled-16 2/18/99, 3:23 PM239

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

240 Chapter 10 Common Controls

Month Calendar Control
The month calendar control used by the date picker is compact and neat. Putting one into
Common is very simple. Add a call to CreateMonth() to CCommonView::OnCreate() and add the
function to the class. Add a resource ID for IDC_MONTH, too; then add the code for
CreateMonth(). Here it is:

void CCommonView::CreateMonth()
{
 m_month.Create(WS_CHILD | WS_VISIBLE | DTS_SHORTDATEFORMAT,
 CRect(470,260,650,420), this, IDC_MONTH);
}

You can use many of the DTS_ styles when creating your month calendar control. In addition,
the CMonthCalCtrl class, of which m_month is an object, defines special styles to be used with
month calendar controls. Table 10.7 lists these special styles.

Table 10.7 Month Calendar Control Styles

Style Description

MCS_DAYSTATE Instructs the control to send MCN_GETDAYSTATE messages to the
application so that special days (such as holidays) can be
displayed in bold.

MCS_MULTISELECT Enables the user to choose a range of dates.

MCS_NOTODAY Suppresses the Today date at the bottom of the control. The user
can display today’s date by clicking the word Today.

MCS_NOTODAY_CIRCLE Suppresses the circling of today’s date.

MCS_WEEKNUMBERS Numbers each week in the year from 1 to 52 and displays the
numbers at the left of the calendar.

A number of member functions enable you to customize the control, setting the colors, fonts,
and whether weeks start on Sunday or Monday. You will be most interested in GetCurSel(),
which fills a COleDateTime, CTime, or LPSYSTEMTIME with the currently selected date.

Build and test Common again and really exercise the month control this time. (Make the win-
dow larger if you can’t see the whole control.) Try moving from month to month. If you’re a
long way from today’s date, click the Today down at the bottom to return quickly. This is a neat
control and should quickly replace the various third-party calendars that so many developers
have been using.

Scrolling the View
After adding all these controls, you might find that they don’t all fit in the window. As Figure
10.10 shows, no scrollbars appear, even though CCommonView inherits from CScrollView. You
need to set the scroll sizes in order for scrolling to work properly.

Untitled-16 2/18/99, 3:23 PM240

241

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

10

III
Part

Ch

Expand CCommonView and double-click OnInitialUpdate() in ClassView. Edit it so that it looks
like this:

void CCommonView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 CSize sizeTotal;
 sizeTotal.cx = 700;
 sizeTotal.cy = 500;

 SetScrollSizes(MM_TEXT, sizeTotal);
}

The last control you added, the month calendar, ran from the coordinates (470, 260) to
(650, 420). This code states that the entire document is 700×500 pixels, so it leaves a nice white
margin between that last control and the edge of the view. When the displayed window is less
than 700×500, you get scrollbars. When it’s larger, you don’t. The call to SetScrollSizes()
takes care of all the work involved in making scrollbars, sizing them to represent the propor-
tion of the document that is displayed, and dealing with the user’s scrollbar clicks. Try it your-
self—build Common one more time and experiment with resizing it and scrolling around. (The
scrollbars weren’t there before because the OnInitialUpdate() generated by AppWizard
stated that the app was 100×100 pixels, which wouldn’t require scrollbars.)

So, what’s going on? Vertical scrolling is fine, but horizontal scrolling blows up your applica-
tion, right? You can use the techniques described in Appendix D, “Debugging,” to find the
cause. The problem is in OnHScroll(), which assumed that any horizontal scrolling was related
to the slider control and acted accordingly. Edit that function so that it looks like this:

FIG. 10.10
The view doesn’t
automatically gain
scrollbars as more
controls are added.

Scrolling the View

Untitled-16 2/18/99, 3:23 PM241

B3A3 swg4 UsingVisualC++6 15392 7.20.98 Ayanna chapter 10 LP#3

242 Chapter 10 Common Controls

void CCommonView::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)
{
 CSliderCtrl* slider = (CSliderCtrl*)pScrollBar;
 if (slider == &m_trackbar)
 {
 int position = slider->GetPos();
 char s[10];
 wsprintf(s, “%d “, position);
 CClientDC clientDC(this);
 clientDC.TextOut(390, 22, s);
 }

 CScrollView::OnHScroll(nSBCode, nPos, pScrollBar);
}

Now the slider code is executed only when the scrollbar that was clicked is the one kept in
m_trackbar. The rest of the time, the work is simply delegated to the base class. For the last
time, build and test Common—everything should be perfect now. ●

Untitled-16 2/18/99, 3:23 PM242

243

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

C H A P T E R

Help

11

In this chapter

Different Kinds of Help 244

Components of the Help System 248

Help Support from AppWizard 249

Planning Your Help Approach 250

Programming for Command Help 251

Programming for Context Help 253

Writing Help Text 255

Adjustments to the Contents 264

Untitled-17 2/18/99, 3:25 PM243

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

244 Chapter 11 Help

Too many programmers entirely neglect online Help. Even those who add Help to an applica-
tion tend to leave it to the end of a project, and when the inevitable time squeeze comes, guess
what? There’s no time to write the Help text or make the software adjustments that arrange for
that text to display when the user requests Help. One reason people do this is because they
believe implementing Help is really hard. With Visual C++, though, it’s a lot easier than you
might anticipate. Visual C++ even writes some of your Help text for you! This chapter is going
to add Help, after the fact, to the ShowString application built in Chapter 8, “Building a Com-
plete Application: ShowString.”

Different Kinds of Help
You can characterize Help in a variety of ways. This section presents four different questions
you might ask about Help:

■ How does the user invoke it?

■ How does it look onscreen?

■ What sort of answers does the user want?

■ How does the developer implement it in code?

None of these questions has a single answer. There are at least nine different ways for a user to
invoke Help, three standard Help appearances, and three different programming tasks you
must implement in order to display Help. These different ways of looking at Help can help you
understand why the implementation involves a number of different techniques, which can be
confusing at first.

Getting Help
The first way of characterizing Help is to ask “How does the user open it up?” There are a
number of ways to open Help:

■ By choosing an item from the Help menu, such as Help, Contents (choosing What’s
This? or About doesn’t open Help immediately)

■ By pressing the F1 key

■ By clicking the Help button on a dialog box

■ By clicking a What’s This? button on a toolbar and then clicking something else

■ By choosing What’s This? from the Help menu (the System menu for dialog box–based
applications) and then clicking something

■ By clicking a Question button on a dialog box and then clicking part of the dialog box

■ By right-clicking something and choosing What’s This? from the pop-up menu

■ In some older applications, by pressing Shift+F1 and then clicking something

■ Outside the application completely, by double-clicking the HLP file

For the first three actions in this list, the user does one thing (chooses a menu item, presses
F1, or clicks a button), and Help appears immediately. For the next five actions, there are two

Untitled-17 2/18/99, 3:25 PM244

245

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

steps: typically, one click to go into Help mode (more formally called What’s This? mode) and
another to indicate which Help is required. Users generally divide Help into single-step Help
and two-step Help, accordingly.

You will become confused if you try to use Visual Studio to understand Help, in general.
Much of the information is presented as HTML Help in a separate product, typically MSDN,

though there are some circumstances under which more traditional Help appears. Use simple utilities
and accessories that come with your operating system or use your operating system itself to follow
along. ■

HTML Help
Until fairly recently, all Help files were built from RTF files, as described in this chapter, and displayed
with the Microsoft Help engine. Microsoft has now started to use HTML files for its Help, and has
released a number of tools to simplify the job of creating and maintaining HTML Help.

There are a number of advantages to an HTML Help system: Your Help files can contain links to
Internet resources, for example. You can incorporate any active content that your browser under-
stands, including ActiveX controls, Java applets, and scripting. Many developers find attractive Help
systems quicker to build in HTML.

Unfortunately, there are also disadvantages. The interface is not as rich as the traditional Help
interface, for example. Many developers take one look at the HTML Help provided with Visual Studio
and vow never to produce HTML Help files for their own products.

If you would like to use HTML Help rather than the traditional Help files discussed in this chapter,
start by visiting http://www.microsoft.com/workshop/author/htmlhelp to get a copy of the HTML
Help Workshop and plenty of documentation and examples.

Most of the work involved in creating HTML Help is the same as the traditional Help techniques
presented here, but involves, for example, calling HTMLHelp() instead of ::WinHelp(). Instead of
editing RTF files with Word, you edit HTML files with the HTML Help Workshop editor.

Presenting Help
The second way of characterizing Help is to ask, “How does it look?” You can display Help in
several ways:

■ Help Topics dialog box. As shown in Figure 11.1, this dialog box enables users to scroll
through an index, look at a table of contents, or find a word within the Help text. (To
open this dialog on Windows, choose Start, Help.)

■ Ordinary Help window. As shown in Figure 11.2, this window has buttons such as Help
Topics, Back, and Options. It can be resized, minimized, maximized, or closed and in
many cases is always on top, like the system clock and other popular utilities. (To see
this one, open the calculator, usually by choosing Start, Programs, Accessories, Calcula-
tor; then press F1. Expand a closed book by double-clicking it; then double-click a topic
from the list that appears. Finding Out What a Calculator Button Does appears under
Tips and Tricks.)

N O T E

Different Kinds of Help

Untitled-17 2/18/99, 3:26 PM245

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

246 Chapter 11 Help

■ Pop-up windows. As shown in Figure 11.3, pop-up windows are relatively small and don’t
have buttons or menus. They disappear when you click outside them, cannot be resized
or moved, and are perfect for a definition or quick explanation. To re-create Figure 11.3,
right-click the MC button and choose What’s This?

Using Help
A third way of characterizing Help is according to the user’s reasons for invoking it. In the
book The Windows Inter face Guidelines for Software Design, Microsoft categorizes Help in this
way and lists these kinds of Help:

■ Contextual user assistance answers questions such as What does this button do? or What
does this setting mean?

FIG. 11.1
The Help Topics dialog
box enables users to go
through the contents or
index or search the Help
text with Find.

FIG. 11.2
An ordinary Help
window has buttons and
sometimes menus. It
can be treated like any
other window.

FIG. 11.3
A pop-up Help topic
window gives the user
far less control and
should be used only for
short explanations.

Untitled-17 2/18/99, 3:26 PM246

247

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

■ Task-oriented Help explains how to accomplish a certain task, such as printing a docu-
ment. (It often contains numbered steps.)

■ Reference Help looks up function parameters, font names, or other material that expert
users need to refer to from time to time.

■ Wizards walk a user through a complicated task, just as AppWizard walks you through
creating an application.

These describe the content of the material presented to the user. Although these content de-
scriptions are important to a Help designer and writer, they’re not very useful from a program-
ming point of view.

The book mentioned previously is provided with the MSDN CDs included with Visual Studio. In Visual
Studio, press F1 to bring up MSDN. On the Contents tab of MSDN, expand the Books item, then
expand the interface guidelines book. Chapter 12, “User Assistance,” gives Help guidelines.

Programming Help
The final way of characterizing Help, and perhaps the most important to a developer, is by
examining the code behind the scenes. Three Windows messages are sent when the user
invokes Help:

■ WM_COMMAND

■ WM_HELP

■ WM_CONTEXTMENU

Windows messages are discussed in Chapter 3, “Messages and Commands.” ■

When the user chooses a Help item from a menu or clicks the Help button on a dialog box, the
system sends a WM_COMMAND message, as always. To display the associated Help, you catch
these messages and call the WinHelp system.

When the user right-clicks an element of your application, a WM_CONTEXTMENU message is sent.
You catch the message and build a shortcut menu on the spot. Because in most cases you will
want a shortcut menu with only one item on it, What’s This?, you can use a prebuilt menu with
only that item and delegate the display of that menu to the Help system—more on this later in
the “Programming for Context Help” section.

When the user opens Help in any other way, the framework handles most of it. You don’t catch
the message that puts the application into What’s This? mode, you don’t change the cursor, and
you don’t deal with clicks while in that mode. You catch a WM_HELP message that identifies the
control, dialog box, or menu for which Help is required, and you provide that Help. Whether
the user pressed F1 or went into What’s This? mode and clicked the item doesn’t matter. In
fact, you can’t tell from within your application.

T I P

N O T E

Different Kinds of Help

Untitled-17 2/18/99, 3:26 PM247

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

248 Chapter 11 Help

The WM_HELP and WM_CONTEXTMENU messages are handled almost identically, so from the point
of view of the developer, there are two kinds of help. We’ll call these command help and context
help. Each is discussed later in this chapter in the “Programming for Command Help” and
“Programming for Context Help” sections, but keep in mind that there’s no relationship be-
tween this split (between command and context help) and the split between one-step and two-
step Help that users think of.

Components of the Help System
As you might expect, a large number of files interact to make online Help work. The final prod-
uct, which you deliver to your user, is the Help file, with the .hlp extension. It is built from
component files. In the list that follows, appname refers to the name of your application’s .exe
file. If no name appears, there might be more than one file with a variety of names. The compo-
nent files produced by AppWizard are as follows:

.h These Header files define resource IDs and Help topic IDs for use
within your C++ code.

.hm These Help Mapping files define Help topic IDs. appname.hm is gen-
erated every time you build your application—don’t change it yourself.

.rtf These Rich Text Format files contain the Help text for each Help
topic.

appname.cnt You use this table of contents file to create the Contents tab of the
Help Topics dialog box. (You should distribute this contents file with
your application in addition to the Help file.)

appname.hpj This Help ProJect file pulls together .hm and .rtf files to produce,
when compiled, a .hlp file.

While being used, the Help system generates other files. When you uninstall your application
from the user’s hard disk, be sure to look for and remove the following files, in addition to the
.hlp and .cnt files:

■ appname.gid is a configuration file, typically hidden.

■ appname.fts is a full text search file, generated when your user does a Find through your
Help text.

■ appname.ftg is a full text search group list, also generated when your user does a Find.

Help topic IDs are the connection between your Help text and the Help system. Your program
eventually directs the Help system to display a Help topic, using a name such as
HID_FILE_OPEN, and the system looks for this Help topic ID in the Help file, compiled from the
.rtf files, including the .rtf file that contains your Help text for that Help topic ID. (This process
is illustrated in Figure 11.4.) These topic IDs have to be defined twice—once for use by the
Help system and once for use by your program. When the Help system is displaying a topic or
the Help Topics dialog box, it takes over displaying other Help topics as the user requests
them, with no work on your part.

Untitled-17 2/18/99, 3:26 PM248

249

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch
Help Support from AppWizard

When you build an MDI application (no database or OLE support) with AppWizard and choose
the Context-Sensitive Help option (in Step 4), here’s what you find:

■ Message map entries are added to catch the commands ID_HELP_FINDER, ID_HELP,
ID_CONTEXT_HELP, and ID_DEFAULT_HELP. No code is added to handle these; they are
passed to CMDIFrameWnd member functions.

■ A What’s This? button is added to the toolbar.

■ A Help Topics item is added to the Help menu for both menus provided by AppWizard:
the one used when a file is open and the smaller one used when no files are open.

■ Accelerators for F1 (ID_HELP) and Shift+F1 (ID_CONTEXT_HELP) are added.

■ The default message in the status bar is changed from Ready to For Help, press F1.

■ A status bar prompt is added, to be displayed while in What’s This? mode: Select an
object on which to get Help.

■ Status bar prompts are added for the Help menu and its items.

■ afxcore.rtf, a Help text file for standard menu items such as File, Open, is copied into the
project.

■ afxprint.rtf, a Help text file for printing and print previewing, is copied into the project.
(These files are added separately because not all projects include printing and print
previewing. If this project has database- or OLE-related features, more help is provided.)

■ Twenty-two .bmp files, included as illustrations in Help for topics such as File, Open, are
copied into the project.

Your program MFC, the operating
system, and the

Help system

Your Help files

builds array of
resource IDs and
topic IDs:

gets resource ID
from handle

gets topic ID from array

gets Help text from
.hlp file

displays Help

.rtf file:

IDC.OPTIONS.STRING HIDD_OPTIONS.STRING

"
"
"

"
"
"

"
"
"

"
"
"

Calls ::Winhelp ()
passing handle to current
item and address of this
array.

String box (Options dialog)
Enter the string to be displayed.

#Black radio button (Options dialog)
select to draw the text in black.

Red radio button (Options dialog)
select to draw the text in red.

K string changing: color,
 changing: centering,
 changing: appearance,
 control
$ Tools Options command
HIDD_OPTIONS_STRING
HIDD_OPTIONS_BLACK

All Footnotes Close

compile into .hlp file:

"
"
"
Help text connect to topic IDs
"
"
"

Page break

Page break

FIG. 11.4
Your program, the Help
system, and your Help
files all work together to
display a topic.

Help Support from AppWizard

Untitled-17 2/18/99, 3:27 PM249

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

250 Chapter 11 Help

With this solid foundation, the task of implementing Help for this application breaks down into
three steps:

1. You must plan your Help. Do you intend to provide reference material only, task-oriented
instructions only, or both? To what extent will you supplement these with context pop-
ups?

2. You must provide the programming hooks that will result in the display of the Help
topics you have designed. This is done differently for command and context Help, as you
will see in the sections that follow.

3. You must build the .rtf files with the Help topic IDs and text to explain your application. If
you have designed the Help system well and truly understand your application, this
should be simple, though time-consuming.

On large projects, often a technical writer rather than a programmer writes the Help text.
This requires careful coordination: For example, you have to provide topic IDs to the Help

writer, and you might have to explain some functions so that they can be described in the Help. You
have to work closely together throughout a project like this and respect each other’s area of
expertise. ■

Planning Your Help Approach
Developing Help is like developing your software. You shouldn’t do it without a plan. Strictly
speaking, you shouldn’t do it last. A famous experiment decades ago split a programming class
into two groups. One group was required to hand in a completed user manual for a program
before writing the program, the other to finish the program before writing the manual. The
group who wrote the manual first produced better programs: They noticed design errors early,
before the errors were carved in code, and they found writing programs much easier as well.

If your application is of any size, the work involved in developing a Help system for it would fill
a book. If you need further information on how to do this, consider the book Designing Win-
dows 95 Help: A Guide to Creating Online Documents, written by Mary Deaton and Cheryl
Lockett Zubak, published by Que. In this section, there is room for only a few basic guidelines.

The result of this planning process is a list of Help topics and the primary way they will be
reached. The topics you plan are likely to include the following:

■ A page or so of Help on each menu item, reached by getting into What’s This? mode and
clicking the item (or by pressing F1 on a highlighted menu item).

■ A page, reachable from the Contents, that lists all the menus and their menu items, with
links to the pages for those items.

■ A page, reachable from the Contents, for each major task that a user might perform with
the application. This includes examples or tutorials.

■ Context Help for the controls on all dialog boxes.

N O T E

Untitled-17 2/18/99, 3:27 PM250

251

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

Although that might seem like a lot of work, remember that all the boilerplate resources have
been documented already in the material provided by AppWizard. This includes menu items,
common dialog boxes, and more.

After you have a complete list of material and the primary way each page is reached, think
about links between pages (for example, the AppWizard-supplied Help for File, Open mentions
using File, New and vice versa) and pop-up definitions for jargon and keywords.

In this section, you plan Help for ShowString, the application introduced in Chapter 8. This
simple application displays a string that the user can set. The string can be centered vertically
or horizontally, and it can be black, green, or red. A new menu (Tools) with one item (Options)
opens a dialog box on which the user can set all these options at once. The Help tasks you need
to tackle include the following:

■ Changing AppWizard’s placeholder strings to ShowString or other strings specific to this
application

■ Adding a topic about the Tools menu and the Options item

■ Adding a topic about each control on the Options dialog box

■ Adding a Question button to the Options dialog box

■ Changing the text supplied by AppWizard and displayed when the user requests context
Help about the view

■ Adding an Understanding Centering topic to the Help menu and writing it

■ Adjusting the Contents to point to the new pages

The remainder of this chapter tackles this list of tasks.

Programming for Command Help
Command Help is simple from a developer’s point of view. (Of course, you probably still have
to write the explanations, so don’t relax too much.) As you’ve seen, AppWizard added the Help
Topics menu item and the message map entries to catch it, and the MFC class CMDIChildFrame
has the member function to process it, so you have no work to do for that. However, if you
choose to add another menu item to your Help menu, you do so just like any other menu, using
the ResourceView. Then, have your application class, CShowStringApp, catch the message.

Say, for example, that ShowString deserves an item named Understanding Centering on the
Help menu. Here’s how to make that happen:

1. Open ShowString, either your own copy from working along with Chapter 8 or a copy
you have downloaded from the book’s Web site, in Visual Studio. You may want to make
a copy of the old project before you start, because ShowString is the foundation for many
of the projects in this book.

If you aren’t familiar with editing menus and dialogs or catching messages, you should read Chapter 9
before this one.

T I P

Programming for Command Help

Untitled-17 2/18/99, 3:27 PM251

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

252 Chapter 11 Help

2. Open the IDR_MAINFRAME menu by switching to ResourceView, expanding Menus, and
double-clicking IDR_MAINFRAME. Add the Understanding Centering item to the Help
menu (just below Help Topics) and let Developer Studio assign it the resource ID
ID_HELP_UNDERSTANDINGCENTERING. This is one occasion when a slightly shorter
resource ID wouldn’t hurt, but this chapter presents it with the longer ID.

3. Add the item to the other menu, IDR_SHOWSTTYPE, as well. Use the same resource ID.

4. Use ClassWizard to arrange for CShowStringApp to catch this message, as discussed in
Chapter 8. Add the code for the new function, which looks like this:
void CShowStringApp::OnHelpUnderstandingcentering()
{
 WinHelp(HID_CENTERING);
}

This code fires up the Help system, passing it the Help topic ID HID_CENTERING. For this to
compile, that Help topic ID has to be known to the compiler, so in ShowString.h add this line:

#define HID_CENTERING 0x01

The Help topic IDs in the range 0x0000 to 0xFFFF are reserved for user-defined Help topics, so
0x01 is a fine choice. Now the C++ compiler is happy, but when this runs, the call to WinHelp()
isn’t going to find the topic that explains centering. You need to add a help mapping entry. This
should be done in a new file named ShowStringx.hm. (The x is for extra, because extra Help
mapping entries are added here.) Choose File, New; select the Files tab; highlight Text File; fill
in the filename as ShowStringx.hm; and click OK. In the new file, type this line:

HID_CENTERING 0x01

Save the file. Next, you need to edit the Help project file, ShowString.hpj. If you double-click
this from a folder such as Windows 95 Explorer, the Help Compiler opens it. In this case, you
want to edit it as text, so you should open it with Developer Studio by double-clicking it in the
FileView (and you wondered what the FileView was good for). Add this line at the very bottom:

#include <ShowStringX.hm>

Press Enter at the end of this line so that there’s a blank line after this last directive. The Help
compiler can be weird if there isn’t a blank line after the last include.

Now, both the Help system and the compiler know about this new Help topic ID. Later in this
chapter, when you write the Help text, you will add a section that explains centering and con-
nect it to this Help topic ID.

The other common use of command Help is to add a Help button to a dialog box that gives an
overview of the dialog box. This used to be standard behavior but is now recommended only
for large dialog boxes, especially those with complex interactions between the various controls.
For simple boxes, the What’s This? Help is a better choice, because the information comes up
in a small pop-up rather than an entire page of explanations. To add a Help button to a dialog,
follow the same process steps you followed to add the menu item Help, Understanding

Untitled-17 2/18/99, 3:27 PM252

253

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

Centering, but add a button to a dialog rather than an item to a menu. You wouldn’t create a
new .hm file; add the button’s Help topic ID to ShowStringX.hm, which continues to grow in
the next section.

Programming for Context Help
Your first task in arranging for context Help is to get a Question button onto the Options dialog
box, because AppWizard already added one to the toolbar. Open the Options dialog box by
double-clicking it in the ResourceView and then choose View, Properties. Click the Extended
Styles tab and then make sure that the Context Help check box is selected, as shown in Figure
11.5.

As mentioned earlier, two messages are relevant to context Help: WM_HELP when a user clicks
something while in What’s This? mode, and WM_CONTEXTMENU when a user right-clicks some-
thing. You need to arrange for your dialog box class, COptionsDialog, to catch these messages.
Because ClassWizard doesn’t include them in the list of messages it will catch, you will add
entries outside the special ClassWizard comments. The message map in OptionsDialog.h
should look like this:

// Generated message map functions
//{{AFX_MSG(COptionsDialog)
 // NOTE: the ClassWizard will add member functions here
//}}AFX_MSG
afx_msg BOOL OnHelpInfo(HELPINFO* lpHelpInfo);
afx_msg void OnContextMenu(CWnd* pWnd, CPoint point);
 DECLARE_MESSAGE_MAP()

The message map in OptionsDialog.cpp should look like this:

BEGIN_MESSAGE_MAP(COptionsDialog, CDialog)
 //{{AFX_MSG_MAP(COptionsDialog)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
 ON_WM_HELPINFO()
 ON_WM_CONTEXTMENU()
END_MESSAGE_MAP()

These macros arrange for WM_HELP to be caught by OnHelpInfo()and for WM_CONTEXTMENU to be
caught by OnContextMenu(). The next step is to write these functions. They both need to use a
table to connect resource IDs to Help topic IDs. To create this table, add these lines at the be-
ginning of OptionsDialog.cpp, after the comment block that reads // COptionsDialog dialog:

FIG. 11.5
Turn on the Question
box on the Options
dialog box of
ShowString.

Programming for Context Help

Untitled-17 2/18/99, 3:28 PM253

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

254 Chapter 11 Help

static DWORD aHelpIDs[] =
{
 IDC_OPTIONS_STRING, HIDD_OPTIONS_STRING,
 IDC_OPTIONS_BLACK, HIDD_OPTIONS_BLACK,
 IDC_OPTIONS_RED, HIDD_OPTIONS_RED,
 IDC_OPTIONS_GREEN, HIDD_OPTIONS_GREEN,
 IDC_OPTIONS_HORIZCENTER, HIDD_OPTIONS_HORIZCENTER,
 IDC_OPTIONS_VERTCENTER, HIDD_OPTIONS_VERTCENTER,
 IDOK, HIDD_OPTIONS_OK,
 IDCANCEL, HIDD_OPTIONS_CANCEL,
 0, 0
};

The Help system uses this array (you pass the address to the WinHelp() function) to connect
resource IDs and Help topic IDs. The compiler, however, has never heard of
HIDD_OPTIONS_STRING, so add these lines to OptionsDialog.h before the definition of the
COptionsDialog class:

#define HIDD_OPTIONS_STRING 2
#define HIDD_OPTIONS_BLACK 3
#define HIDD_OPTIONS_RED 4
#define HIDD_OPTIONS_GREEN 5
#define HIDD_OPTIONS_HORIZCENTER 6
#define HIDD_OPTIONS_VERTCENTER 7
#define HIDD_OPTIONS_OK 8
#define HIDD_OPTIONS_CANCEL 9

The numbers are chosen arbitrarily. Now, after the two functions are written, the compiler will
be happy because all these constants are defined. The Help system, however, doesn’t know
what’s going on because these topics aren’t in the Help mapping file yet. Therefore, add these
lines to ShowStringX.hm:

HIDD_OPTIONS_STRING 0x02
HIDD_OPTIONS_BLACK 0x03
HIDD_OPTIONS_RED 0x04
HIDD_OPTIONS_GREEN 0x05
HIDD_OPTIONS_HORIZCENTER 0x06
HIDD_OPTIONS_VERTCENTER 0x07
HIDD_OPTIONS_OK 0x08
HIDD_OPTIONS_CANCEL 0x09

Be sure to use the same numbers as in the #define statements in OptionsDialog.h. The stage
is set; all that remains is to add the code for the functions at the end of OptionsDialog.cpp.
Here’s what OnHelpInfo() looks like:

BOOL COptionsDialog::OnHelpInfo(HELPINFO *lpHelpInfo)
{
 if (lpHelpInfo->iContextType == HELPINFO_WINDOW) // must be for a control
 {
 // have to call SDK WinHelp not CWinApp::WinHelp
 // because CWinApp::WinHelp doesn’t take a
 // handle as a parameter.
 ::WinHelp((HWND)lpHelpInfo->hItemHandle,
 AfxGetApp()->m_pszHelpFilePath,
 HELP_WM_HELP, (DWORD)aHelpIDs);

Untitled-17 2/18/99, 3:28 PM254

255

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

 }
 return TRUE;
}

This function calls the SDK WinHelp() function and passes the handle to the control, the path
to the Help file, the command HELP_WM_HELP to request a context-sensitive pop-up Help topic,
and the table of resource IDs and Help topic IDs built earlier. There’s no other work for your
function to do after kicking WinHelp() into action.

If you’ve never seen the :: scope resolution operator used without a classname before it, it means
“call the function that isn’t in any class,” and in Windows programming, that generally means the SDK
function.

The third parameter of this call to WinHelp() directs the Help system to put up a certain
style of Help window. HELP_WM_HELP gives you a pop-up menu, as does

HELP_WM_CONTEXTMENU. HELP_CONTEXT produces an ordinary Help window, which can be resized
and moved, and enables Help navigation. HELP_FINDER opens the Help Topics dialog box.
HELP_CONTENTS and HELP_INDEX are obsolete and should be replaced with HELP_FINDER if you
maintain code that uses them. ■

OnContextMenu() is even simpler. Add this code at the end of OptionsDialog.cpp:

void COptionsDialog::OnContextMenu(CWnd *pWnd, CPoint /*point*/)
{
 ::WinHelp((HWND)*pWnd, AfxGetApp()->m_pszHelpFilePath,
 HELP_CONTEXTMENU, (DWORD)aHelpIDs);
}

This function doesn’t need to check that the right-click is on a control as OnHelpInfo() did, so
it just calls the SDK WinHelp(). WinHelp() takes care of displaying the shortcut menu with
only a What’s This item and then displays Help when that item is chosen.

To check your typing, build the project by choosing Build, Build and then compile the Help file
by giving focus to ShowString.hpj and choosing Build, Compile. (You can also right-click
ShowString.hpj in the FileView of the Project Workspace window and choose Compile from the
shortcut menu.) There’s not much point in testing it, though; the AppWizard stuff is sure to
work, and without Help content connected to those topics, none of the code you just added can
succeed in displaying content.

Writing Help Text
You write Help text in an RTF file, using special formatting codes that mean something rather
different than they usually do. The traditional way to do this has been in Microsoft Word, but a
large crop of Help authoring tools have sprung up that are far easier to use than Word. Rather
than teach you yet another tool, this section presents instructions for writing Help text in Word.
However, do keep in mind that there are easier ways, and on a project of a decent size, you
easily save the time and money you invest in a Help authoring tool. An entire chapter in Design-
ing Windows 95 Help discusses choosing an authoring tool.

T I P

N O T E

Writing Help Text

Untitled-17 2/18/99, 3:28 PM255

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

256 Chapter 11 Help

You can open Word documents from within Developer Studio. Simply choose File, Open and select the
file—the starter RTF files for ShowString are in the HLP folder. The Word menus and toolbars will appear.
This works because Word documents are ActiveX Document Objects, discussed in Chapter 15, “Building
an ActiveX Server Application.” Most developers prefer to switch from Word to Developer Studio with the
taskbar rather than have a number of files open in Developer Studio and switch among them with the
Window menu, so the explanations in this section assume that you are running Word separately. If you
would rather work entirely within Developer Studio, feel free to so do.

Figure 11.6 shows afxcore.rtf open in Word. Choose View, Footnotes to display the footnotes
across the bottom of the screen—they are vital. This is how the text connects to the Help topic
IDs. Choose Tools, Options; select the View tab; and make sure the Hidden Text check box is
selected. This is how links between topics are entered. The topics are separated by page
breaks.

T I P

There are eight kinds of footnotes, each with a different meaning. Only the first three footnote
types in the following list are in general use:

■ #, the Help topic ID. The SDK WinHelp function looks for this topic ID when displaying
Help.

■ $, the topic title. This title displays in search results.

■ K, keywords. These appear in the Index tab of the Help Topics dialog box.

■ A, A-keyword. These keywords can be jumped to but don’t appear in the Index tab of the
Help Topics dialog box.

FIG. 11.6
Help text, such as this
boilerplate provided by
AppWizard, can be
edited in Word.

Untitled-17 2/18/99, 3:29 PM256

257

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

■ +, browse code. This marks the topic’s place in a sequence of topics.

■ !, macro entry. This makes the topic a macro to be run when the user requests the topic.

■ *, build tag. You use this to include certain tags only in certain builds of the Help file.

■ >, window type. This overrides the type of window for this topic.

The double-underlined text, followed by hidden text, identifies a jump to another Help topic. If
a user clicks to follow the link, this Help topic leaves the screen. If the text before the hidden
text was single-underlined, following the link opens a pop-up over this Help topic, perfect for
definitions and notes. (You can also see Help text files in which strikethrough text is used; this
is exactly the same as double-underlined—a jump to another topic.) In all three cases, the
hidden text is the topic ID of the material to be jumped to or popped up.

Figure 11.7 shows how the File, New Help material appears from within ShowString. To display
it yourself, run ShowString by choosing Build, Execute from within Developer Studio and then
choose Help, Help Topics in ShowString. Open the menus book, double-click the File menu
topic, and click New. Alternatively, choose the File menu, and while the highlight is on New,
press F1.

With the programming out of the way, it’s time to tackle the list of Help tasks for ShowString
from the “Planning Your Help Approach” section earlier in this chapter. These instructions
assume you are using Word.

Changing Placeholder Strings
To change the placeholder strings left behind by AppWizard in the boilerplate Help files, open
afxcore.rtf in Word if it isn’t already open. (It’s in the hlp folder of the ShowString project
folder.) Then follow these steps:

1. Position the cursor at the very beginning of the document and choose Edit, Replace.

2. Enter <<YourApp>> in the Find What box and ShowString in the Replace With box.

3. Click Replace All.

Open afxprint.rtf and repeat these steps.

FIG. 11.7
ShowString displays the
boilerplate Help
generated by
AppWizard.

Writing Help Text

Untitled-17 2/18/99, 3:29 PM257

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

258 Chapter 11 Help

Switch back to afxcore.rtf and look through the text for << characters (use Edit, Find and re-
member that Shift+F4 is the shortcut to repeat your previous Find). These identify places
where you must make a change or a decision. For ShowString, the changes in afxcore.rtf
are these:

1. The first section in the file is the ShowString Help Index. Remove the How To section
and the reminder to add some How To topics. In a real application, you add topics here.

2. The next section, after the page break, is a table describing the items on the File menu.
Because there’s no Send item on ShowString’s File menu, remove the Send row of the
File menu table.

3. The third section is a table listing the items on the Edit menu. Remove the Paste Link,
Insert New Object, and Links rows.

4. The fourth section is for the View menu and doesn’t need any changes.

5. The fifth section is for the Window menu. Remove the Split row from the Window
menu table.

6. The sixth section is for the Help menu and doesn’t need any changes.

7. The seventh section is for the New command (File menu). Remove the sentence about
choosing a file type and the reminder to remove it.

8. Entirely delete the eighth section, the File New dialog box topic, including the page
break before or after it, but not both. Whenever you remove a section, remove one of the
breaks so that the file doesn’t contain two consecutive page breaks.

9. The next topic is for the File, Open command and doesn’t need any changes.

10. Moving on to the File Open dialog box topic, edit the text to mention that the List Files of
Type list box contains only All Files.

11. Continue down the file until you find the File, Send topic and remove it entirely, includ-
ing one page break either before or after it.

12. In the File Save As topic, remove the suggestion to describe other options because there
are none.

13. When you reach the Edit Undo topic, you start to see why programs written after their
manuals are better programs. The way ShowString was written in Chapter 8, the Undo
item will never be enabled, nor will Cut, Copy, or Paste. You could remove the Help
topics about these unsupported menu items, but it’s probably better to plan on adding
support for the menu items to a later version of ShowString. Add some text to all these
topics, explaining that they aren’t implemented in this version of the product. Leave the
shortcuts sections there so that users can find out why Ctrl+Z does nothing.

14. Continue down through the file to the Toolbar topic, where you find this reminder:
<< Add or remove toolbar buttons from the list below according to which ones

your application offers. >> Remove the reminder and delete the references to the
Cut, Copy, Paste, Undo, First Record, Previous Record, Next Record, and Last Record
buttons.

Untitled-17 2/18/99, 3:29 PM258

259

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

15. About halfway down the file is a topic for the Split command (Window menu). Remove
the entire topic.

16. Move down to the Index command (Help menu) topic and remove it. Also remove the
Using Help command (Help menu) and About command (Help menu) topics.

17. In the Title Bar topic, remove the directive to insert a graphic. If you would rather follow
the directive, create a bitmap in a .bmp file of the title bar with screen shot software,
cropping the shot down to just the title bar, and insert the graphic with the bmc directive,
just as the bullet.bmp graphic is inserted a few lines lower in the file.

18. Because the ShowString view doesn’t inherit from CScrollView, it doesn’t scroll. Remove
the Scrollbars Help topic and its page break.

19. In the Close command topic (not the File Close topic, which was much earlier in the file)
the shortcut for Alt+F4 should be described like this: closes ShowString.

20. Remove the Ruler, Choose Font, Choose Color, Edit Find, Find Dialog, Edit Replace,
Replace Dialog Box, Edit Repeat, Edit Clear, Edit Clear All, Next Pane, and Previous
Pane topics.

21. Skip the How To Modify Text topic for now and leave it unchanged.

22. Remove the final directive about tailoring the No Help Available messages to each
message box (don’t remove the two No Help Available topics).

That completes the extensive changes required to the boilerplate afxcore.rtf file generated by
AppWizard. In the other boilerplate file, afxprint.rtf, scroll to the bottom and remove the Page
Setup topic.

Would you like to test all this work? Save afxcore.rtf and afxprint.rtf within Word. Switch to
Developer Studio and choose Build, Build to bring the project up to date. Then open
ShowString.hpj and choose Build, Compile. This pulls all the .rtf files together into
ShowString.hlp. Choose Build, Execute to run ShowString, and choose Help, Help Topics from
the ShowString menus. As you can see in Figure 11.8, the Window menu topic is now substan-
tially shorter. You can check that your other changes have been made, as well.

Adding Topics
When you are adding new topics, you don’t add new topics to the boilerplate files that were
provided. Those files should stay untouched unless you want to change the description of File,

FIG. 11.8
After saving the .rtf files
and compiling the Help
project, you can test to
see that your changes
have been made
successfully.

Writing Help Text

Untitled-17 2/18/99, 3:29 PM259

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

260 Chapter 11 Help

Open or other boilerplate topics. Instead, create a new file by choosing File, New in Word and
saving it in the hlp folder of the ShowString project folder as ShowString.rtf. (Make sure to
change the Save File As Type list box selection to Rich Text Format.) If this were a large
project, you could divide it up into several .rtf files, but one will suffice for ShowString. In
Developer Studio, open ShowString.hpj by double-clicking it in the FileView tab and find the
section headed [FILES]. Add this line at the end of that section:

showstring.rtf

The Tools Menu Back in Word, switch to afxcore.rtf and copy the topic for the File menu into
the Clipboard; then switch back to ShowString.rtf and paste it in. (Don’t forget to include the
page break after the topic in the selection when you copy.) Choose View, Footnotes to display
the footnotes, and Tools, Options, View tab, Hidden Text to display the hidden text. Now you
are going to edit the copied File topic to make it the Tools topic. Change the footnotes first.
They are as follows:

■ The # footnote is the topic ID. The Help system uses this to find this topic from the
Contents page. Change it to menu_tools.

■ The K footnote is the keyword entry. Although the Options dialog box probably deserves
several keywords, this menu doesn’t, so remove that footnote by selecting the letter K in
the Help topic and pressing Delete. You must select the letter; it isn’t enough to click just
before it. The footnote is deleted at the same time.

■ The $ footnote is the topic title. Change it to Tools menu commands.

In the topic, change File to Tools on the first two lines, and delete all the rows of the table but
one. Change the underlined text of that row to Options, the hidden text immediately following
to HID_TOOLS_OPTIONS, and the right column of that row to Changes string, color, and cen-
tering. Figure 11.9 shows the way ShowString.rtf looks in Word after these changes.

FIG. 11.9
Change the
ShowString.rtf file to
explain the new menu
item.

Untitled-17 2/18/99, 3:30 PM260

261

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

If you can’t remember the Help topic IDs your project is using, check your .hm files. The ones added by
Developer Studio, such as HID_TOOLS_OPTIONS for the menu item with resource ID
ID_TOOLS_OPTIONS, are in ShowString.hm, whereas ShowStringx.hm contains the Help topic IDs
added by hand for context Help.

The Tools, Options Menu Item Switch back to afxcore, copy the File New topic, and paste it
into ShowString.rtf, as before. The topic and its footnotes are copied together. Watch carefully
to be sure you are working with the footnotes for the Tools Options topic and not the ones for
the Tools menu. Follow these steps:

1. Change the # footnote to HID_TOOLS_OPTIONS.

2. Change the K keyword. Several keywords should lead here, and each needs to be
separated from the next by a semicolon (;). Some need to be two-level keywords with
the levels separated by commas. A good first start is string, changing;color,
changing;centering, changing;appearance, controlling.

3. Change the $ keyword to Tools Options command.

4. Change the first line of the topic to Options command (Tools menu).

5. Delete the rest of the topic and replace it with a short description of this menu item. The
following text is okay:

Use this command to change the appearance of the ShowString
display with the Options dialog box. The string being displayed,
color of the text, and vertical and horizontal centering are
all controlled from this dialog.

If you want to test this, too, save the files in Word, compile the Help project, run ShowString,
and choose Tools. Highlight the Options item by moving the highlight with the cursor keys,
but don’t click Options to select it; press F1 instead. Figure 11.10 shows the Help window that
displays.

T I P

Each Control on the Options Dialog Copy the File New topic into ShowString.rtf again and
cut it down drastically. To do this, follow these steps:

1. Remove the K and $ footnotes.

2. Change the # footnote to HIDD_OPTIONS.

3. Change the first line to (Options dialog).

4. Delete the other text in the topic.

FIG. 11.10
The new Tools Options
Help is reached by
pressing F1 while the
item is highlighted on
the menu.

Writing Help Text

Untitled-17 2/18/99, 3:30 PM261

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

262 Chapter 11 Help

Copy this block into the Clipboard and paste it in seven more times so that you have a skeleton
for each control on the dialog box. Remember to copy the page break before or after the topic,
too. Then, edit each skeleton to document the following topic IDs:

■ HIDD_OPTIONS_STRING

■ HIDD_OPTIONS_BLACK

■ HIDD_OPTIONS_RED

■ HIDD_OPTIONS_GREEN

■ HIDD_OPTIONS_HORIZCENTER

■ HIDD_OPTIONS_VERTCENTER

■ HIDD_OPTIONS_OK

■ HIDD_OPTIONS_CANCEL

Change the topic ID and add a sentence or two of text. Be consistent. The examples included
with this chapter are each a single sentence that starts with an imperative verb like Click or
Select and ends with a period (.). If you would rather choose a different style for your pop-up
boxes, use the same style for all of them. It confuses the user when pop-up boxes are inconsis-
tent and tends to make them believe your coding is sloppy, too.

To test your work, compile ShowString.hpj again, run ShowString, and choose Tools, Options.
Click the Question button and then click somewhere on the dialog box. Explore each of the
controls to be sure you have entered the correct text. Figure 11.11 shows the context Help for
the String edit box.

Understanding Centering In ShowString.rtf, paste in another copy of the File New topic.
Make the following changes:

1. Change the # footnote to HID_CENTERING (the topic ID you added to ShowStringx.hm and
called in CShowStringApp::OnHelpUnderstandingcentering()).

2. Change the K footnote to centering.

3. Change the $ footnote to Understanding Centering.

FIG. 11.11
Display Help for a dialog
box control by clicking
the Question button in
the upper-right corner
and then clicking a
control.

Untitled-17 2/18/99, 3:31 PM262

263

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

4. Change the title on the first line to Understanding Centering.

5. Replace the text with a short explanation of centering, like this:
ShowString can center the displayed string within the view. The two
options, “center horizontally” and “center vertically”, can be set
independently on the Options dialog box, reached by choosing the Options
item on the Tools menu. Text that is not centered horizontally is
displayed at the left edge of the window. Text that is not centered
vertically is displayed at the top of the window.

6. Add links from the word Tools to the menu_tools topic and from the word Options to
HID_TOOLS_OPTIONS, as before. Remember to watch for extra spaces.

Test this change in the usual way, and when you choose Help, Understanding Centering from
the ShowString menus, you should see something like Figure 11.12. Try following the links;
you can use the Back button to return to the centering topic.

Changing the How to Modify Text Topic
AppWizard already provided a How to Modify Text topic at the bottom of afxcore.rtf that needs
to be edited to explain how ShowString works. It displays when the user selects the view area
for context Help. Replace the text with a much shorter explanation that tells the user to choose
Tools, Options. To add a link to that topic (short though it is), type HID_TOOLS_OPTIONS imme-
diately after the word Options in the Help topic. While you’re at it, type menu_tools immedi-
ately after the word Tools. Select the word Options and press Ctrl+Shift+D to double-underline
it; then do the same for Tools. Select HID_TOOLS_OPTIONS and press Ctrl+Shift+H to hide it; then
do the same for menu_tools.

If you’ve reassigned these keys, you can do the formatting the long way. To double-underline text, select
it and choose Format, Font. Drop down the Underline box and choose Double; then click OK. To hide
text, select it and choose Format, Font; then select the Hidden box and click OK.

There can’t be any spaces between the double-underlined text and the hidden text or at the end of the
hidden text. Word can give you some trouble about this because the Smart Cut and Paste feature that
works so nicely with words can insert extra spaces where you don’t want them or can make it
impossible to select only half a word. You can turn off the feature in Word by choosing Tools, Options,
the Edit tab and by deselecting the When Selecting, Automatically Select Entire Word and Use Smart
Cut and Paste check boxes.

FIG. 11.12
Display a teaching Help
topic by choosing it
from the Help menu.

T I P

T I P

Writing Help Text

Untitled-17 2/18/99, 3:31 PM263

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

264 Chapter 11 Help

Ready to test again? Save the files in Word, compile the Help project file, and execute
ShowString; then click the What’s This? button on the toolbar and click in the main view. Your
new How to Modify Text entry should display.

Adjustments to the Contents
This tiny little application is almost entirely documented now. You need to add the Tools menu
and Understanding Centering to the Contents and to check the index. The easiest way to tackle
the Contents is with Help Workshop. Close all the Help-related files that are open in Developer
Studio and Word and open Help Workshop by choosing Start, Programs, Microsoft Visual
Studio 6.0, Microsoft Visual Studio 6.0 Tools, Help Workshop. Open ShowString.cnt by choos-
ing File, Open and working your way through the Open dialog box. (If you can’t find the con-
tents file, be sure to change the File Type drop-down. It’s probably in your Debug directory.)
This is the Contents file for ShowString.

In the first open book, click the View Menu item and then click the Add Below button. (Alter-
natively, click the Window Menu item and then the Add Above button.) The Edit Contents Tab
Entry dialog box, shown in Figure 11.13, appears. Fill it in as shown; by leaving the last two
entries blank, the default Help File and Window Type are used. Click OK.

Click the placeholder book named <<add your application-specific topics here>> and
click Add Above again. When the Edit Contents Tab Entry dialog box appears, select the Head-
ing radio button from the list across the top. As shown in Figure 11.14, you can change only the
title here. Don’t use Understanding Centering because that’s the title of the only topic under
this heading. Enter Displaying a string and click OK.

Add a topic below the new heading for Understanding Centering, whose ID is HID_CENTERING,
and remove the placeholder heading and topic. Save your changes, close Help Workshop,
compile ShowString.hpj in Developer Studio again, and test your Help. Choose Help, Help
Topics and expand each heading. You will see something like Figure 11.15.

FIG. 11.13
Add entries to the
Contents tab with Help
Workshop’s Edit
Contents Tab Entry
dialog box.

Untitled-17 2/18/99, 3:31 PM264

265

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

11

III
Part

Ch

While you have the Help Topics dialog box open, click the Index tab. Figure 11.16 shows how
the K footnotes you entered throughout this section have all been added to the index. If it looks
a little sparse, you can always go to the .rtf files and add more keywords, remembering to
separate them with semicolons.

FIG. 11.14
Add headings to the
Contents tab with Help
Workshop’s Edit
Contents Tab Entry
dialog box.

FIG. 11.15
After saving the .cnt file
and compiling the .hpj
file, display the new
table of contents by
choosing Help, Help
Topics.

FIG. 11.16
The index has been
built from the K
footnotes in the .rtf
files.

Adjustments to the Contents

Untitled-17 2/18/99, 3:31 PM265

B3/A3 swg4 UsingVisualC++ 1539-2 7.20.98 ayanna chapter 11 LP#3

266 Chapter 11 Help

Now the Help file for this application is complete, and you’ve arranged for the relevant sections
of the file to be displayed when the user requests online Help. You can apply these concepts to
your own application, and never again deliver an undocumented product. ●

Untitled-17 2/18/99, 3:31 PM266

267

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

C H A P T E R

Property Pages and Sheets

Introducing Property Sheets 268

Creating the Property Sheet Demo Application 269

Running the Property Sheet Demo Application 279

Adding Property Sheets to Your Applications 280

Changing Property Sheets to Wizards 281

12

In this chapter

Untitled-18 2/18/99, 3:33 PM267

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

268 Chapter 12 Property Pages and Sheets

Introducing Property Sheets
One of the newest types of graphical objects is the tabbed dialog box, also known as a property
sheet. A property sheet is a dialog box with two or more pages. Windows and NT are loaded
with property sheets, which organize the many options that users can modify. You flip the
pages by clicking labeled tabs at the top of the dialog box. Using such dialog boxes to organize
complex groups of options enables users to more easily find the information and settings they
need. As you’ve probably guessed, Visual C++ 6 supports property sheets, with the classes
CPropertySheet and CPropertyPage.

Similar to property sheets are wizards, which use buttons instead of tabs to move from one
page to another. You’ve seen a lot of wizards, too. These special types of dialog boxes guide
users step by step through complicated processes. For example, when you use AppWizard to
generate source code for a new project, the wizard guides you through the entire process. To
control the wizard, you click buttons labeled Back, Next, and Finish.

Finding a sample property sheet is as easy as finding sand at the beach. Just click virtually any
Properties command or bring up an Options dialog in most applications. For example, Figure
12.1 shows the dialog box that you see when you choose Tools, Options from within Visual
C++. This property sheet contains 12 pages in all, each covering a different set of options.

FIG. 12.1
The Options properties
sheet contains many
tabbed pages.

Many people forget the difference between a property sheet and a property page. A
property sheet is a window that contains property pages. Property pages are windows that

hold controls. They appear on the property sheet. ■

As you can see, property sheets are a great way to organize many types of related options.
Gone are the days of dialog boxes so jam-packed with options that you needed a college-level
course just to figure them out. In the following sections, you’ll learn to program your own
tabbed property sheets by using MFC’s CPropertySheet and CPropertyPage classes.

N O T E

Untitled-18 2/18/99, 3:33 PM268

269

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

Creating the Property Sheet Demo Application
Now that you’ve had an introduction to property sheets, it’s time to learn how to build an appli-
cation that uses these handy specialized dialog boxes. You’re about to build the Property Sheet
Demo application, which demonstrates the creation and manipulation of property sheets. Fol-
low the steps in the following sections to create the basic application and modify its resources.

Creating the Basic Files
First, use AppWizard to create the basic files for the Property Sheet Demo program, selecting
the options listed in the following table. When you’re done, the New Project Information dialog
box appears; it will look like Figure 12.2. Click OK to create the project files.

Dialog Box Name Options to Select

New, Project tab Name the project Propsheet and then set the project path to
the directory in which you want to store the project’s files.
Make sure that MFC AppWizard (exe) is highlighted. Leave
the other options set to their defaults.

Step 1 Select Single Document.

Step 2 of 6 Leave set to defaults.

Step 3 of 6 Leave set to defaults.

Step 4 of 6 Turn off all application features.

Step 5 of 6 Leave set to defaults.

Step 6 of 6 Leave set to defaults.

FIG. 12.2
Your New Project
Information dialog box
looks like this.

Creating the Property Sheet Demo Application

Untitled-18 2/18/99, 3:33 PM269

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

270 Chapter 12 Property Pages and Sheets

Editing the Resources
Now you’ll edit the resources in the application generated for you by AppWizard, removing
unwanted menus and accelerators, editing the About box, and most importantly, adding a
menu item that will bring up a property sheet. Follow these steps:

1. Select the ResourceView tab in the project workspace window. Developer Studio displays
the ResourceView window (see Figure 12.3).

FIG. 12.3
The ResourceView tab
displays the
ResourceView window.

ResourceView window

ResourceView tab

2. In the ResourceView window, click the plus sign next to Propsheet Resources to display
the application’s resources. Click the plus sign next to Menu and then double-click the
IDR_MAINFRAME menu ID. Visual C++’s menu editor appears, displaying the
IDR_MAINFRAME menu generated by AppWizard.

3. Click the Property Sheet Demo application’s Edit menu (not Visual C++’s Edit menu)
and then press Delete to delete the Edit menu. A dialog box asks for verification of the
Delete command; click OK.

4. Double-click the About Propsheet… item in the Help menu to bring up its properties
dialog box. Change the caption to &About Property Sheet Demo. Pin the properties
dialog box in place by clicking the pushpin in the upper-left corner.

5. On the application’s File menu, delete all menu items except Exit.

6. Select the blank menu item at the end of the File menu, and change the caption to
&Property Sheet… and the command ID to ID_PROPSHEET (see Figure 12.4). Then use
your mouse to drag the new command above the Exit command so that it’s the first
command in the File menu.

Untitled-18 2/18/99, 3:33 PM270

271

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

7. Click the + next to Accelerator in the ResourceView window and highlight the
IDR_MAINFRAME accelerator ID. Press Delete to delete all accelerators from the applica-
tion.

8. Click the + next to Dialog in the ResourceView window. Double-click the IDD_ABOUTBOX
dialog box ID to bring up the dialog box editor.

9. Modify the dialog box by clicking the title so that the properties box refers to the whole
dialog box. Change the caption to About Property Sheet Demo.

10. Click the first static text string and change the caption to Property Sheet Demo,
Version 1.0. Click the second and add Que Books to the end of the copyright string.

11. Add a third static string with the text Special Edition Using Visual C++ 6 so that your
About box resembles the one in Figure 12.5. Close the dialog box editor.

12. Click the + next to String Table in the ResourceView window. Double-click the String
Table ID to bring up the string table editor.

13. Double-click the IDR_MAINFRAME string and then change the first segment of the string to
Property Sheet Demo (see Figure 12.6). The meanings of these strings are discussed
in Chapter 15, “Building an ActiveX Server Application,” in the “Shortcomings of This
Server” section. The one you just changed is the Window Title, used in the title bar of
the application.

FIG. 12.4
Add a Property Sheet
command to the File
menu.

Creating the Property Sheet Demo Application

Untitled-18 2/18/99, 3:34 PM271

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

272 Chapter 12 Property Pages and Sheets

FIG. 12.5
The About box looks like
this.

FIG. 12.6
The first segment of the
IDR_MAINFRAME string
appears in your main
window’s title bar.

Untitled-18 2/18/99, 3:34 PM272

273

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

Adding New Resources
Now that you have the application’s basic resources the way you want them, it’s time to add the
resources that define the application’s property sheet. This means creating dialog box re-
sources for each page in the property sheet. Follow these steps:

1. Click the New Dialog button on the Resource toolbar, or press Ctrl+1, to create a new
dialog box resource. The new dialog box, IDD_DIALOG1, appears in the dialog box editor.
This dialog box, when set up properly, will represent the first page of the property sheet.

2. Delete the OK and Cancel buttons by selecting each with your mouse and then pressing
Delete.

3. If the Properties box isn’t still up, bring it up by choosing View, Properties. Change the
ID of the dialog box to IDD_PAGE1DLG and the caption to Page 1 (see Figure 12.7).

FIG. 12.7
Change the caption and
resource ID of the new
dialog box.

4. Click the Styles tab of the dialog box’s property sheet. In the Style drop-down box select
Child, and in the Border drop-down box select Thin. Turn off the System Menu check
box. Your properties dialog box will resemble Figure 12.8.

The Child style is necessary because the property page will be a child window of the
property sheet. The property sheet itself will provide the container for the property
pages.

FIG. 12.8
A property page uses
styles different from
those used in regular
dialog boxes.

5. Add an edit box to the property page, as shown in Figure 12.9. In most applications you
would change the resource ID from IDC_EDIT1, but for this demonstration application,
leave it unchanged.

6. Create a second property page by following steps 1 through 5 again. For this property
page, use the ID IDD_PAGE2DLG, a caption of Page 2, and add a check box rather than an
edit control (see Figure 12.10).

Creating the Property Sheet Demo Application

Untitled-18 2/18/99, 3:34 PM273

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

274 Chapter 12 Property Pages and Sheets

FIG. 12.10
The second property
page looks like this.

FIG. 12.9
A property page can
hold whatever controls
you like.

Untitled-18 2/18/99, 3:34 PM274

275

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

Associating Your Resources with Classes
You now have all your resources created. Next, associate your two new property-page
resources with C++ classes so that you can control them in your program. You also need a class
for your property sheet, which will hold the property pages that you’ve created. Follow these
steps to create the new classes:

1. Make sure that the Page 1 property page is visible in the dialog box edit area and then
double-click it. If you prefer, choose View, ClassWizard from the menu bar. The MFC
ClassWizard property sheet appears, displaying the Adding a Class dialog box first
discussed in Chapter 2, “Dialogs and Controls.”

2. Select the Create New Class option and then click OK. The New Class dialog box
appears.

3. In the Name box, type CPage1. In the Base Class box, select CPropertyPage. (Don’t
accidentally select CPropertySheet.) Then click OK to create the class.

You’ve now associated the property page with an object of the CPropertyPage class,
which means that you can use the object to manipulate the property page as needed. The
CPropertyPage class will be especially important when you learn about wizards.

4. Select the Member Variables tab of the MFC ClassWizard property sheet. With
IDC_EDIT1 highlighted, click the Add Variable button. The Add Member Variable dialog
box appears.

5. Name the new member variable m_edit, as shown in Figure 12.11, and then click OK.
ClassWizard adds the member variable, which will hold the value of the property page’s
control, to the new CPage1 class.

FIG 12.11
ClassWizard makes it
easy to connect
controls on a dialog
box to member
variables of the class
representing the dialog
box.

6. Click OK on the MFC ClassWizard properties sheet to finalize the creation of the CPage1
class.

7. Follow steps 1 through 6 for the second property sheet. Name the class CPage2 and add
a Boolean member variable called m_check for the IDC_CHECK1 control, as shown in
Figure 12.12.

Creating the Property Sheet Demo Application

Untitled-18 2/18/99, 3:35 PM275

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

276 Chapter 12 Property Pages and Sheets

Creating a Property Sheet Class
At this point, you’ve done all the resource editing and don’t need to have so many windows
open. Choose Window, Close All from the menu bar and close the properties box. You’ll now
create a property sheet class that displays the property pages already created. Follow these
steps:

1. Bring up ClassWizard and click the Add Class button. A tiny menu appears below the
button; choose New. The New Class dialog box appears.

2. In the Name box, type CPropSheet, select CPropertySheet in the Base Class box, and
then click OK.

3. ClassWizard creates the CPropSheet class. Click the MFC ClassWizard Properties
sheet’s OK button to finalize the class.

Mow you have three new classes—CPage1, CPage2, and CPropSheet—in your program. The
first two classes are derived from MFC’s CPropertyPage class, and the third is derived from
CPropertySheet. Although ClassWizard has created the basic source-code files for these new
classes, you still have to add code to the classes to make them work the way you want. Follow
these steps to complete the Property Sheet Demo application:

1. Click the ClassView tab to display the ClassView window. Expand the Propsheet classes,
as shown Figure 12.13.

2. Double-click CPropSheet to open the header file for your property sheet class. Because
the name of this class (CPropSheet) is so close to the name of the application as a whole
(PropSheet), you’ll find CPropSheet in PropSheet1.h, generated by ClassWizard when
you created the new class.

3. Add the following lines near the middle of the file, right before the CPropSheet class
declaration:
#include “page1.h”
#include “page2.h”

These lines give the CPropSheet class access to the CPage1 and CPage2 classes so that
the property sheet can declare member variables of these property page classes.

FIG. 12.12
The second property
page needs a Boolean
member variable called
m_checkbox.

Untitled-18 2/18/99, 3:35 PM276

277

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

4. Add the following lines to the CPropSheet class’s //Attributes section, right after the
public keyword:
CPage1 m_page1;
CPage2 m_page2;

These lines declare the class’s data members, which are the property pages that will be
displayed in the property sheet.

5. Expand the CPropSheet class in the ClassView pane, and double-click the first construc-
tor, CPropSheet. Add these lines to it:
AddPage(&m_page1);
AddPage(&m_page2);

This will add the two property pages to the property sheet whenever the sheet is
constructed.

6. The second constructor is right below the first; add the same lines there.

7. Double-click CPropsheetView in ClassView to edit the header file, and add the following
lines to the //Attributes section, right after the line CPropsheetDoc* GetDocument();:
protected:
 CString m_edit;
 BOOL m_check;

These lines declare two data members of the view class to hold the selections made in
the property sheet by users.

8. Add the following lines to the CPropsheetView constructor:
m_edit = “Default”;
m_check = FALSE;

FIG. 12.13
The ClassView window
lists the classes that
make up your project.

Creating the Property Sheet Demo Application

Untitled-18 2/18/99, 3:35 PM277

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

278 Chapter 12 Property Pages and Sheets

These lines initialize the class’s data members so that when the property sheet appears,
these default values can be copied into the property sheet’s controls. After users change
the contents of the property sheet, these data members will always hold the last values
from the property sheet, so those values can be restored to the sheet when needed.

9. Edit CPropsheetView::OnDraw() so that it resembles Listing 12.1. The new code displays
the current selections from the property sheet. At the start of the program, the default
values are displayed.

Listing 12.1 CPropsheetView::OnDraw()

void CPropsheetView::OnDraw(CDC* pDC)
{
 CPropsheetDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(20, 20, m_edit);
 if (m_check)
 pDC->TextOut(20, 50, “TRUE”);
 else
 pDC->TextOut(20, 50, “FALSE”);
}

10. At the top of PropsheetView.cpp, after the #include of propsheet.h, add another include
statement:
#include “propsheet1.h”

11. Bring up ClassWizard, click the Message Maps tab, and make sure that CPropsheetView
is selected in the Class Name box. In the Object IDs box, select ID_PROPSHEET, which is
the ID of the new item you added to the File menu. In the Messages box, select COMMAND.
Click Add Function to add a function that will handle the command message generated
when users choose this menu item. Name the function OnPropsheet(), as shown in
Figure 12.14.

FIG. 12.14
Use ClassWizard to add
the OnPropsheet()
member function.

Untitled-18 2/18/99, 3:36 PM278

279

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

The OnPropsheet() function is now associated with the Property Sheet command that
you previously added to the File menu. That is, when users select the Property Sheet
command, MFC calls OnPropsheet(), where you can respond to the command.

12. Click the Edit Code button to jump to the OnPropsheet() function, and add the lines
shown in Listing 12.2.

Listing 12.2 CPropsheetView::OnPropsheet()

void CPropsheetView::OnPropsheet()
{
 CPropSheet propSheet(“Property Sheet”, this, 0);
 propSheet.m_page1.m_edit = m_edit;
 propSheet.m_page2.m_checkbox = m_check;
 int result = propSheet.DoModal();
 if (result == IDOK)
 {
 m_edit = propSheet.m_page1.m_edit;
 m_check = propSheet.m_page2.m_checkbox;
 Invalidate();
 }

}

The code segment in Listing 12.2, discussed in more detail later in this chapter, creates
an instance of the CPropSheet class and sets the member variables of each of its pages. It
displays the sheet by using the familiar DoModal function first discussed in Chapter 2,
“Dialogs and Controls.” If users click OK, it updates the view member variables to reflect
the changes made on each page and forces a redraw with a call to Invalidate().

Running the Property Sheet Demo Application
You’ve finished the complete application. Click the Build button on the Build minibar (or
choose Build, Build) to compile and link the application. Run it by choosing Build, Execute or
by clicking the Execute button on the Build minibar. When you do, you see the window shown
in Figure 12.15.

As you can see, the window displays two values—the default values for the controls in the
application’s property sheet. You can change these values by using the property sheet. Choose
File, Property Sheet; the property sheet appears (see Figure 12.16). The property sheet con-
tains two pages, each of which holds a single control. When you change the settings of these
controls and click the property sheet’s OK button, the application’s window displays the new
values. Try it!

Running the Property Sheet Demo Application

Untitled-18 2/18/99, 3:36 PM279

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

280 Chapter 12 Property Pages and Sheets

FIG. 12.15
When it first starts, the
Property Sheet Demo
application displays
default values for the
property sheet’s
controls.

FIG. 12.16
The application’s
property sheet contains
two pages.

Adding Property Sheets to Your Applications
To add a property sheet to one of your own applications, you follow steps very similar to those
you followed in the previous section to create the demo application:

1. Create a dialog box resource for each page in the property sheet. These resources
should have the Child and Thin styles and should have no system menu.

2. Associate each property page resource with an object of the CPropertyPage class. You
can do this easily with ClassWizard. Connect controls on the property page to members
of the class you create.

3. Create a class for the property sheet, deriving the class from MFC’s CPropertySheet
class. You can generate this class by using ClassWizard.

4. In the property sheet class, add member variables for each page you’ll be adding to the
property sheet. These member variables must be instances of the property page classes
that you created in step 2.

5. In the property sheet’s constructor, call AddPage() for each page in the property sheet.

6. To display the property sheet, call the property sheet’s constructor and then call the
property sheet’s DoModal() member function, just as you would with a dialog box.

Untitled-18 2/18/99, 3:36 PM280

281

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

After you write your application and define the resources and classes that represent the prop-
erty sheet (or sheets—you can have more than one), you need a way to enable users to display
the property sheet when it’s needed. In Property Sheet Demo, this is done by associating a
menu item with a message-response function. However you handle the command to display the
property sheet, the process of creating the property sheet is the same. First, you must call the
property sheet class’s constructor, which Property Sheet Demo does like this:

CPropSheet propSheet(“Property Sheet”, this, 0);

Here, the program creates an instance of the CPropSheet class. This instance (or object) is
called propSheet. The three arguments are the property sheet’s title string, a pointer to the
parent window (which, in this case, is the view window), and the zero-based index of the first
page to display. Because the property pages are created in the property sheet’s constructor,
creating the property sheet also creates the property pages.

After you create the property sheet object, you can initialize the data members that hold the
values of the property page’s controls, which Property Sheet Demo does like this:

propSheet.m_page1.m_edit = m_edit;
propSheet.m_page2.m_checkbox = m_check;

Now it’s time to display the property sheet, which you do just as though it were a dialog box,
by calling the property sheet’s DoModal() member function:

int result = propSheet.DoModal();

DoModal() doesn’t take any arguments, but it does return a value indicating which button users
clicked to exit the property sheet. In a property sheet or dialog box, you’ll usually want to
process the information entered into the controls only if users clicked OK, which is indicated
by a return value of IDOK. If users exit the property sheet by clicking the Cancel button, the
changes are ignored and the view or document member variables aren’t updated.

Changing Property Sheets to Wizards
Here’s a piece of information that surprises most people: A wizard is just a special property
sheet. Instead of tabbed pages on each sheet that allow users to fill in the information in any
order or to skip certain pages entirely, a wizard has Back, Next, and Finish buttons to move
users through a process in a certain order. This forced sequence makes wizards terrific for
guiding your application’s users through the steps needed to complete a complex task. You’ve
already seen how AppWizard in Visual C++ makes it easy to start a new project. You can create
your own wizards suited to whatever application you want to build. In the following sections,
you’ll see how easy it is to convert a property sheet to a wizard.

Running the Wizard Demo Application
To understand Wizards, this section will show you the Wizard Demo application, which is built
in much the same way as the Property Sheet Demo application that you created earlier in this
chapter. This chapter won’t present step-by-step instructions to build Wizard Demo. You will be
able to build it yourself if you want, using the general steps presented earlier and the code
snippets shown here.

Changing Property Sheets to Wizards

Untitled-18 2/18/99, 3:36 PM281

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

282 Chapter 12 Property Pages and Sheets

When you run the Wizard Demo application, the main window appears, looking very much like
the Property Sheet Demo main window. The File menu now includes a Wizard item; choosing
File Wizard brings up the wizard shown in Figure 12.17.

FIG. 12.17
The Wizard Demo
application displays a
wizard rather than a
property sheet.

The wizard isn’t too fancy, but it does demonstrate what you need to know to program more
complex wizards. As you can see, this wizard has three pages. On the first page is an edit con-
trol and three buttons: Back, Next, and Cancel. The Back button is disabled because there’s no
previous page to go back to. The Cancel button enables users to dismiss the wizard at any time,
canceling whatever process the wizard was guiding users through. The Next button causes the
next page in the wizard to appear.

You can change whatever is displayed in the edit control if you like. However, the magic really
starts when you click the Next button, which displays Page 2 of the wizard (see Figure 12.18).
Page 2 contains a check box and the Back, Next, and Cancel buttons. Now the Back button is
enabled, so you can return to Page 1 if you want to. Go ahead and click the Back button. The
wizard tells you that the check box must be checked (see Figure 12.19). As you’ll soon see, this
feature of a wizard enables you to verify the contents of a specific page before allowing users to
advance to another step.

FIG. 12.18
In Page 2 of the wizard,
the Back button is
enabled.

After checking the check box, you can click the Back button to move back to Page 1 or click
Next to advance to Page 3. Assuming that you advance to Page 3, you see the display shown in
Figure 12.20. Here, the Next button has changed to the Finish button because you are on the
wizard’s last page. If you click the Finish button, the wizard disappears.

Untitled-18 2/18/99, 3:37 PM282

283

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

Creating Wizard Pages
As far as your application’s resources go, you create wizard pages exactly as you create prop-
erty sheet pages—by creating dialog boxes and changing the dialog box styles. The dialog
titles—Page 1 of 3, Page 2 of 3, and Page 3 of 3—are hardcoded onto each dialog box. You
associate each dialog box resource with an object of the CPropertyPage class. Then, to take
control of the pages in your wizard and keep track of what users are doing with the wizard, you
override the OnSetActive(), OnWizardBack(), OnWizardNext(), and OnWizardFinish() func-
tions of your property page classes. Read on to see how to do this.

Displaying a Wizard
The File, Wizard command is caught by CWizView’s OnFileWizard() function. It’s very similar
to the OnPropSheet() function in the Property Sheet demo, as you can see from Listing 12.3.
The first difference is the call to SetWizardMode() before the call to DoModal(). This function
call tells MFC that it should display the property sheet as a wizard rather than as a conven-
tional property sheet. The only other difference is that users arrange for property sheet
changes to be accepted by clicking Finish, not OK, so this code checks for ID_WIZFINISH
rather than IDOK as a return from DoModal().

Listing 12.3 CWizView::OnFileWizard()

void CWizView::OnFileWizard()
{
 CWizSheet wizSheet(“Sample Wizard”, this, 0);
 wizSheet.m_page1.m_edit = m_edit;

FIG. 12.19
You must select the
check box before the
wizard will let you leave
Page 2.

FIG. 12.20
This is the last page of
the Wizard Demo
Application’s wizard.

continues

Changing Property Sheets to Wizards

Untitled-18 2/18/99, 3:37 PM283

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

284 Chapter 12 Property Pages and Sheets

Listing 12.3 Continued

 wizSheet.m_page2.m_check = m_check;
 wizSheet.SetWizardMode();
 int result = wizSheet.DoModal();
 if (result == ID_WIZFINISH)
 {
 m_edit = wizSheet.m_page1.m_edit;
 m_check = wizSheet.m_page2.m_check;
 Invalidate();
 }
}

Setting the Wizard’s Buttons
MFC automatically calls the OnSetActive() member function immediately upon displaying a
specific page of the wizard. So, when the program displays Page 1 of the wizard, the CPage1
class’s OnSetActive() function is called. You add code to this function that makes the wizard
behave as you want. CPage1::OnSetActive() looks like Listing 12.4.

Listing 12.4 CPage1::OnSetActive()

BOOL CPage1::OnSetActive()
{
 CPropertySheet* parent = (CPropertySheet*)GetParent();
 parent->SetWizardButtons(PSWIZB_NEXT);
 return CPropertyPage::OnSetActive();
}

OnSetActive() first gets a pointer to the wizard’s property sheet window, which is the page’s
parent window. Then the program calls the wizard’s SetWizardButtons() function, which
determines the state of the wizard’s buttons. SetWizardButtons() takes a single argument,
which is a set of flags indicating how the page should display its buttons. These flags are
PSWIZB_BACK, PSWIZB_NEXT, PSWIZB_FINISH, and PSWIZB_DISABLEDFINISH. Because the call to
SetWizardButtons() in Listing 12.4 includes only the PSWIZB_NEXT flag, only the Next button in
the page will be enabled.

Because the CPage2 class represents Page 2 of the wizard, its call to SetWizardButtons()
enables the Back and Next buttons by combining the appropriate flags with the bitwise OR
operator (|), like this:

parent->SetWizardButtons(PSWIZB_BACK | PSWIZB_NEXT);

Because Page 3 of the wizard is the last page, the CPage3 class calls SetWizardButtons() like
this:

parent->SetWizardButtons(PSWIZB_BACK | PSWIZB_FINISH);

This set of flags enables the Back button and provides a Finish button instead of a Next button.

Untitled-18 2/18/99, 3:37 PM284

285

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH12 LP#3

12

III
Part

Ch

Responding to the Wizard’s Buttons
In the simplest case, MFC takes care of everything that needs to be done in order to flip from
one wizard page to the next. That is, when users click a button, MFC springs into action and
performs the Back, Next, Finish, or Cancel command. However, you’ll often want to perform
some action of your own when users click a button. For example, you may want to verify that
the information that users entered into the currently displayed page is correct. If there’s a
problem with the data, you can force users to fix it before moving on.

To respond to the wizard’s buttons, you override the OnWizardBack(), OnWizardNext(), and
OnWizardFinish() member functions. Use the Message Maps tab of ClassWizard to do this;
you’ll find the names of these functions in the Messages window when a property page class is
selected in the Class Name box. When users click a wizard button, MFC calls the matching
function which does whatever is needed to process that page. An example is the way the wizard
in the Wizard Demo application won’t let you leave Page 2 until you’ve checked the check box.
This is accomplished by overriding the functions shown in Listing 12.5.

Listing 12.5 Responding to Wizard Buttons

LRESULT CPage2::OnWizardBack()
{
 CButton *checkBox = (CButton*)GetDlgItem(IDC_CHECK1);
 if (!checkBox->GetCheck())
 {
 MessageBox(“You must check the box.”);
 return -1;
 }
 return CPropertyPage::OnWizardBack();
}

LRESULT CPage2::OnWizardNext()
{
 UpdateData();
 if (!m_check)
 {
 MessageBox(“You must check the box.”);
 return -1;
 }
 return CPropertyPage::OnWizardNext();
}

These functions demonstrate two ways to examine the check box on Page 2. OnWizardBack()
gets a pointer to the page’s check box by calling the GetDlgItem() function. With the pointer in
hand, the program can call the check box class’s GetCheck() function, which returns a 1 if the
check box is checked. OnWizardNext() calls UpdateData() to fill all the CPage2 member vari-
ables with values from the dialog box controls and then looks at m_check. In both functions, if
the box isn’t checked, the program displays a message box and returns –1 from the function.
Returning –1 tells MFC to ignore the button click and not change pages. As you can see, it is
simple to arrange for different conditions to leave the page in the Back or Next direction. ●

Changing Property Sheets to Wizards

Untitled-18 2/18/99, 3:38 PM285

Untitled-18 2/18/99, 3:38 PM286

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 ayanna ptIV LP#3

IVP A R T

ActiveX Applications and ActiveX Controls

13 ActiveX Concepts 289

14 Building an ActiveX Container Application 303

15 Building an ActiveX Server Application 343

16 Building an Automation Server 373

17 Building an ActiveX Control 393

Untitled-19 2/18/99, 3:42 PM287

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 ayanna ptIV LP#3

Untitled-19 2/18/99, 3:42 PM288

289

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

C H A P T E R

ActiveX Concepts

The Purpose of ActiveX 290

Object Linking 292

Object Embedding 294

Containers and Servers 295

Toward a More Intuitive User Interface 296

The Component Object Model 298

Automation 299

ActiveX Controls 300

13

In this chapter

Untitled-20 2/18/99, 3:44 PM289

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

290 Chapter 13 ActiveX Concepts

The Purpose of ActiveX
This chapter covers the theory and concepts of ActiveX, which is built on the Component Ob-
ject Model (COM). Until recently, the technology built on COM was called OLE, and OLE still
exists, but the emphasis now is on ActiveX. Most new programmers have found OLE intimidat-
ing, and the switch to ActiveX is unlikely to lessen that. However, if you think of ActiveX tech-
nology as a way to use code already written and tested by someone else, and as a way to save
yourself the trouble of reinventing the wheel, you’ll see why it’s worth learning. Developer
Studio and MFC make ActiveX much easier to understand and implement by doing much of
the groundwork for you. There are four chapters in Part V, “Internet Programming,” and to-
gether they demonstrate what ActiveX has become. In addition, ActiveX controls, which to
many developers represent the way of the future, are discussed in Chapter 20, “Building an
Internet ActiveX Control,” and Chapter 21, “The Active Template Library.” These are best read
after Chapters 18 and 19.

Windows has always been an operating system that allows several applications running at
once, and right from the beginning, programmers wanted to have a way for those applications
to exchange information while running. The Clipboard was a marvelous innovation, though, of
course, the user had to do a lot of the work. DDE (Dynamic Data Exchange) allowed applica-
tions to “talk” to each other but had some major limitations. Then came OLE 1 (Object Linking
and Embedding). Later there was OLE 2, and then Microsoft just called it OLE, until it moved
so far beyond its original roots that it was renamed ActiveX.

Experienced Windows users will probably be familiar with the examples presented in the
early part of this chapter. If you know what ActiveX can do for users and are interested in

why it works jump ahead to the “Component Object Model” section, which looks under the hood a
little. ■

ActiveX lets users and applications be document-centered, and this is probably the most impor-
tant thing about it. If a user wants to create an annual report, by choosing ActiveX-enabled
applications, the user stays focused on that annual report. Perhaps parts of it are being done
with Word and parts with Excel, but, to the user, these applications are not really the point.
This shift in focus is happening on many fronts and corresponds to a more object-oriented way
of thinking among many programmers. It seems more natural now to share work among sev-
eral different applications and arrange for them to communicate than to write one huge applica-
tion that can do everything.

Here’s a simple test to see whether you are document centered or application centered: How is
your hard drive organized?

The directory structure in Figure 13.1 is application centered: The directories are named for
the applications that were used to create the documents they hold. All Word documents are
together, even though they might be for very different clients or projects.

N O T E

Untitled-20 2/18/99, 3:44 PM290

291

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

The directory structure in Figure 13.2 is document centered: The directories are named for the
client or project involved. All the sales files are together, even though they can be accessed
with a variety of different applications.

Microsoft Office
 Word
 Building Internet Apps
 Using Visual C++
 Acme Corp
 Training
 Web Pages
 Excel
 Journal
 Sales estimates
 Invoices
 ABC Inc
 Payroll System
 Inventory System
Microsoft Developer Studio
 ABC Inc Payroll System
 ABC Inc Inventory System

FIG. 13.1
An application-centered
directory structure
arranges documents by
type.

Clients
 Acme Corp
 Training
 Web Pages
 Invoices
 ABC Inc
 Payroll System
 Inventory System
 Invoices
 Books
 Building Internet Apps
 Using Visual C++
 ...
 Overhead
 Accounting
 Sales

FIG. 13.2
A document-centered
directory structure
arranges documents by
meaning or content.

If you’ve been using desktop computers long enough, you remember when using a program
involved a program disk and a data disk. Perhaps you remember installing software that de-
manded to know the data directory where you would keep all the files created with that prod-
uct. That was application-centered thinking, and it’s fast being supplanted by document-
centered thinking.

Why? What’s wrong with application-centered thinking? Well, where do you put the documents
that are used with two applications equally often? There was a time when each product could
read its own file formats and no others. But these days, the lines between applications are

The Purpose of ActiveX

Untitled-20 2/18/99, 3:44 PM291

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

292 Chapter 13 ActiveX Concepts

blurring; a document created in one word processor can easily be read into another, a spread-
sheet file can be used as a database, and so on. If a client sends you a WordPerfect document
and you don’t have WordPerfect, do you make a \WORDPERFECT\DOCS directory to put it in,
or add it to your \MSOFFICE\WORD\DOCS directory? If you have your hard drive arranged in
a more document-centered manner, you can just put it in the directory for that client.

The Windows 95 interface, now incorporated into Windows NT as well, encourages document-
centered thinking by having users double-click documents to automatically launch the applica-
tions that created them. This wasn’t new—File Manager had that capability for years—but it
feels very dif ferent to double-click an icon that’s just sitting on the desktop than it does to start
an application and then double-click an entry in a list box. More and more it doesn’t matter
what application or applications were involved in creating this document; you just want to see
and change your data, and you want to do that quickly and simply.

After you become document-centered, you see the appeal of compound documents—files cre-
ated with more than one application. If your report needs an illustration, you create it in some
graphic program and then stick it in with your text when it’s done. If your annual report needs
a table, and you already have the numbers in a spreadsheet, you don’t retype them into the
table feature of your word processor or even import them; you incorporate them as a spread-
sheet excerpt, right in the middle of your text. This isn’t earth-shatteringly new, of course.
Early desktop publishing programs such as Ventura pulled together text and graphics from a
variety of sources into one complex compound document. What’s exciting is being able to do it
simply, intuitively, and with so many different applications.

Object Linking
Figure 13.3 shows a Word document with an Excel spreadsheet linked into it.

Follow these steps to create a similar document yourself:

1. Start Word and enter your text.

2. Click where you want the table to go.

3. Choose Insert, Object.

4. Select the Create from File tab.

5. Enter or select the filename as though this were a File Open dialog box.

6. Be sure to check the Link to File box.

7. Click OK.

The entire file appears in your document. If you make a change in the file on disk, the change
is reflected in your document. You can edit the file in its own application by double-clicking it
within Word. The other application is launched to edit it, as shown in Figure 13.4. If you delete
the file from disk, your Word document still displays what the file last looked like, but you
aren’t able to edit it.

Untitled-20 2/18/99, 3:44 PM292

293

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

You link files into your documents if you plan to use the same file in many documents and
contexts, because your changes to that file are automatically reflected everywhere that you
have linked it. Linking doesn’t increase the size of your document files dramatically because
only the location of the file and a little bit of presentation information needs to be kept in your
document.

FIG. 13.3
A Microsoft Word
document can contain
a link to an Excel file.

FIG. 13.4
Double-clicking a linked
object launches the
application that
created it.

Object Linking

Untitled-20 2/18/99, 3:44 PM293

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

294 Chapter 13 ActiveX Concepts

Object Embedding
Embedding is similar to linking, but a copy of the object is made and placed into your docu-
ment. If you change the original, the changes aren’t reflected in your document. You can’t tell
by looking whether the Excel chart you see in your Word document is linked or embedded.
Figure 13.5 shows a spreadsheet embedded within a Word document.

FIG. 13.5
A file embedded within
another file looks just
like a linked file.

Follow these steps to create a similar document yourself:

1. Start Word and enter your text.

2. Click where you want the table to go.

3. Choose Insert, Object.

4. Select the Create from File tab.

5. Enter or select the filename as though this were a File Open dialog box.

6. Do not check the Link to File box.

7. Click OK.

What’s the difference? You’ll see when you double-click the object to edit it. The Word menus
and toolbars disappear and are replaced with their Excel equivalents, as shown in Figure 13.6.
Changes you make here aren’t made in the file you originally embedded. They are made in the
copy of that file that has become part of your Word document.

Untitled-20 2/18/99, 3:45 PM294

295

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

You embed files into your documents if you plan to build a compound document and then use it
as a self-contained whole, without using the individual parts again. Changes you make don’t
affect any other files on your disk, not even the one you copied from in the first place. Embed-
ding makes your document much larger than it was, but you can delete the original if space is a
problem.

Containers and Servers
To embed or link one object into another, you need a container and a server. The container is
the application into which the object is linked or embedded—Word in these examples. The
server is the application that made them, and that can be launched (perhaps in place) when the
object is double-clicked—Excel in these examples.

Why would you develop a container application? To save yourself work. Imagine you have a
product already developed and in the hands of your users. It does a specific task like organize a
sales team, schedule games in a league sport, or calculate life insurance rates. Then your users
tell you that they wish it had a spreadsheet capability so they could do small calculations on-
the-fly. How long will it take you to add that functionality? Do you really have time to learn how
spreadsheet programs parse the functions that users type?

If your application is a container app, it doesn’t take any time at all. Tell your users to link or
embed in an Excel sheet and let Excel do the work. If they don’t own a copy of Excel, they need
some spreadsheet application that can be an ActiveX server. You get to piggyback on the effort
of other developers.

FIG. 13.6
Editing in place is the
magic of OLE
embedding.

Containers and Servers

Untitled-20 2/18/99, 3:45 PM295

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

296 Chapter 13 ActiveX Concepts

It’s not just spreadsheets, either. What if users want a scratch pad, a place to scribble a few
notes? Let them embed a Word document. (What about bitmaps and other illustrations?
Microsoft Paint, or a more powerful graphics package if they have one, and it can act as an
ActiveX server.) You don’t have to concern yourself with adding functionality like this to your
programs because you can just make your application a container and your users can embed
whatever they want without any more work on your part.

Why would you develop a server application, then? Look back over the reasons for writing a
container application. A lot of users are going to contact developers asking for a feature to be
added, and be told they can have that feature immediately—they just need an application that
does spreadsheets, text, pictures, or whatever, and can act as an ActiveX server. If your applica-
tion is an ActiveX server, people will buy it so that they can add its functionality to their con-
tainer apps.

Together, container and server apps enable users to build the documents they want. They
represent a move toward building-block software and a document-centered approach to work.
If you want your application to carry the Windows 95 logo, it must be a server, a container, or
both. But there is much more to ActiveX than linking and embedding.

Toward a More Intuitive User Interface
What if the object you want to embed is not in a file but is part of a document you have open at
the moment? You may have already discovered that you can use the Clipboard to transfer
ActiveX objects. For example, to embed part of an Excel spreadsheet into a Word document,
you can follow these steps:

1. Open the spreadsheet in Excel.

2. Open the document in Word.

3. In Excel, select the portion you want to copy.

4. Choose Edit, Copy to copy the block onto the Clipboard.

5. Switch to Word and choose Edit, Paste Special.

6. Select the Paste radio button.

7. Select Microsoft Excel Worksheet Object from the list box.

8. Make sure that Display as Icon is not selected.

9. The dialog box should look like Figure 13.7. Click OK.

A copy of the block is now embedded into the document. If you choose Paste Link, changes in
the spreadsheet are reflected immediately in the Word document, not just when you save them.
(You might have to click the selection in Word to update it.) This is true even if the spreadsheet
has no name and has never been saved. Try it yourself! This is certainly better than saving
dummy files just to embed them into compound documents and then deleting them, isn’t it?

Untitled-20 2/18/99, 3:45 PM296

297

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

Another way to embed part of a document into another is drag and drop. This is a user-
interface paradigm that works in a variety of contexts. You click something (an icon, a high-
lighted block of text, a selection in a list box) and hold the mouse button down while moving it.
The item you clicked moves with the mouse, and when you let go of the mouse button, it drops
to the new location. That’s very intuitive for moving or resizing windows, but now you can use
it to do much, much more. For example, here’s how that Excel-in-Word example would be done
with drag and drop:

1. Open Word and size it to less than full screen.

2. Open Excel and size it to less than full screen. If you can arrange the Word and Excel
windows so they don’t overlap, that’s great.

3. In Excel, select the portion you want to copy by highlighting it with the mouse or cursor
keys.

4. Click the border of the selected area (the thick black line) and hold.

5. Drag the block into the Word window and let go.

The selected block is embedded into the Word document. If you double-click it, you are editing
in place with Excel. Drag and drop also works within a document to move or copy a selection.

The block is moved by default, which means it is deleted from the Excel sheet. If you want a copy, hold
down the Ctrl key while dragging, and release the mouse button before the Ctrl key.

You can also use drag and drop with icons. On your desktop, if you drag a file to a folder, it is
moved there. (Hold down Ctrl while dragging to copy it.) If you drag it to a program icon, it is
opened with that program. This is very useful when you have a document you use with two
applications. For example, pages on the World Wide Web are HTML documents, often created
with an HTML editor but viewed with a World Wide Web browser such as Netscape Navigator
or Microsoft Internet Explorer. If you double-click an HTML document icon, your browser is
launched to view it. If you drag that icon onto the icon for your HTML editor, the editor is
launched and opens the file you dragged. After you realize you can do this, you will find your
work speeds up dramatically.

All of this is ActiveX, and all of this requires a little bit of work from programmers to make it
happen. So what’s going on?

FIG. 13.7
The Paste Special
dialog box is used to
link or embed selected
portions of a docu-
ment.

T I P

Toward a More Intuitive User Interface

Untitled-20 2/18/99, 3:45 PM297

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

298 Chapter 13 ActiveX Concepts

The Component Object Model
The heart of ActiveX is the Component Object Model (COM). This is an incredibly complex
topic that deserves a book of its own. Luckily, the Microsoft Foundation Classes and the Visual
C++ AppWizard do much of the behind-the-scenes work for you. The discussion in these chap-
ters is just what you need to know to use COM as a developer.

COM is a binary standard for Windows objects. That means that the executable code (in a DLL
or EXE) that describes an object can be executed by other objects. Even if two objects were
written in different languages, they are able to interact using the COM standard.

Because the code in a DLL executes in the same process as the calling code, it’s the
fastest way for applications to communicate. When two separate applications communi-

cate through COM, function calls from one application to another must be marshaled: COM gathers up
all the parameters and invokes the function itself. A standalone server (EXE) is therefore slower than an
in-process server (DLL). ■

How do they interact? Through an interface. An ActiveX interface is a collection of functions, or
really just function names. It’s a C++ class with no data, only pure virtual functions. Your ob-
jects inherit from this class and provide code for the functions. (Remember, as discussed in
Appendix A, “C++ Review and Object-Oriented Concepts,” a class that inherits a pure virtual
function doesn’t inherit code for that function.) Other programs get to your code by calling
these functions. All ActiveX objects must have an interface named IUnknown (and most have
many more, all with names that start with I, the prefix for interfaces).

The IUnknown interface has only one purpose: finding other interfaces. It has a function called
QueryInterface() that takes an interface ID and returns a pointer to that interface for this
object. All the other interfaces inherit from IUnknown, so they have a QueryInterface() too,
and you have to write the code—or you would if there was no MFC. MFC implements a num-
ber of macros that simplify the job of writing interfaces and their functions, as you will shortly
see. The full declaration of IUnknown is in Listing 13.1. The macros take care of some of the
work of declaring an interface and won’t be discussed here. There are three functions de-
clared: QueryInterface(), AddRef(), and Release(). These latter two functions are used to
keep track of which applications are using an interface. All three functions are inherited by all
interfaces and must be implemented by the developer of the interface.

Listing 13.1 IUnknown, Defined in \Program Files\Microsoft Visual
Studio\VC98\Include\unknwn.h

MIDL_INTERFACE(“00000000-0000-0000-C000-000000000046”)
 IUnknown
 {
 public:
 BEGIN_INTERFACE
 virtual HRESULT STDMETHODCALLTYPE QueryInterface(

N O T E

Untitled-20 2/18/99, 3:45 PM298

299

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

 /* [in] */ REFIID riid,
 /* [iid_is][out] */ void __RPC_FAR *__RPC_FAR *ppvObject) = 0;

 virtual ULONG STDMETHODCALLTYPE AddRef(void) = 0;

 virtual ULONG STDMETHODCALLTYPE Release(void) = 0;

#if (_MSC_VER >= 1200) // VC6 or greater
 template <class Q>
 HRESULT STDMETHODCALLTYPE QueryInterface(Q** pp)
 {
 return QueryInterface(__uuidof(Q), (void**)pp);
 }
#endif

 END_INTERFACE
 };

Automation
An Automation server lets other applications tell it what to do. It exposes functions and data,
called methods and properties. For example, Microsoft Excel is an Automation server, and pro-
grams written in Visual C++ or Visual Basic can call Excel functions and set properties like
column widths. That means you don’t need to write a scripting language for your application
any more. If you expose all the functions and properties of your application, any programming
language that can control an Automation server can be a scripting language for your applica-
tion. Your users may already know your scripting language. They essentially will have no learn-
ing curve for writing macros to automate your application (although they will need to learn the
names of the methods and properties you expose).

The important thing to know about interacting with automation is that one program is always in
control, calling the methods or changing the properties of the other running application. The
application in control is called an Automation controller. The application that exposes methods
and functions is called an Automation server. Excel, Word, and other members of the Microsoft
Office suite are Automation servers, and your programs can use the functions of these applica-
tions to really save you coding time.

For example, imagine being able to use the function called by the Word menu item Format,
Change Case to convert the blocks of text your application uses to all uppercase, all lowercase,
sentence case (the first letter of the first word in each sentence is uppercase, the rest are not),
or title case (the first letter of every word is uppercase; the rest are not).

The description of how automation really works is far longer and more complex than the inter-
face summary of the previous section. It involves a special interface called IDispatch, a simpli-
fied interface that works from a number of different languages, including those like Visual
Basic that can’t use pointers. The declaration of IDispatch is shown in Listing 13.2.

Automation

Untitled-20 2/18/99, 3:46 PM299

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

300 Chapter 13 ActiveX Concepts

Listing 13.2 IDispatch, Defined in \Program Files\Microsoft Visual
Studio\VC98\Include\oaidl.h

MIDL_INTERFACE(“00020400-0000-0000-C000-000000000046”)
 IDispatch : public IUnknown
 {
 public:
 virtual HRESULT STDMETHODCALLTYPE GetTypeInfoCount(
 /* [out] */ UINT __RPC_FAR *pctinfo) = 0;

 virtual HRESULT STDMETHODCALLTYPE GetTypeInfo(
 /* [in] */ UINT iTInfo,
 /* [in] */ LCID lcid,
 /* [out] */ ITypeInfo __RPC_FAR *__RPC_FAR *ppTInfo) = 0;

 virtual HRESULT STDMETHODCALLTYPE GetIDsOfNames(
 /* [in] */ REFIID riid,
 /* [size_is][in] */ LPOLESTR __RPC_FAR *rgszNames,
 /* [in] */ UINT cNames,
 /* [in] */ LCID lcid,
 /* [size_is][out] */ DISPID __RPC_FAR *rgDispId) = 0;

 virtual /* [local] */ HRESULT STDMETHODCALLTYPE Invoke(
 /* [in] */ DISPID dispIdMember,
 /* [in] */ REFIID riid,
 /* [in] */ LCID lcid,
 /* [in] */ WORD wFlags,
 /* [out][in] */ DISPPARAMS __RPC_FAR *pDispParams,
 /* [out] */ VARIANT __RPC_FAR *pVarResult,
 /* [out] */ EXCEPINFO __RPC_FAR *pExcepInfo,
 /* [out] */ UINT __RPC_FAR *puArgErr) = 0;

 };

Although IDispatch seems more complex than IUnknown, it declares only a few more func-
tions: GetTypeInfoCount(), GetTypeInfo(), GetIDsOfNames(), and Invoke(). Because it inher-
its from IUnknown, it has also inherited QueryInterface(), AddRef(), and Release(). They are
all pure virtual functions, so any COM class that inherits from IDispatch must implement
these functions. The most important of these is Invoke(), used to call functions of the Automa-
tion server and to access its properties.

ActiveX Controls
ActiveX controls are tiny little Automation servers that load in process. This means they are
remarkably fast. They were originally called OLE Custom Controls and were designed to re-
place VBX controls, 16-bit controls written for use in Visual Basic and Visual C++. (There are a
number of good technical reasons why the VBX technology could not be extended to the 32-bit
world.) Because OLE Custom Controls were traditionally kept in files with the extension .OCX,
many people referred to an OLE Custom Control as an OCX control or just an OCX. Although

Untitled-20 2/18/99, 3:46 PM300

301

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna CH13 LP#3

13

IV
Part

Ch

the OLE has been supplanted by ActiveX, ActiveX controls produced by Visual C++ 6.0 are still
kept in files with the .OCX extension.

The original purpose of VBX controls was to allow programmers to provide unusual interface
controls to their users. Controls that looked like gas gauges or volume knobs became easy to
develop. But almost immediately, VBX programmers moved beyond simple controls to mod-
ules that involved significant amounts of calculation and processing. In the same way, many
ActiveX controls are far more than just controls; they are components that can be used to build
powerful applications quickly and easily.

If you have built an OCX in earlier versions of Visual C++, you might think it is a difficult
thing to do. The Control Developer Kit, now integrated into Visual C++, takes care of the

ActiveX aspects of the job and allows you to concentrate on the calculations, display, or whatever else
it is that makes your control worth using. The ActiveX Control Wizard makes getting started with an
empty ActiveX control simple. ■

Because controls are little Automation servers, they need to be used by an Automation control-
ler, but the terminology is too confusing if there are controls and controllers, so we say that
ActiveX controls are used by container applications. Visual C++ and Visual Basic are both con-
tainer applications, as are many members of the Office suite and many non-Microsoft products.

In addition to properties and methods, ActiveX controls have events. To be specific, a control is
said to fire an event, and it does so when there is something that the container needs to be
aware of. For example, when the user clicks a portion of the control, the control deals with it,
perhaps changing its appearance or making a calculation, but it may also need to pass on word
of that click to the container application so that a file can be opened or some other container
action can be performed.

This chapter has given you a brief tour through the concepts and terminology used in ActiveX
technology, and a glimpse of the power you can add to your applications by incorporating
ActiveX into them. The remainder of the chapters in this part lead you through the creation of
ActiveX applications, using MFC and the wizards in Visual C++. ●

ActiveX Controls

N O T E

Untitled-20 2/18/99, 3:46 PM301

Untitled-20 2/18/99, 3:46 PM302

303

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

C H A P T E R

Building an ActiveX Container
Application

Changing ShowString 304

Moving, Resizing, and Tracking 322

Handling Multiple Objects and Object Selection 325

Implementing Drag and Drop 331

Deleting an Object 341

14

In this chapter

Untitled-22 2/18/99, 3:48 PM303

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

304 Chapter 14 Building an ActiveX Container Application

You can obtain a rudimentary ActiveX container by asking AppWizard to make you one, but it
will have a lot of shortcomings. A far more difficult task is to understand how an ActiveX con-
tainer works and what you have to do to really use it. In this chapter, by turning the ShowString
application of earlier chapters into an ActiveX container and then making it a truly functional
container, you get a backstage view of ActiveX in action. Adding drag-and-drop support brings
your application into the modern age of intuitive, document-centered user interface design. If
you have not yet read Chapter 13, “ActiveX Concepts,” it would be a good idea to read it before
this one. As well, this chapter will not repeat all the instructions of Chapter 8, “Building a Com-
plete Application: ShowString,” so you should have read that chapter or be prepared to refer to
it as you progress through this one.

Changing ShowString
ShowString was built originally in Chapter 8, “Building a Complete Application: ShowString,”
and has no ActiveX support. You could make the changes by hand to implement ActiveX con-
tainer support, but there would be more than 30 changes. It’s quicker to build a new
ShowString application—this time asking for ActiveX container support—and then make
changes to that code to get the ShowString functionality again.

AppWizard-Generated ActiveX Container Code
Build the new ShowString in a different directory, making almost exactly the same AppWizard
choices you used when you built it in the “Creating an Empty Shell with AppWizard” section of
Chapter 8. Name the project ShowString, choose an MDI Application, No Database Support,
compound document support: Container, a Docking Toolbar, Initial Status Bar, Printing and
Print Preview, Context Sensitive Help, and 3D Controls. Finally, select Source File Comments
and a Shared DLL. Finish AppWizard and, if you want, build the project.tm1713714470

Even though the technology is now called ActiveX, the AppWizard dialog boxes refer to
compound document support. Also, many of the classnames that are used throughout this

chapter have Ole in their names, and comments refer to OLE. Although Microsoft has changed the
name of the technology, it has not propagated that change throughout Visual C++ yet. You have to live
with these contradictions for a while. ■

There are many differences between the application you just built and a do-nothing application
without ActiveX container support. The remainder of this section explains these differences
and their effects.

Menus There’s another menu, called IDR_SHOWSTTYPE_CNTR_IP, shown in Figure 14.1. The
name refers to a container whose contained object is being edited in place. During in-place
editing, the menu bar is built from the container’s in-place menu and the server’s in-place
menu. The pair of vertical bars in the middle of IDR_SHOWSTTYPE_CNTR_IP are separators; the
server menu items will be put between them. This is discussed in more detail in Chapter 15,
“Building an ActiveX Server Application.”

N O T E

Untitled-22 2/18/99, 3:48 PM304

305

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

The IDR_SHOWSTTYPE Edit menu, shown in Figure 14.2, has four new items:

FIG. 14.1
AppWizard adds
another menu for
editing in place.

FIG. 14.2
AppWizard adds items
to the Edit menu of the
IDR_SHOWSTTYPE
resource.

■ Paste Special. The user chooses this item to insert an item into the container from the
Clipboard.

Changing ShowString

Untitled-22 2/18/99, 3:48 PM305

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

306 Chapter 14 Building an ActiveX Container Application

■ Insert New Object. Choosing this item opens the Insert Object dialog box, shown in
Figures 14.3 and 14.4, so the user can insert an item into the container.

FIG. 14.3
The Insert Object dialog
box can be used to
embed new objects.

FIG. 14.4
The Insert Object dialog
box can be used to
embed or link objects
that are in a file.

■ Links. When an object has been linked into the container, choosing this item opens the
Links dialog box, shown in Figure 14.5, to allow control of how the copy of the object is
updated after a change is saved to the file.

■ <<OLE VERBS GO HERE>>. Each kind of item has different verbs associated with it,
like Edit, Open, or Play. When a contained item has focus, this spot on the menu is
replaced by an object type like those in the Insert Object dialog box, with a menu
cascading from it that lists the verbs for this type, like the one shown in Figure 14.6.

CShowStringApp CShowStringApp::InitInstance() has several changes from the
InitInstance() method provided by AppWizard for applications that aren’t ActiveX contain-
ers. The lines in Listing 14.1 initialize the ActiveX (OLE) libraries.

Listing 14.1 Excerpt from ShowString.cpp—Library Initialization

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }

Untitled-22 2/18/99, 3:49 PM306

307

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch
Still in CShowStringApp::InitInstance(), after the MultiDocTemplate is initialized but before
the call to AddDocTemplate(), this line is added to register the menu used for in-place editing:

pDocTemplate->SetContainerInfo(IDR_SHOWSTTYPE_CNTR_IP);

FIG. 14.5
The Links dialog box
controls the way linked
objects are updated.

FIG. 14.6
Each object type adds
a cascading menu item
to the Edit menu when
it has focus.

Changing ShowString

Untitled-22 2/18/99, 3:49 PM307

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

308 Chapter 14 Building an ActiveX Container Application

CShowStringDoc The document class, CShowStringDoc, now inherits from COleDocument
rather than CDocument. This line is also added at the top of ShowStringDoc.cpp:

#include “CntrItem.h”

CntrItem.h describes the container item class, CShowStringCntrItem, discussed later in this
chapter. Still in ShowStringDoc.cpp, the macros in Listing 14.2 have been added to the mes-
sage map.

Listing 14.2 Excerpt from ShowString.cpp—Message Map Additions

 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE,
➥COleDocument::OnUpdatePasteMenu)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE_LINK,
➥COleDocument::OnUpdatePasteLinkMenu)
 ON_UPDATE_COMMAND_UI(ID_OLE_EDIT_CONVERT,
➥COleDocument::OnUpdateObjectVerbMenu)
 ON_COMMAND(ID_OLE_EDIT_CONVERT,
➥COleDocument::OnEditConvert)
 ON_UPDATE_COMMAND_UI(ID_OLE_EDIT_LINKS,
➥COleDocument::OnUpdateEditLinksMenu)
 ON_COMMAND(ID_OLE_EDIT_LINKS,
➥COleDocument::OnEditLinks)
 ON_UPDATE_COMMAND_UI(ID_OLE_VERB_FIRST, ID_OLE_VERB_LAST,
➥COleDocument::OnUpdateObjectVerbMenu)

These commands enable and disable the following menu items:

■ Edit, Paste

■ Edit, Paste Link

■ Edit, Links

■ The OLE verbs section, including the Convert verb

The new macros also handle Convert and Edit, Links. Notice that the messages are handled by
functions of COleDocument and don’t have to be written by you.

The constructor, CShowStringDoc::CShowStringDoc(), has a line added:

 EnableCompoundFile();

This turns on the use of compound files. CShowStringDoc::Serialize() has a line added as
well:

 COleDocument::Serialize(ar);

This call to the base class Serialize() takes care of serializing all the contained objects, with
no further work for you.

CShowStringView The view class, CShowStringView, includes CntrItem.h just as the docu-
ment does. The view class has these new entries in the message map:

 ON_WM_SETFOCUS()
 ON_WM_SIZE()

Untitled-22 2/18/99, 3:49 PM308

309

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

 ON_COMMAND(ID_OLE_INSERT_NEW, OnInsertObject)
 ON_COMMAND(ID_CANCEL_EDIT_CNTR, OnCancelEditCntr)

These are in addition to the messages caught by the view before it was a container. These
catch WM_SETFOCUS, WM_SIZE, the menu item Edit, Insert New Object, and the cancellation of
editing in place. An accelerator has already been added to connect this message to the Esc key.

In ShowStringView.h, a new member variable has been added, as shown in Listing 14.3.

Listing 14.3 Excerpt from ShowStringView.h—m_pSelection

 // m_pSelection holds the selection to the current
 // CShowStringCntrItem. For many applications, such
 // a member variable isn’t adequate to represent a
 // selection, such as a multiple selection or a selection
 // of objects that are not CShowStringCntrItem objects.
 // This selection mechanism is provided just to help you
 // get started.

 // TODO: replace this selection mechanism with one appropriate
 // to your app.
 CShowStringCntrItem* m_pSelection;

This new member variable shows up again in the view constructor, Listing 14.4, and the re-
vised OnDraw(), Listing 14.5.

Listing 14.4 ShowStringView.cpp—Constructor

CShowStringView::CShowStringView()
{
 m_pSelection = NULL;
 // TODO: add construction code here
}

Listing 14.5 ShowStringView.cpp—CShowStringView::OnDraw()

void CShowStringView::OnDraw(CDC* pDC)
{
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
 // TODO: also draw all OLE items in the document

 // Draw the selection at an arbitrary position. This code should be
 // removed once your real drawing code is implemented. This position
 // corresponds exactly to the rectangle returned by CShowStringCntrItem,
 // to give the effect of in-place editing.

continues

Changing ShowString

Untitled-22 2/18/99, 3:49 PM309

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

310 Chapter 14 Building an ActiveX Container Application

Listing 14.5 Continued

 // TODO: remove this code when final draw code is complete.

 if (m_pSelection == NULL)
 {
 POSITION pos = pDoc->GetStartPosition();
 m_pSelection = (CShowStringCntrItem*)pDoc->GetNextClientItem(pos);
 }
 if (m_pSelection != NULL)
 m_pSelection->Draw(pDC, CRect(10, 10, 210, 210));
}

The code supplied for OnDraw() draws only a single contained item. It doesn’t draw any native
data—in other words, elements of ShowString that are not contained items. At the moment
there is no native data, but after the string is added to the application, OnDraw() is going to
have to draw it. What’s more, this code only draws one contained item, and it does so in an
arbitrary rectangle. OnDraw() is going to see a lot of changes as you work through this chapter.

The view class has gained a lot of new functions. They are as follows:

■ OnInitialUpdate()

■ IsSelected()

■ OnInsertObject()

■ OnSetFocus()

■ OnSize()

■ OnCancelEditCntr()

Each of these new functions is discussed in the subsections that follow.

OnInitialUpdate() OnInitialUpdate()is called just before the very first time the view is to be
displayed. The boilerplate code (see Listing 14.6) is pretty dull.

Listing 14.6 ShowStringView.cpp—CShowStringView::OnInitialUpdate()

void CShowStringView::OnInitialUpdate()
{
 CView::OnInitialUpdate();

 // TODO: remove this code when final selection
 // model code is written
 m_pSelection = NULL; // initialize selection

}

The base class OnInitialUpdate() calls the base class OnUpdate(), which calls Invalidate(),
requiring a full repaint of the client area.

Untitled-22 2/18/99, 3:50 PM310

311

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

IsSelected() IsSelected() currently isn’t working because the selection mechanism is so
rudimentary. Listing 14.7 shows the code that was generated for you. Later, when you have
implemented a proper selection method, you will improve how this code works.

Listing 14.7 ShowStringView.cpp—CShowStringView::IsSelected()

BOOL CShowStringView::IsSelected(const CObject* pDocItem) const
{
 // The implementation below is adequate if your selection consists of
 // only CShowStringCntrItem objects. To handle different selection
 // mechanisms, the implementation here should be replaced.

 // TODO: implement this function that tests for a selected OLE
 // client item

 return pDocItem == m_pSelection;
}

This function is passed a pointer to a container item. If that pointer is the same as the current
selection, it returns TRUE.

OnInsertObject() OnInsertObject()is called when the user chooses Edit, Insert New Object.
It’s quite a long function, so it is presented in parts. The overall structure is presented in
Listing 14.8.

Listing 14.8 ShowStringView.cpp—CShowStringView::OnInsertObject()

void CShowStringView::OnInsertObject()
{
 // Display the Insert Object dialog box.

 CShowStringCntrItem* pItem = NULL;
 TRY
 {
 // Create a new item connected to this document.
 // Initialize the item.
 // Set selection and update all views.
 }
 CATCH(CException, e)
 {
 // Handle failed create.
 }
 END_CATCH

 // Tidy up.
}

Each comment here is replaced with a small block of code, discussed in the remainder of this
section. The TRY and CATCH statements, by the way, are on old-fashioned form of exception
handling, discussed in Chapter 26, “Exceptions and Templates.”

Changing ShowString

Untitled-22 2/18/99, 3:50 PM311

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

312 Chapter 14 Building an ActiveX Container Application

First, this function displays the Insert Object dialog box, as shown in Listing 14.9.

Listing 14.9 ShowStringView.cpp—Display the Insert Object Dialog Box

 // Invoke the standard Insert Object dialog box to obtain information
 // for new CShowStringCntrItem object.
 COleInsertDialog dlg;
 if (dlg.DoModal() != IDOK)
 return;
 BeginWaitCursor();

If the user clicks Cancel, this function returns and nothing is inserted. If the user clicks OK,
the cursor is set to an hourglass while the rest of the processing occurs.

To create a new item, the code in Listing 14.10 is inserted.

Listing 14.10 ShowStringView.cpp—Create a New Item

 // Create new item connected to this document.
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 pItem = new CShowStringCntrItem(pDoc);
 ASSERT_VALID(pItem);

This code makes sure there is a document, even though the menu item is enabled only if there
is one, and then creates a new container item, passing it the pointer to the document. As you
see in the CShowStringCntrItem section, container items hold a pointer to the document that
contains them.

The code in Listing 14.11 initializes that item.

Listing 14.11 ShowStringView.cpp—Initializing the Inserted Item

 // Initialize the item from the dialog data.
 if (!dlg.CreateItem(pItem))
 AfxThrowMemoryException(); // any exception will do
 ASSERT_VALID(pItem);
 // If item created from class list (not from file) then launch
 // the server to edit the item.
 if (dlg.GetSelectionType() == COleInsertDialog::createNewItem)
 pItem->DoVerb(OLEIVERB_SHOW, this);

 ASSERT_VALID(pItem);

Untitled-22 2/18/99, 3:50 PM312

313

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

The code in Listing 14.11 calls the CreateItem() function of the dialog class,
COleInsertDialog. That might seem like a strange place to keep such a function, but the func-
tion needs to know all the answers that were given on the dialog box. If it was a member of
another class, it would have to interrogate the dialog for the type and filename, find out
whether it was linked or embedded, and so on. It calls member functions of the container item
like CreateLinkFromFile(), CreateFromFile(), CreateNewItem(), and so on. So it’s not that
the code has to actually fill the object from the file that is in the dialog box, but rather that the
work is partitioned between the objects instead of passing information back and forth between
them.

Then, one question is asked of the dialog box: Was this a new item? If so, the server is called to
edit it. Objects created from a file can just be displayed.

Finally, the selection is updated and so are the views, as shown in Listing 14.12.

Listing 14.12 ShowStringView.cpp—Update Selection and Views

 // As an arbitrary user interface design, this sets the selection
 // to the last item inserted.

 // TODO: reimplement selection as appropriate for your application

 m_pSelection = pItem; // set selection to last inserted item
 pDoc->UpdateAllViews(NULL);

If the creation of the object failed, execution ends up in the CATCH block, shown in Listing 14.13.

Listing 14.13 ShowStringView.cpp—CATCH Block

 CATCH(CException, e)
 {
 if (pItem != NULL)
 {
 ASSERT_VALID(pItem);
 pItem->Delete();
 }
 AfxMessageBox(IDP_FAILED_TO_CREATE);
 }
 END_CATCH

This deletes the item that was created and gives the user a message box.

Finally, that hourglass cursor can go away:

 EndWaitCursor();

OnSetFocus() OnSetFocus(), shown in Listing 14.14, is called whenever this view gets focus.

Changing ShowString

Untitled-22 2/18/99, 3:50 PM313

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

314 Chapter 14 Building an ActiveX Container Application

Listing 14.14 ShowStringView.cpp—CShowStringView::OnSetFocus()

void CShowStringView::OnSetFocus(CWnd* pOldWnd)
{
 COleClientItem* pActiveItem = GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL &&
 pActiveItem->GetItemState() == COleClientItem::activeUIState)
 {
 // need to set focus to this item if it is in the same view
 CWnd* pWnd = pActiveItem->GetInPlaceWindow();
 if (pWnd != NULL)
 {
 pWnd->SetFocus(); // don’t call the base class
 return;
 }
 }

 CView::OnSetFocus(pOldWnd);
}

If there is an active item and its server is loaded, that active item gets focus. If not, focus re-
mains with the old window, and it appears to the user that the click was ignored.

OnSize() OnSize(), shown in Listing 14.15, is called when the application is resized by the
user.

Listing 14.15 ShowStringView.cpp—CShowStringView::OnSize()

void CShowStringView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);
 COleClientItem* pActiveItem = GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL)
 pActiveItem->SetItemRects();
}

This resizes the view using the base class function, and then, if there is an active item, tells it to
adjust to the resized view.

OnCancelEditCntr() OnCancelEditCntr() is called when a user who has been editing in place
presses Esc. The server must be closed, and the object stops being active. The code is shown
in Listing 14.16.

Listing 14.16 ShowStringView.cpp—CShowStringView::OnCancelEditCntr()

void CShowStringView::OnCancelEditCntr()
{
 // Close any in-place active item on this view.
 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);

Untitled-22 2/18/99, 3:50 PM314

315

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

 if (pActiveItem != NULL)
 {
 pActiveItem->Close();
 }
 ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);
}

CShowStringCntrItem The container item class is a completely new addition to ShowString.
It describes an item that is contained in the document. As you’ve already seen, the document
and the view use this object quite a lot, primarily through the m_pSelection member variable
of CShowStringView. It has no member variables other than those inherited from the base
class, COleClientItem. It has overrides for a lot of functions, though. They are as follows:

■ A constructor

■ A destructor

■ GetDocument()

■ GetActiveView()

■ OnChange()

■ OnActivate()

■ OnGetItemPosition()

■ OnDeactivateUI()

■ OnChangeItemPosition()

■ AssertValid()

■ Dump()

■ Serialize()

The constructor simply passes the document pointer along to the base class. The destructor
does nothing. GetDocument() and GetActiveView() are inline functions that return member
variables inherited from the base class by calling the base class function with the same name
and casting the result.

OnChange() is the first of these functions that has more than one line of code (see Listing
14.17).

Listing 14.17 CntrItem.cpp—CShowStringCntrItem::OnChange()

void CShowStringCntrItem::OnChange(OLE_NOTIFICATION nCode,
 DWORD dwParam)
{
 ASSERT_VALID(this);

 COleClientItem::OnChange(nCode, dwParam);

 // When an item is being edited (either in-place or fully open)
 // it sends OnChange notifications for changes in the state of the
 // item or visual appearance of its content.

 // TODO: invalidate the item by calling UpdateAllViews
 // (with hints appropriate to your application)

 GetDocument()->UpdateAllViews(NULL);
 // for now just update ALL views/no hints
}

Changing ShowString

Untitled-22 2/18/99, 3:51 PM315

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

316 Chapter 14 Building an ActiveX Container Application

Actually, there are only three lines of code. The comments are actually more useful than the
code. When the user changes the contained item, the server notifies the container. Calling
UpdateAllViews() is a rather drastic way of refreshing the screen, but it gets the job done.

OnActivate() (shown in Listing 14.18) is called when a user double-clicks an item to activate it
and edit it in place. ActiveX objects are usually outside-in, which means that a single click of the
item selects it but doesn’t activate it. Activating an outside-in object requires a double-click, or a
single click followed by choosing the appropriate OLE verb from the Edit menu.

Listing 14.18 CntrItem.cpp—CShowStringCntrItem::OnActivate()

void CShowStringCntrItem::OnActivate()
{
 // Allow only one in-place activate item per frame
 CShowStringView* pView = GetActiveView();
 ASSERT_VALID(pView);
 COleClientItem* pItem = GetDocument()->GetInPlaceActiveItem(pView);
 if (pItem != NULL && pItem != this)
 pItem->Close();

 COleClientItem::OnActivate();
}

This code makes sure that the current view is valid, closes the active items, if any, and then
activates this item.

OnGetItemPosition() (shown in Listing 14.19) is called as part of the in-place activation pro-
cess.

Listing 14.19 CntrItem.cpp—CShowStringCntrItem::OnGetItemPosition()

void CShowStringCntrItem::OnGetItemPosition(CRect& rPosition)
{
 ASSERT_VALID(this);

 // During in-place activation,
 // CShowStringCntrItem::OnGetItemPosition
 // will be called to determine the location of this item.
 // The default implementation created from AppWizard simply
 // returns a hard-coded rectangle. Usually, this rectangle
 // would reflect the current position of the item relative
 // to the view used for activation. You can obtain the view
 // by calling CShowStringCntrItem::GetActiveView.

 // TODO: return correct rectangle (in pixels) in rPosition

 rPosition.SetRect(10, 10, 210, 210);
}

Untitled-22 2/18/99, 3:51 PM316

317

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

Like OnChange(), the comments are more useful than the actual code. At the moment, the
View’s OnDraw() function draws the contained object in a hard-coded rectangle, so this function
returns that same rectangle. You are instructed to write code that asks the active view where
the object is.

OnDeactivateUI() (see Listing 14.20) is called when the object goes from being active to inac-
tive.

Listing 14.20 CntrItem.cpp—CShowStringCntrItem::OnDeactivateUI()

void CShowStringCntrItem::OnDeactivateUI(BOOL bUndoable)
{
 COleClientItem::OnDeactivateUI(bUndoable);

 // Hide the object if it is not an outside-in object
 DWORD dwMisc = 0;
 m_lpObject->GetMiscStatus(GetDrawAspect(), &dwMisc);
 if (dwMisc & OLEMISC_INSIDEOUT)
 DoVerb(OLEIVERB_HIDE, NULL);
}

Although the default behavior for contained objects is outside-in, as discussed earlier, you can
write inside-out objects. These are activated simply by moving the mouse pointer over them;
clicking the object has the same effect that clicking that region has while editing the object.
For example, if the contained item is a spreadsheet, clicking might select the cell that was
clicked. This can be really nice for the user, who can completely ignore the borders between
the container and the contained item, but it is harder to write.

OnChangeItemPosition() is called when the item is moved during in-place editing. It, too,
contains mostly comments, as shown in Listing 14.21.

Listing 14.21 CntrItem.cpp—CShowStringCntrItem::OnChangeItemPosition()

BOOL CShowStringCntrItem::OnChangeItemPosition(const CRect& rectPos)
{
 ASSERT_VALID(this);

 // During in-place activation
 // CShowStringCntrItem::OnChangeItemPosition
 // is called by the server to change the position
 // of the in-place window. Usually, this is a result
 // of the data in the server document changing such that
 // the extent has changed or as a result of in-place resizing.
 //
 // The default here is to call the base class, which will call
 // COleClientItem::SetItemRects to move the item
 // to the new position.

continues

Changing ShowString

Untitled-22 2/18/99, 3:51 PM317

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

318 Chapter 14 Building an ActiveX Container Application

Listing 14.21 Continued

 if (!COleClientItem::OnChangeItemPosition(rectPos))
 return FALSE;

 // TODO: update any cache you may have of the item’s rectangle/extent

 return TRUE;
}

This code is supposed to handle moving the object, but it doesn’t really. That’s because
OnDraw() always draws the contained item in the same place.

AssertValid() is a debug function that confirms this object is valid; if it’s not, an ASSERT will
fail. ASSERT statements are discussed in Chapter 24, “Improving Your Application’s Perfor-
mance.” The last function in CShowStringCntrItem is Serialize(), which is called by
COleDocument::Serialize(), which in turn is called by the document’s Serialize(), as you’ve
already seen. It is shown in Listing 14.22.

Listing 14.22 CntrItem.cpp—CShowStringCntrItem::Serialize()

void CShowStringCntrItem::Serialize(CArchive& ar)
{
 ASSERT_VALID(this);

 // Call base class first to read in COleClientItem data.
 // Because this sets up the m_pDocument pointer returned from
// CShowStringCntrItem::GetDocument, it is a good idea to call
 // the base class Serialize first.
 COleClientItem::Serialize(ar);

 // now store/retrieve data specific to CShowStringCntrItem
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

All this code does at the moment is call the base class function. COleDocument::Serialize()
stores or loads a number of counters and numbers to keep track of several different contained
items, and then calls helper functions such as WriteItem() or ReadItem() to actually deal with
the item. These functions and the helper functions they call are a bit too “behind-the-scenes”
for most people, but if you’d like to take a look at them, they are in the MFC source folder
(C:\Program Files\Microsoft Visual Studio\VC98\MFC\SRC on many installations) in the file
olecli1.cpp. They do their job, which is to serialize the contained item for you.

Untitled-22 2/18/99, 3:51 PM318

319

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

Shortcomings of This Container This container application isn’t ShowString yet, of course,
but it has more important things wrong with it. It isn’t a very good container, and that’s a direct
result of all those TODO tasks that haven’t been accomplished. Still, the fact that it is a function-
ing container is a good measure of the power of the MFC classes COleDocument and
COleClientItem. So why not build the application now and run it? After it’s running, choose
Edit, Insert New Object and insert a bitmap image. Now that you’ve seen the code, it shouldn’t
be a surprise that Paint is immediately launched to edit the item in place, as you see in
Figure 14.7.

FIG. 14.7
The boilerplate
container can contain
items and activate
them for in-place
editing, like this bitmap
image being edited in
Paint.

Click outside the bitmap to deselect the item and return control to the container; you see that
nothing happens. Click outside the document, and again nothing happens. You’re probably
asking yourself, “Am I still in ShowString?” Choose File, New, and you see that you are. The
Paint menus and toolbars go away, and a new ShowString document is created. Click the
bitmap item again, and you are still editing it in Paint. How can you insert another object into
the first document when the menus are those of Paint? Press Esc to cancel in-place editing so
the menus become ShowString menus again. Insert an Excel chart into the container, and the
bitmap disappears as the new Excel chart is inserted, as shown in Figure 14.8. Obviously, this
container leaves a lot to be desired.

Press Esc to cancel the in-place editing, and notice that the view changes a little, as shown in
Figure 14.9. That’s because CShowStringView::OnDraw() draws the contained item in a
200×200 pixel rectangle, so the chart has to be squeezed a little to fit into that space. It is the
server—Excel, in this case—that decides how to fit the item into the space given to it by the
container.

Changing ShowString

Untitled-22 2/18/99, 3:52 PM319

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

320 Chapter 14 Building an ActiveX Container Application

As you can see, there’s a lot to be done to make this feel like a real container. But first, you
have to turn it back into ShowString.

FIG. 14.8
Inserting an Excel chart
gets you a default chart,
but it completely covers
the old bitmap.

FIG. 14.9
Items can look quite
different when they are
not active.

Untitled-22 2/18/99, 3:52 PM320

321

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

Returning the ShowString Functionality
This section provides a quick summary of the steps presented in Chapter 8, “Building a Com-
plete Application: ShowString.” Open the files from the old ShowString as you go so that you
can copy code and resources wherever possible. Follow these steps:

1. In ShowStringDoc.h, add the private member variables and public Get functions to the
class.

2. In CShowStringDoc::Serialize(), paste the code that saves or restores these member
variables. Leave the call to COleDocument::Serialize() in place.

3. In CShowStringDoc::OnNewDocument(), paste the code that initializes the member
variables.

4. In CShowStringView::OnDraw(), add the code that draws the string before the code that
handles the contained items. Remove the TODO task about drawing native data.

5. Copy the Tools menu from the old ShowString to the new container ShowString. Choose
File, Open to open the old ShowString.rc, open the IDR_SHOWSTTYPE menu, click the
Tools menu, and choose Edit, Copy. Open the new ShowString’s IDR_SHOWSTTYPE menu,
click the Window menu, and choose Edit, Paste. Don’t paste it into the
IDR_SHOWSTTYPE_CNTR_IP menu.

6. Add the accelerator Ctrl+T for ID_TOOLS_OPTIONS as described in Chapter 8, “Building a
Complete Application: ShowString.” Add it to the IDR_MAINFRAME accelerator only.

7. Delete the IDD_ABOUTBOX dialog box from the new ShowString. Copy IDD_ABOUTBOX and
IDD_OPTIONS from the old ShowString to the new.

8. While IDD_OPTIONS has focus, choose View, Class Wizard. Create the COptionsDialog
class as in the original ShowString.

9. Use the Class Wizard to connect the dialog controls to COptionsDialog member
variables, as described in Chapter 10.

10. Use the Class Wizard to arrange for CShowStringDoc to catch the ID_TOOLS_OPTIONS
command.

11. In ShowStringDoc.cpp, replace the Class Wizard version of
CShowStringDoc::OnToolsOptions() with the OnToolsOptions() from the old
ShowString, which puts up the dialog box.

12. In ShowStringDoc.cpp, add #include “OptionsDialog.h” after the #include statements
already present.

Build the application, fix any typos or other simple errors, and then execute it. It should run as
before, saying Hello, world! in the center of the view. Convince yourself that the Options
dialog box still works and that you have restored all the old functionality. Then resize the appli-
cation and the view as large as possible, so that when you insert an object it doesn’t land on the
string. Insert an Excel chart as before, and press Esc to stop editing in place. There you have
it: A version of ShowString that is also an ActiveX container. Now it’s time to get to work mak-
ing it a good container.

Changing ShowString

Untitled-22 2/18/99, 3:52 PM321

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

322 Chapter 14 Building an ActiveX Container Application

Moving, Resizing, and Tracking
The first task you want to do, even when there is only one item contained in ShowString, is to
allow the user to move and resize that item. It makes life simpler for the user if you also pro-
vide a tracker rectangle, a hashed line around the contained item. This is easy to do with the
MFC class CRectTracker.

The first step is to add a member variable to the container item (CShowStringCntrItem) defini-
tion in CntrItem.h, to hold the rectangle occupied by this container item. Right-click
CShowStringCntrItem in ClassView and choose Add Member Variable. The variable type is
CRect, the declaration is m_rect; leave the access public.

m_rect needs to be initialized in a function that is called when the container item is first used
and then never again. Whereas view classes have OnInitialUpdate() and document classes
have OnNewDocument(), container item classes have no such called-only-once function except
the constructor. Initialize the rectangle in the constructor, as shown in Listing 14.23.

Listing 14.23 CntrItem.cpp—Constructor

CShowStringCntrItem::CShowStringCntrItem(CShowStringDoc* pContainer)
 : COleClientItem(pContainer)
{
 m_rect = CRect(10,10,210,210);
}

The numerical values used here are those in the boilerplate OnDraw() provided by AppWizard.
Now you need to start using the m rect member variable and setting it. The functions affected
are presented in the same order as in the earlier section, CShowStringView.

First, change CShowStringView::OnDraw(). Find this line:

 m_pSelection->Draw(pDC, CRect(10, 10, 210, 210));

Replace it with this:

 m_pSelection->Draw(pDC, m_pSelection->m_rect);

Next, change CShowStringCntrItem::OnGetItemPosition(), which needs to return this rect-
angle. Take away all the comments and the old hardcoded rectangle (leave the ASSERT_VALID
macro call), and add this line:

 rPosition = m_rect;

The partner function

CShowStringCntrItem::OnChangeItemPosition()

Untitled-22 2/18/99, 3:53 PM322

323

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

is called when the user moves the item. This is where m_rect is changed from the initial value.
Remove the comments and add code immediately after the call to the base class function,
COleClientItem::OnChangeItemPosition(). The code to add is:

 m_rect = rectPos;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(NULL);

Finally, the new member variable needs to be incorporated into
CShowStringCntrItem::Serialize(). Remove the comments and add lines in the storing and
saving blocks so that the function looks like Listing 14.24.

Listing 14.24 CntrItem.cpp—CShowStringCntrItem::Serialize()

void CShowStringCntrItem::Serialize(CArchive& ar)
{
 ASSERT_VALID(this);

 // Call base class first to read in COleClientItem data.
 // Because this sets up the m_pDocument pointer returned from
 // CShowStringCntrItem::GetDocument, it is a good idea to call
 // the base class Serialize first.
 COleClientItem::Serialize(ar);

 // now store/retrieve data specific to CShowStringCntrItem
 if (ar.IsStoring())
 {
 ar << m_rect;
 }
 else
 {
 ar >> m_rect;
 }
}

Build and execute the application, insert a bitmap, and scribble something in it. Press Esc to
cancel editing in place, and your scribble shows up in the top-right corner, next to Hello,
world!. Choose Edit, Bitmap Image Object and then Edit. (Choosing Open allows you to edit it
in a different window.) Use the resizing handles that appear to drag the image over to the left,
and then press Esc to cancel in-place editing. The image is drawn at the new position, as ex-
pected.

Now for the tracker rectangle. The Microsoft tutorials recommend writing a helper function,
SetupTracker(), to handle this. Add these lines to CShowStringView::OnDraw(), just after the
call to m_pSelection->Draw():

 CRectTracker trackrect;
 SetupTracker(m_pSelection,&trackrect);
 trackrect.Draw(pDC);

Moving, Resizing, and Tracking

Untitled-22 2/18/99, 3:53 PM323

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

324 Chapter 14 Building an ActiveX Container Application

CAUTION

The one-line statement after the if was not in brace brackets before; don’t forget to add them. The entire
if statement should look like this:

if (m_pSelection != NULL)
{
 m_pSelection->Draw(pDC, m_pSelection->m_rect);
 CRectTracker trackrect;
 SetupTracker(m_pSelection,&trackrect);
 trackrect.Draw(pDC);
}

Add the following public function to ShowStringView.h (inside the class definition):

 void SetupTracker(CShowStringCntrItem* item,
 CRectTracker* track);

Add the code in Listing 14.25 to ShowStringView.cpp immediately after the destructor.

Listing 14.25 ShowStringView.cpp—CShowStringView::SetupTracker()

void CShowStringView::SetupTracker(CShowStringCntrItem* item,
 CRectTracker* track)
{
 track->m_rect = item->m_rect;

 if (item == m_pSelection)
 {
 track->m_nStyle |= CRectTracker::resizeInside;
 }

 if (item->GetType() == OT_LINK)
 {
 track->m_nStyle |= CRectTracker::dottedLine;
 }
 else
 {
 track->m_nStyle |= CRectTracker::solidLine;
 }
 if (item->GetItemState() == COleClientItem::openState ||
 item->GetItemState() == COleClientItem::activeUIState)
 {
 track->m_nStyle |= CRectTracker::hatchInside;
 }
}

This code first sets the tracker rectangle to the container item rectangle. Then it adds styles to
the tracker. The styles available are as follows:

■ solidLine—Used for an embedded item.

■ dottedLine—Used for a linked item.

Untitled-22 2/18/99, 3:53 PM324

325

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

■ hatchedBorder—Used for an in-place active item.

■ resizeInside—Used for a selected item.

■ resizeOutside—Used for a selected item.

■ hatchInside—Used for an item whose server is open.

This code first compares the pointers to this item and the current selection. If they are the
same, this item is selected and it gets resize handles. It’s up to you whether these handles go
on the inside or the outside. Then this code asks the item whether it is linked (dotted line) or
not (solid line.) Finally, it adds hatching to active items.

Build and execute the application, and try it out. You still cannot edit the contained item by
double-clicking it; choose Edit from the cascading menu added at the bottom of the Edit menu.
You can’t move and resize an inactive object, but if you activate it, you can resize it while active.
Also, when you press Esc, the inactive object is drawn at its new position.

Handling Multiple Objects and Object Selection
The next step is to catch mouse clicks and double-clicks so that the item can be resized,
moved, and activated more easily. This involves testing to see whether a click is on a contained
item.

Hit Testing
You need to write a helper function that returns a pointer to the contained item that the user
clicked, or NULL if the user clicked an area of the view that has no contained item. This function
runs through all the items contained in the document. Add the code in Listing 14.26 to
ShowStringView.cpp immediately after the destructor.

Listing 14.26 ShowStringView.cpp—CShowStringView::SetupTracker()

CShowStringCntrItem* CShowStringView::HitTest(CPoint point)
{
 CShowStringDoc* pDoc = GetDocument();
 CShowStringCntrItem* pHitItem = NULL;

 POSITION pos = pDoc->GetStartPosition();
 while (pos)
 {
 CShowStringCntrItem* pCurrentItem =
 (CShowStringCntrItem*) pDoc->GetNextClientItem(pos);
 if (pCurrentItem->m_rect.PtInRect(point))
 {
 pHitItem = pCurrentItem;
 }
 }

 return pHitItem;
}

Handling Multiple Objects and Object Selection

Untitled-22 2/18/99, 3:53 PM325

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

326 Chapter 14 Building an ActiveX Container Application

Don’t forget to add the declaration of this public function to the header file.

This function is given a CPoint that describes the point on the screen where the user clicked.
Each container item has a rectangle, m_rect, as you saw earlier, and the CRect class has a mem-
ber function called PtInRect() that takes a CPoint and returns TRUE if the point is in the rect-
angle or FALSE if it is not. This code simply loops through the items in this document, using the
OLE document member function GetNextClientItem(), and calls PtInRect() for each.

What happens if there are several items in the container, and the user clicks at a point where
two or more overlap? The one on top is selected. That’s because GetStartPosition() returns a
pointer to the bottom item, and GetNextClientItem() works its way up through the items. If
two items cover the spot where the user clicked, pHitItem is set to the lower one first, and then
on a later iteration of the while loop, it is set to the higher one. The pointer to the higher item
is returned.

Drawing Multiple Items
While that code to loop through all the items is still fresh in your mind, why not fix
CShowStringView::OnDraw() so it draws all the items? Leave all the code that draws the string,
and replace the code in Listing 14.27 with that in Listing 14.28.

Listing 14.27 ShowStringView.cpp—Lines in OnDraw() to Replace

 // Draw the selection at an arbitrary position. This code should
 // be removed once your real drawing code is implemented. This
 // position corresponds exactly to the rectangle returned by
 // CShowStringCntrItem, to give the effect of in-place editing.

 // TODO: remove this code when final draw code is complete.

 if (m_pSelection == NULL)
 {
 POSITION pos = pDoc->GetStartPosition();
 m_pSelection = (CShowStringCntrItem*)pDoc->GetNextClientItem(pos);
 }
 if (m_pSelection != NULL)
 {
 m_pSelection->Draw(pDC, m_pSelection->m_rect);
 CRectTracker trackrect;
 SetupTracker(m_pSelection,&trackrect);
 trackrect.Draw(pDC);
 }

T I P

Untitled-22 2/18/99, 3:54 PM326

327

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

Listing 14.28 ShowStringView.cpp—New Lines in OnDraw()

 POSITION pos = pDoc->GetStartPosition();
 while (pos)
 {
 CShowStringCntrItem* pCurrentItem =
 (CShowStringCntrItem*) pDoc->GetNextClientItem(pos);
 pCurrentItem->Draw(pDC, pCurrentItem->m_rect);

 if (pCurrentItem == m_pSelection)
 {
 CRectTracker trackrect;
 SetupTracker(pCurrentItem,&trackrect);
 trackrect.Draw(pDC);
 }
 }

Now each item is drawn, starting from the bottom and working up, and if it is selected, it gets a
tracker rectangle.

Handling Single Clicks
When the user clicks the client area of the application, a WM_LBUTTONDOWN message is sent. This
message should be caught by the view. Right-click CShowStringView in ClassView, and choose
Add Windows Message Handler from the shortcut menu. Click WM_LBUTTONDOWN in the New
Windows Messages/Events box on the left (see Figure 14.10), and then click Add and Edit to
add a handler function and edit the code immediately.

FIG. 14.10
Add a function to
handle left mouse
button clicks.

Handling Multiple Objects and Object Selection

Untitled-22 2/18/99, 3:54 PM327

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

328 Chapter 14 Building an ActiveX Container Application

Add the code in Listing 14.29 to the empty OnLButtonDown() that Add Windows Message Han-
dler generated.

Listing 14.29 ShowStringView.cpp—CShowStringView::OnLButtonDown()

void CShowStringView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CShowStringCntrItem* pHitItem = HitTest(point);
 SetSelection(pHitItem);
 if (pHitItem == NULL)
 return;

 CRectTracker track;
 SetupTracker(pHitItem, &track);
 UpdateWindow();
 if (track.Track(this,point))
 {
 Invalidate();
 pHitItem->m_rect = track.m_rect;
 GetDocument()->SetModifiedFlag();
 }
}

This code determines which item has been selected and sets it. (SetSelection() isn’t written
yet.) Then, if something has been selected, it draws a tracker rectangle around it and calls
CRectTracker::Track(), which allows the user to resize the rectangle. After the resizing, the
item is sized to match the tracker rectangle and is redrawn.

SetSelection() is pretty straightforward. Add the definition of this public member function to
the header file, ShowStringView.h, and the code in Listing 14.30 to ShowStringView.cpp.

Listing 14.30 ShowStringView.cpp—CShowStringView::SetSelection()

void CShowStringView::SetSelection(CShowStringCntrItem* item)
{
 // if an item is being edited in place, close it
 if (item == NULL || item != m_pSelection)
 {
 COleClientItem* pActive =
 GetDocument()->GetInPlaceActiveItem(this);
 if (pActive != NULL && pActive != item)
 {
 pActive->Close();
 }
 }
 Invalidate();
 m_pSelection = item;
}

Untitled-22 2/18/99, 3:54 PM328

329

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

When the selection is changed, any item that is being edited in place should be closed.
SetSelection() checks that the item passed in represents a change, and then gets the active
object from the document and closes that object. Then it calls for a redraw and sets
m_pSelection. Build and execute ShowString, insert an object, and press Esc to stop in-place
editing. Click and drag to move the inactive object, and insert another. You should see some-
thing like Figure 14.11. Notice the resizing handles around the bitmap, indicating that it is
selected.

FIG. 14.11
ShowString can now
hold multiple items,
and the user can move
and resize them
intuitively.

You might have noticed that the cursor doesn’t change as you move or resize. That’s because
you didn’t tell it to. Luckily, it’s easy to tell it this: CRectTracker has a SetCursor() member
function, and all you need to do is call it when a WM_SETCURSOR message is sent. Again, it should
be the view that catches this message; right-click CShowStringView in ClassView, and choose
Add Windows Message Handler from the shortcut menu. Click WM_SETCURSOR in the New
Windows Messages/Events box on the left; then click Add and Edit to add a handler function
and edit the code immediately. Add the code in Listing 14.31 to the empty function that was
generated for you.

Listing 14.31 ShowStringView.cpp—CShowStringView::OnSetCursor()

BOOL CShowStringView::OnSetCursor(CWnd* pWnd, UINT nHitTest,
 UINT message)
{
 if (pWnd == this && m_pSelection != NULL)
 {
 CRectTracker track;

continues

Handling Multiple Objects and Object Selection

Untitled-22 2/18/99, 3:54 PM329

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

330 Chapter 14 Building an ActiveX Container Application

Listing 14.31 Continued

 SetupTracker(m_pSelection, &track);
 if (track.SetCursor(this, nHitTest))
 {
 return TRUE;
 }
 }

 return CView::OnSetCursor(pWnd, nHitTest, message);
}

This code does nothing unless the cursor change involves this view and there is a selection. It
gives the tracking rectangle’s SetCursor() function a chance to change the cursor because the
tracking object knows where the rectangle is and whether the cursor is over a boundary or
sizing handle. If SetCursor() didn’t change the cursor, this code lets the base class handle it.
Build and execute ShowString, and you should see cursors that give you feedback as you move
and resize.

Handling Double-Clicks
When a user double-clicks a contained item, the primary verb should be called. For most ob-
jects, the primary verb is to Edit in place, but for some, such as sound files, it is Play. Arrange
as before for CShowStringView to catch the WM_LBUTTONDBLCLK message, and add the code in
Listing 14.32 to the new function.

Listing 14.32 ShowStringView.cpp—CShowStringView::OnLButtonDblClk()

void CShowStringView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 OnLButtonDown(nFlags, point);

 if(m_pSelection)
 {
 if (GetKeyState(VK_CONTROL) < 0)
 {
 m_pSelection->DoVerb(OLEIVERB_OPEN, this);
 }
 else
 {
 m_pSelection->DoVerb(OLEIVERB_PRIMARY, this);
 }
 }

 CView::OnLButtonDblClk(nFlags, point);
}

First, this function handles the fact that this item has been clicked; calling OnLButtonDown()
draws the tracker rectangle, sets m_pSelection, and so on. Then, if the user holds down Ctrl
while double-clicking, the item is opened; otherwise, the primary verb is called. Finally, the

Untitled-22 2/18/99, 3:54 PM330

331

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

base class function is called. Build and execute ShowString and try double-clicking. Insert an
object, press Esc to stop editing it, move it, resize it, and double-click it to edit in place.

Implementing Drag and Drop
The last step to make ShowString a completely up-to-date ActiveX container application is to
implement drag and drop. The user should be able to grab a contained item and drag it out of
the container, or hold down Ctrl while dragging to drag out a copy and leave the original be-
hind. The user should also be able to drag items from elsewhere and drop them into this con-
tainer just as though they had been inserted through the Clipboard. In other words, the con-
tainer should operate as a drag source and a drop target.

Implementing a Drag Source
Because CShowStringCntrItem inherits from COleClientItem, implementing a drag source is
really easy. By clicking a contained object, edit these lines at the end of
CShowStringView::OnLButtonDown() so that it resembles Listing 14.33. The new lines are in
bold type.

Listing 14.33 CShowStringView::OnLButtonDown()—Implementing a Drag
Source

void CShowStringView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CShowStringCntrItem* pHitItem = HitTest(point);
 SetSelection(pHitItem);
 if (pHitItem == NULL)
 return;

 CRectTracker track;
 SetupTracker(pHitItem, &track);
 UpdateWindow();

 if (track.HitTest(point) == CRectTracker::hitMiddle)
 {
 CRect rect = pHitItem->m_rect;
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(&rect); // convert logical rect to device rect
 rect.NormalizeRect();
 CPoint newpoint = point - rect.TopLeft();

 DROPEFFECT dropEffect = pHitItem->DoDragDrop(rect, newpoint);
 if (dropEffect == DROPEFFECT_MOVE)
 {
 Invalidate();
 if (pHitItem == m_pSelection)
 {

continues

Implementing Drag and Drop

Untitled-22 2/18/99, 3:55 PM331

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

332 Chapter 14 Building an ActiveX Container Application

Listing 14.33 Continued

 m_pSelection = NULL;
 }
 pHitItem->Delete();
 }
 }
 else
 {
 if (track.Track(this,point))
 {
 Invalidate();
 pHitItem->m_rect = track.m_rect;
 GetDocument()->SetModifiedFlag();
 }
 }
}

This code first confirms that the mouse click was inside the tracking rectangle, rather than on
the sizing border. It sets up a temporary CRect object that will be passed to DoDragDrop() after
some coordinate scheme conversions are complete. The first conversion is from logical to
device units, and is accomplished with a call to CDC::LPtoDP(). In order to call this function,
the new code must create a temporary device context based on the CShowStringView for which
OnLButtonDown() is being called. Having converted rect to device units, the new code normal-
izes it and calculates the point within the rectangle where the user clicked.

Then the new code calls the DoDragDrop() member function of CShowStringCntrItem, inher-
ited from COleClientItem and not overridden. It passes in the converted rect and the offset of
the click. If DoDragDrop() returns DROPEFFECT_MOVE, the item was moved and needs to be
deleted. The code to handle a drop, which is not yet written, will create a new container item
and set it as the current selection. This means that if the object was dropped elsewhere in the
container, the current selection will no longer be equal to the hit item. If these two pointers are
still equal, the object must have been dragged away. If it was dragged away, this code sets
m_pSelection to NULL. In either case, pHitItem should be deleted.

Build and execute ShowString, insert a new object, press Esc to stop editing in place, and then
drag the inactive object to an ActiveX container application such as Microsoft Excel. You can
also try dragging to the desktop. Be sure to try dragging an object down to the taskbar and
pausing over the icon of a minimized container application, and then waiting while the applica-
tion is restored so that you can drop the object.

Implementing a Drop Target
It is harder to make ShowString a drop target (it could hardly be easier). If you dragged a
contained item out of ShowString and dropped it into another container, try dragging that item
back into ShowString. The cursor changes to a circle with a slash through it, meaning “you
can’t drop that here.” In this section, you make the necessary code changes that allow you to
drop it there after all.

Untitled-22 2/18/99, 3:55 PM332

333

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

You need to register your view as a place where items can be dropped. Next, you need to
handle the following four events that can occur:

■ An item might be dragged across the boundaries of your view. This action will require a
cursor change or other indication you will take the item.

■ In the view, the item will be dragged around within your boundaries, and you should give
the user feedback about that process.

■ That item might be dragged out of the window again, having just passed over your view
on the way to its final destination.

■ The user may drop the item in your view.

Registering the View as a Drop Target
To register the view as a drop target, add a COleDropTarget member variable to the view. In
ShowStringView.h, add this line to the class definition:

 COleDropTarget m_droptarget;

To handle registration, override OnCreate() for the view, which is called when the view is
created. Arrange for CShowStringView to catch the WM_CREATE message. Add the code in List-
ing 14.34 to the empty function generated for you.

Listing 14.34 ShowStringView.cpp—CShowStringView::OnCreate()

int CShowStringView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (m_droptarget.Register(this))
 {
 return 0;
 }
 else
 {
 return -1;
 }
}

OnCreate() returns 0 if everything is going well and -1 if the window should be destroyed.
This code calls the base class function and then uses COleDropTarget::Register() to register
this view as a place to drop items.

Setting Up Function Skeletons and Adding Member Variables
The four events that happen in your view correspond to four virtual functions you must over-
ride: OnDragEnter(), OnDragOver(), OnDragLeave(), and OnDrop(). Right-click
CShowStringView in ClassView and choose Add Virtual Function to add overrides of these

Implementing Drag and Drop

Untitled-22 2/18/99, 3:55 PM333

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

334 Chapter 14 Building an ActiveX Container Application

functions. Highlight OnDragEnter() in the New Virtual Functions list, click Add Handler, and
repeat for the other three functions.

OnDragEnter() sets up a focus rectangle that shows the user where the item would go if it were
dropped here. This is maintained and drawn by OnDragOver(). But first, a number of member
variables related to the focus rectangle must be added to CShowStringView. Add these lines to
ShowStringView.h, in the public section:

 CPoint m_dragpoint;
 CSize m_dragsize;
 CSize m_dragoffset;

A data object contains a great deal of information about itself, in various formats. There is, of
course, the actual data as text, device independent bitmap (DIB), or whatever other format is
appropriate. But there is also information about the object itself. If you request data in the
Object Descriptor format, you can find out the size of the item and where on the item the user
originally clicked, and the offset from the mouse to the upper-left corner of the item. These
formats are generally referred to as Clipboard formats because they were originally used for
Cut and Paste via the Clipboard.

To ask for this information, call the data object’s GetGlobalData() member function, passing it
a parameter that means “Object Descriptor, please.” Rather than build this parameter from a
string every time, you build it once and store it in a static member of the class. When a class
has a static member variable, every instance of the class looks at the same memory location to
see that variable. It is initialized (and memory is allocated for it) once, outside the class.

Add this line to ShowStringView.h:

 static CLIPFORMAT m_cfObjectDescriptorFormat;

In ShowStringView.cpp, just before the first function, add these lines:

CLIPFORMAT CShowStringView::m_cfObjectDescriptorFormat =
 (CLIPFORMAT) ::RegisterClipboardFormat(“Object Descriptor”);

This makes a CLIPFORMAT from the string “Object Descriptor” and saves it in the static mem-
ber variable for all instances of this class to use. Using a static member variable speeds up
dragging over your view.

Your view doesn’t accept any and all items that are dropped on it. Add a BOOL member variable
to the view that indicates whether it accepts the item that is now being dragged over it:

 BOOL m_OKtodrop;

There is one last member variable to add to CShowStringView. As the item is dragged across
the view, a focus rectangle is repeatedly drawn and erased. Add another BOOL member variable
that tracks the status of the focus rectangle:

 BOOL m_FocusRectangleDrawn;

Initialize m_FocusRectangleDrawn, in the view constructor, to FALSE:

CShowStringView::CShowStringView()
{

Untitled-22 2/18/99, 3:56 PM334

335

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

 m_pSelection = NULL;
 m_FocusRectangleDrawn = FALSE;
}

OnDragEnter()
OnDragEnter() is called when the user first drags an item over the boundary of the view. It sets
up the focus rectangle and then calls OnDragOver(). As the item continues to move,
OnDragOver() is called repeatedly until the user drags the item out of the view or drops it in the
view. The overall structure of OnDragEnter() is shown in Listing 14.35.

Listing 14.35 ShowStringView.cpp—CShowStringView::OnDragEnter()

DROPEFFECT CShowStringView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 ASSERT(!m_FocusRectangleDrawn);

 // check that the data object can be dropped in this view
 // set dragsize and dragoffset with call to GetGlobalData
 // convert sizes with a scratch dc
 // hand off to OnDragOver
 return OnDragOver(pDataObject, dwKeyState, point);
}

First, check that whatever pDataObject carries is something from which you can make a
COleClientItem (and therefore a CShowsStringCntrItem). If not, the object cannot be dropped
here, and you return DROPEFFECT_NONE, as shown in Listing 14.36.

Listing 14.36 ShowStringView.cpp—Can the Object Be Dropped?

 // check that the data object can be dropped in this view
 m_OKtodrop = FALSE;
 if (!COleClientItem::CanCreateFromData(pDataObject))
 return DROPEFFECT_NONE;

 m_OKtodrop = TRUE;

Now the weird stuff starts. The GetGlobalData() member function of the data item that is
being dragged into this view is called to get the object descriptor information mentioned ear-
lier. It returns a handle of a global memory block. Then the SDK function GlobalLock() is
called to convert the handle into a pointer to the first byte of the block and to prevent any other
object from allocating the block. This is cast to a pointer to an object descriptor structure (the
undyingly curious can check about 2,000 lines into oleidl.h, in the \Program Files\Microsoft
Visual Studio\VC98\Include folder for most installations, to see the members of this structure)
so that the sizel and pointl elements can be used to fill the \m_dragsize and m_dragoffset
member variables.

Implementing Drag and Drop

Untitled-22 2/18/99, 3:56 PM335

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

336 Chapter 14 Building an ActiveX Container Application

That is not a number 1 at the end of those structure elements, but a lowercase letter L. The elements
of the sizel structure are cx and cy, but the elements of the pointl structure are x and y. Don’t
get carried away cutting and pasting.

Finally, GlobalUnlock() reverses the effects of GlobalLock(), making the block accessible to
others, and GlobalFree() frees the memory. It ends up looking like Listing 14.37.

Listing 14.37 ShowStringView.cpp—Set dragsize and dragoffset

 // set dragsize and dragoffset with call to GetGlobalData
 HGLOBAL hObjectDescriptor = pDataObject->GetGlobalData(
 m_cfObjectDescriptorFormat);
 if (hObjectDescriptor)
 {
 LPOBJECTDESCRIPTOR pObjectDescriptor =
 (LPOBJECTDESCRIPTOR) GlobalLock(hObjectDescriptor);
 ASSERT(pObjectDescriptor);
 m_dragsize.cx = (int) pObjectDescriptor->sizel.cx;
 m_dragsize.cy = (int) pObjectDescriptor->sizel.cy;
 m_dragoffset.cx = (int) pObjectDescriptor->pointl.x;
 m_dragoffset.cy = (int) pObjectDescriptor->pointl.y;
 GlobalUnlock(hObjectDescriptor);
 GlobalFree(hObjectDescriptor);
 }
 else
 {
 m_dragsize = CSize(0,0);
 m_dragoffset = CSize(0,0);
 }

Global memory, also called shared application memory, is allocated from a different place
than the memory available from your process space. It is the memory to use when two

different processes need to read and write the same memory, and so it comes into play when using
ActiveX.

For some ActiveX operations, global memory is too small—imagine trying to transfer a 40MB file
through global memory! There is a more general function than GetGlobalData(), called (not
surprisingly) GetData(), which can transfer the data through a variety of storage medium choices.
Because the object descriptors are small, asking for them in global memory is a sensible
approach. ■

If the call to GetGlobalData() didn’t work, set both member variables to zero by zero rect-
angles. Next, convert those rectangles from OLE coordinates (which are device independent)
to pixels:

// convert sizes with a scratch dc
 CClientDC dc(NULL);
 dc.HIMETRICtoDP(&m_dragsize);
 dc.HIMETRICtoDP(&m_dragoffset);

T I P

N O T E

Untitled-22 2/18/99, 3:56 PM336

337

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

HIMETRICtoDP() is a very useful function that happens to be a member of CClientDC, which
inherits from the familiar CDC of Chapter 5, “Drawing on the Screen.” You create an instance of
CClientDC just so you can call the function.

OnDragEnter() closes with a call to OnDragOver(), so that’s the next function to write.

OnDragOver()
This function returns a DROPEFFECT. As you saw earlier in the “Implementing a Drag Source”
section, if you return DROPEFFECT_MOVE, the source deletes the item from itself. Returning
DROPEFFECT_NONE rejects the copy. It is OnDragOver() that deals with preparing to accept or
reject a drop. The overall structure of the function looks like this:

DROPEFFECT CShowStringView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 // return if dropping is already rejected
 // determine drop effect according to keys depressed
 // adjust focus rectangle
}

First, check to see whether OnDragEnter() or an earlier call to OnDragOver() already rejected
this possible drop:

 // return if dropping is already rejected
 if (!m_OKtodrop)
 {
 return DROPEFFECT_NONE;
 }

Next, look at the keys that the user is holding down now, available in the parameter passed to
this function, dwKeyState. The code you need to add (see Listing 14.38) is straightforward.

Listing 14.38 ShowStringView.cpp—Determine the Drop Effect

 // determine drop effect according to keys depressed
 DROPEFFECT dropeffect = DROPEFFECT_NONE;

 if ((dwKeyState & (MK_CONTROL|MK_SHIFT))
 == (MK_CONTROL|MK_SHIFT))
 {
 // Ctrl+Shift force a link
 dropeffect = DROPEFFECT_LINK;
 }

 else if ((dwKeyState & MK_CONTROL) == MK_CONTROL)
 {
 // Ctrl forces a copy
 dropeffect = DROPEFFECT_COPY;
 }

continues

Implementing Drag and Drop

Untitled-22 2/18/99, 3:57 PM337

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

338 Chapter 14 Building an ActiveX Container Application

Listing 14.38 Continued

 else if ((dwKeyState & MK_ALT) == MK_ALT)
 {
 // Alt forces a move
 dropeffect = DROPEFFECT_MOVE;
 }
 else
 {
 // default is to move
 dropeffect = DROPEFFECT_MOVE;
 }

This code has to be a lot more complex if the document might be smaller than the view, as
can happen when you are editing a bitmap in Paint, and especially if the view can scroll.

The Microsoft ActiveX container sample, DRAWCLI, (included on the Visual C++ CD) handles these
contingencies. Look in the CD folder \Vc98\Samples\Mcl\Mfc\Ole\DrawCli for the file drawvw.cpp
and compare that code for OnDragOver() to this code. ■

If the item has moved since the last time OnDragOver() was called, the focus rectangle has to
be erased and redrawn at the new location. Because the focus rectangle is a simple XOR of the
colors, drawing it a second time in the same place removes it. The code to adjust the focus
rectangle is in Listing 14.39.

Listing 14.39 ShowStringView.cpp—Adjust the Focus Rectangle

 // adjust focus rectangle

 point -= m_dragoffset;
 if (point == m_dragpoint)
 {
 return dropeffect;
 }

 CClientDC dc(this);

 if (m_FocusRectangleDrawn)
 {
 dc.DrawFocusRect(CRect(m_dragpoint, m_dragsize));
 m_FocusRectangleDrawn = FALSE;
 }

 if (dropeffect != DROPEFFECT_NONE)
 {
 dc.DrawFocusRect(CRect(point, m_dragsize));
 m_dragpoint = point;
 m_FocusRectangleDrawn = TRUE;
 }

N O T E

Untitled-22 2/18/99, 3:57 PM338

339

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

To test whether the focus rectangle should be redrawn, this code adjusts the point where the
user clicked by the offset into the item to determine the top-left corner of the item. It can then
compare that location to the top-left corner of the focus rectangle. If they are the same, there is
no need to redraw it. If they are different, the focus rectangle might need to be erased.

The first time OnDragOver() is called, m_dragpoint is uninitialized. That doesn’t matter
because m_FocusRectangleDrawn is FALSE, and an ASSERT in OnDragEnter()

guarantees it. When m_FocusRectangleDrawn is set to TRUE, m_dragpoint gets a value at the
same time. ■

Finally, replace the return statement that was generated for you with one that returns the
calculated DROPEFFECT:

 return dropeffect;

OnDragLeave()
Sometimes a user drags an item right over your view and out the other side. OnDragLeave()
just tidies up a little by removing the focus rectangle, as shown in Listing 14.40.

Listing 14.40 ShowStringView.cpp—ShowStringView::OnDragLeave()

void CShowStringView::OnDragLeave()
{
 CClientDC dc(this);
 if (m_FocusRectangleDrawn)
 {
 dc.DrawFocusRect(CRect(m_dragpoint, m_dragsize));
 m_FocusRectangleDrawn = FALSE;
 }
}

OnDragDrop()
If the user lets go of an item that is being dragged over ShowString, the item lands in the con-
tainer and OnDragDrop() is called. The overall structure is in Listing 14.41.

Listing 14.41 ShowStringView.cpp—Structure of OnDrop()

BOOL CShowStringView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 ASSERT_VALID(this);
 // remove focus rectangle
 // paste in the data object
 // adjust the item dimensions, and make it the current selection
 // update views and set modified flag
 return TRUE;
}

Implementing Drag and Drop

N O T E

Untitled-22 2/18/99, 3:57 PM339

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

340 Chapter 14 Building an ActiveX Container Application

Removing the focus rectangle is simple, as shown in Listing 14.42.

Listing 14.42 ShowStringView.cpp—Removing the Focus Rectangle

 // remove focus rectangle
 CClientDC dc(this);
 if (m_FocusRectangleDrawn)
 {
 dc.DrawFocusRect(CRect(m_dragpoint, m_dragsize));
 m_FocusRectangleDrawn = FALSE;
 }

Next, create a new item to hold the data object, as shown in Listing 14.43. Note the use of the
bitwise and (&) to test for a link.

Listing 14.43 ShowStringView.cpp—Paste the Data Object

 // paste the data object
 CShowStringDoc* pDoc = GetDocument();
 CShowStringCntrItem* pNewItem = new CShowStringCntrItem(pDoc);
 ASSERT_VALID(pNewItem);
 if (dropEffect & DROPEFFECT_LINK)
 {
 pNewItem->CreateLinkFromData(pDataObject);
 }
 else
 {
 pNewItem->CreateFromData(pDataObject);
 }
 ASSERT_VALID(pNewItem);

The size of the container item needs to be set, as shown in Listing 14.44.

Listing 14.44 ShowStringView.cpp—Adjust Item Dimensions

 // adjust the item dimensions, and make it the current selection
 CSize size;
 pNewItem->GetExtent(&size, pNewItem->GetDrawAspect());
 dc.HIMETRICtoDP(&size);
 point -= m_dragoffset;
 pNewItem->m_rect = CRect(point,size);
 m_pSelection = pNewItem;

Notice that this code adjusts the place where the user drops the item (point) by m_dragoffset,
the coordinates into the item where the user clicked originally.

Finally, make sure the document is saved on exit, because pasting in a new container item
changes it, and redraw the view:

Untitled-22 2/18/99, 3:57 PM340

341

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

14

IV
Part

Ch

 // update views and set modified flag
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 return TRUE;

This function always returns TRUE because there is no error checking at the moment that
might require a return of FALSE. Notice, however, that most problems have been prevented; for
example, if the data object cannot be used to create a container item, the DROPEFFECT would
have been set to DROPEFFECT_NONE in OnDragEnter() and this code would never have been
called. You can be confident this code works.

Testing the Drag Target
All the confidence in the world is no substitute for testing. Build and execute ShowString, and
try dragging something into it. To test both the drag source and drop target aspects at once,
drag something out and then drag it back in. Now this is starting to become a really useful
container. There’s only one task left to do.

Deleting an Object
You can remove an object from your container by dragging it away somewhere, but it makes
sense to implement deleting in a more obvious and direct way. The menu item generally used
for this is Edit, Delete, so you start by adding this item to the IDR_SHOWSTTYPE menu before the
Insert New Object item. Don’t let Developer Studio set the ID to ID_EDIT_DELETE; instead,
change it to ID_EDIT_CLEAR, the traditional resource ID for the command that deletes a con-
tained object. Move to another menu item and then return to Edit, Delete, and you see that the
prompt has been filled in for you as Erase the selection\nErase automatically.

The view needs to handle this command, so add a message handler as you have done through-
out this chapter. Follow these steps:

1. Right-click CShowStringView in ClassView and choose Add Windows Message Handler.

2. Choose ID_EDIT_CLEAR from the Class or Object to Handle drop-down box at the lower
right.

3. Choose COMMAND from the New Windows Messages/Events box that appears when you
click the ID_EDIT_CLEAR box.

4. Click Add Handler.

5. Click OK to accept the suggested name.

6. Choose UPDATE_COMMAND_UI from the New Windows Messages/Events box and click
Add Handler again.

7. Accept the suggested name.

8. Click OK on the large dialog to complete the process.

The code for these two handlers is very simple. Because the update handler is simpler, add
code to it first:

Deleting an Object

Untitled-22 2/18/99, 3:58 PM341

b3/a3/swg#4 Se Using Visual C++6 #1539-2 7.20.98 Ayanna CH14 LP#3

342 Chapter 14 Building an ActiveX Container Application

void CShowStringView::OnUpdateEditClear(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_pSelection != NULL);
}

If there is a current selection, it can be deleted. If there is not a current selection, the menu
item is disabled (grayed). The code to handle the command isn’t much longer: it’s in Listing
14.45.

Listing 14.45 ShowStringView.cpp—CShowStringView::OnEditClear()

void CShowStringView::OnEditClear()
{
 if (m_pSelection)
 {
 m_pSelection->Delete();
 m_pSelection = NULL;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(NULL);
 }
}

This code checks that there is a selection (even though the menu item is grayed when there is
no selection) and then deletes it, sets it to NULL so that there is no longer a selection, makes
sure the document is marked as modified so that the user is prompted to save it when exiting,
and gets the view redrawn without the deleted object.

Build and execute ShowString, insert something, and delete it by choosing Edit, Delete. Now
it’s an intuitive container that does what you expect a container to do. ●

Untitled-22 2/18/99, 3:58 PM342

343

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

C H A P T E R

Building an ActiveX Server Application

Adding Server Capabilities to ShowString 344

Applications That Are Both Container and Server 365

Active Documents 365

15

In this chapter

Untitled-1 2/19/99, 7:17 AM343

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

344 Chapter 15 Building an ActiveX Server Application

Just as AppWizard builds ActiveX containers, it also builds ActiveX servers. However, unlike
containers, the AppWizard code is complete, so there isn’t much work to do for improving the
AppWizard code. This chapter builds a version of ShowString that is only a server and dis-
cusses how to build another version that is both a container and a server. You also learn about
ActiveX documents and how they can be used in other applications.

Adding Server Capabilities to ShowString
Like Chapter 14, “Building an ActiveX Container Application,” this chapter starts by building an
ordinary server application with AppWizard and then adds the functionality that makes it
ShowString. This is far quicker than adding ActiveX functionality to ShowString because
ShowString doesn’t have much code and can be written quickly.

AppWizard’s Server Boilerplate
Build the new ShowString in a different directory, making almost exactly the same AppWizard
choices as when you built versions of ShowString in Chapter 8, “Building a Complete Applica-
tion: ShowString,” and Chapter 14. Call it ShowString, and choose an MDI application with no
database support. In AppWizard’s Step 3, select full server as your compound document sup-
port. This enables the check box for ActiveX document support. Leave this deselected for now.
Later in this chapter you see the consequences of selecting this option. Continue the
AppWizard process, selecting a docking toolbar, initial status bar, printing and print preview,
context sensitive Help, and 3D controls. Finally, select source file comments and a shared DLL.
Finish AppWizard and, if you want, build the project.

Even though the technology is now called ActiveX, the AppWizard dialog boxes refer to
compound document support. Many of the class names that are used throughout this

chapter have Ole in their names as well. Although Microsoft has changed the name of the technology,
it has not propagated that change throughout Visual C++ yet. You will have to live with these contradic-
tions for awhile. ■

There are many differences between the application you have just generated and a do-nothing
application without ActiveX server support. These differences are explained in the next few
sections.

Menus There are two new menus in an ActiveX server application. The first, called
IDR_SHOWSTTYPE_SRVR_IP, is shown in Figure 15.1. When an item is being edited in place, the
container in-place menu (called IDR_SHOWSTTYPE_CNTR_IP in the container version of
ShoeString) is combined with the server in-place menu, IDR_SHOWSTTYPE_SRVR_IP, to build the
in-place menu as shown in Figure 15.2. The double separators in each partial menu show
where the menus are joined.

N O T E

Untitled-1 2/19/99, 7:17 AM344

345

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

The second new menu is IDR_SHOWSTTYPE_SRVR_EMB, used when an embedded item is being
edited in a separate window. Figure 15.3 shows this new menu next to the more familiar
IDR_SHOWSTTYPE menu, which is used when ShowString is acting not as a server but as an
ordinary application. The File menus have different items: IDR_SHOWSTTYPE_SRVR_EMB has
Update in place of Save, and Save Copy As in place of Save As. This is because the item the
user is working on in the separate window is not a document of its own, but is embedded in
another document. File, Update updates the embedded item; File, Save Copy As doesn’t save
the whole document, just a copy of this embedded portion.

FIG. 15.1
AppWizard adds
another menu for
editing in place.

File Window

Edit View Help

File Edit View Window Help

+

=

FIG. 15.2
The container and
server in-place menus
are interlaced during in-
place editing.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:17 AM345

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

346 Chapter 15 Building an ActiveX Server Application

CShowStringApp Another member variable has been added to this class. It is declared in
ShowString.h as:

COleTemplateServer m_server;

COleTemplateServer handles the majority of the work involved in connecting documents to
code, as you will see.

The following line is added at the top of ShowString.cpp:

#include “IpFrame.h”

This sets up the class CInPlaceFrame, discussed later in this chapter. Just before
InitInstance(), the lines shown in Listing 15.1 are added.

Listing 15.1 Excerpt from ShowString.cpp—CLSID

// This identifier was generated to be statistically unique for
// your app. You may change it if you prefer to choose a specific
// identifier.

// {0B1DEE40-C373-11CF-870C-00201801DDD6}
static const CLSID clsid =
{ 0xb1dee40, 0xc373, 0x11cf,
 { 0x87, 0xc, 0x0, 0x20, 0x18, 0x1, 0xdd, 0xd6 } };

The numbers will be different in your code. This Class ID identifies your server application and
document type. Applications that support several kinds of documents (for example, text and
graphics) use a different CLSID for each type of document.

FIG. 15.3
The embedded menu
has different items
under File than the
usual menu.

Untitled-1 2/19/99, 7:17 AM346

347

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

As it did for the OLE container version of ShowString, CShowStringApp::InitInstance() has
several changes from the non-ActiveX ShowString you developed in Chapter 8. The code in
Listing 15.2 initializes the ActiveX (OLE) libraries.

Listing 15.2 Excerpt from ShowString.cpp—Initializing Libraries

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }

While still in CShowStringApp::InitInstance(), after the CMultiDocTemplate is initialized but
before the call to AddDocTemplate(), the following line is added to register the menu used for
in-place editing and for separate-window editing:

pDocTemplate->SetServerInfo(
 IDR_SHOWSTTYPE_SRVR_EMB, IDR_SHOWSTTYPE_SRVR_IP,
 RUNTIME_CLASS(CInPlaceFrame));

A change that was not in the container version is connecting the template for the document to
the class ID, like this:

// Connect the COleTemplateServer to the document template.
 // The COleTemplateServer creates new documents on behalf
 // of requesting OLE containers by using information
 // specified in the document template.
 m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);

Now when a user chooses Create New when inserting an object, the document used for that
creation will be available.

When a server application is launched to edit an item in place or in a separate window, the
system DLLs add /Embedding to the invoking command line. But if the application is already
running, and it is an MDI application, a new copy is not launched. Instead, a new MDI window
is opened in that application. That particular piece of magic is accomplished with one function
call, as shown in Listing 15.3.

Listing 15.3 Excerpt from ShowString.cpp—Registering Running MDI Apps

 // Register all OLE server factories as running. This enables the
 // OLE libraries to create objects from other applications.
 COleTemplateServer::RegisterAll();
 // Note: MDI applications register all server objects without regard
 // to the /Embedding or /Automation on the command line.

After parsing the command line, the AppWizard boilerplate code checks to see if this applica-
tion is being launched as an embedded (or automation) application. If so, there is no need to
continue with the initialization, so this function returns, as shown in Listing 15.4.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:18 AM347

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

348 Chapter 15 Building an ActiveX Server Application

Listing 15.4 Excerpt from ShowString.cpp—Checking How the App was
Launched

 // Check to see if launched as OLE server
 if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
 {
 // Application was run with /Embedding or /Automation.
 // Don’t show the main window in this case.
 return TRUE;
 }

If the application is being run standalone, execution continues with a registration update:

// When a server application is launched standalone, it is a good idea
 // to update the system Registry in case it has been damaged.
 m_server.UpdateRegistry(OAT_INPLACE_SERVER);

ActiveX information is stored in the Registry. (The Registry is discussed in Chapter 7, “Persis-
tence and File I/O.”) When a user chooses Insert, Object or Edit, Insert Object, the Registry
provides the list of object types that can be inserted. Before ShowString can appear in such a
list, it must be registered. Many developers add code to their install programs to register their
server applications, and MFC takes this one step further, registering the application every time
it is run. If the application files are moved or changed, the registration is automatically updated
the next time the application is run standalone.

CShowStringDoc The document class, CShowStringDoc, now inherits from COleServerDoc
rather than CDocument. As well, the following line is added at the top of ShowStringdoc.cpp:

#include “SrvrItem.h”

This header file describes the server item class, CShowStringSrvrItem, discussed in the
CShowStringSrvrItem subsection of this section. The constructor,
CShowStringDoc::CShowStringDoc(), has the following line added:

 EnableCompoundFile();

This turns on the use of compound files.

There is a new public function inlined in the header file so that other functions can access the
server item:

CShowStringSrvrItem* GetEmbeddedItem()
 { return (CShowStringSrvrItem*)COleServerDoc::GetEmbeddedItem(); }

This calls the base class GetEmbeddedItem(), which in turn calls the virtual function
OnGetEmbeddedItem(). That function must be overridden in the ShowString document class as
shown in Listing 15.5.

Untitled-1 2/19/99, 7:18 AM348

349

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

Listing 15.5 ShowStringDoc.cpp—CShowStringDoc::OnGetEmbeddedItem()

COleServerItem* CShowStringDoc::OnGetEmbeddedItem()
{
 // OnGetEmbeddedItem is called by the framework to get the
 // COleServerItem that is associated with the document.
 // It is only called when necessary.

 CShowStringSrvrItem* pItem = new CShowStringSrvrItem(this);
 ASSERT_VALID(pItem);
 return pItem;
}

This makes a new server item from this document and returns a pointer to it.

CShowStringView The view class has a new entry in the message map:

 ON_COMMAND(ID_CANCEL_EDIT_SRVR, OnCancelEditSrvr)

This catches ID_CANCEL_EDIT_SRVR, and the cancellation of editing is in place. An accelerator
has already been added to connect this message to Esc. The function that catches it looks like
this:

void CShowStringView::OnCancelEditSrvr()
{
 GetDocument()->OnDeactivateUI(FALSE);
}

This function simply deactivates the item. There are no other view changes—server views are
so much simpler than container views.

CShowStringSrvrItem The server item class is a completely new addition to ShowString. It
provides an interface between the container application that launches ShowString to and opens
a ShowString document. It describes an entire ShowString document that is embedded into
another document, or a portion of a ShowString document that is linked to part of a container
document. It has no member variables other than those inherited from the base class,
COleServerItem. It has overrides for eight functions. They are as follows:

■ A constructor

■ A destructor

■ GetDocument()

■ AssertValid()

■ Dump()

■ Serialize()

■ OnDraw()

■ OnGetExtent()

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:18 AM349

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

350 Chapter 15 Building an ActiveX Server Application

The constructor simply passes the document pointer along to the base class. The destructor
does nothing. GetDocument() is an inline function that calls the base class function with the
same name and casts the result. AssertValid() and Dump() are debug functions that simply
call the base class functions. Serialize() actually does some work, as shown in Listing 15.6.

Listing 15.6 SrvrItem.cpp—CShowStringSrvrItem::Serialize()

void CShowStringSrvrItem::Serialize(CArchive& ar)
{
 // CShowStringSrvrItem::Serialize will be called by the framework if
 // the item is copied to the clipboard. This can happen automatically
 // through the OLE callback OnGetClipboardData. A good default for
 // the embedded item is simply to delegate to the document’s Serialize
 // function. If you support links, then you will want to serialize
 // just a portion of the document.

 if (!IsLinkedItem())
 {
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 pDoc->Serialize(ar);
 }

There is no need to duplicate effort here. If the item is embedded, it is an entire document, and
that document has a perfectly good Serialize() that can handle the work. AppWizard doesn’t
provide boilerplate to handle serializing a linked item because it is application-specific. You
would save just enough information to describe what part of the document has been linked in,
for example, cells A3 to D27 in a spreadsheet. This doesn’t make sense for ShowString, so
don’t add any code to Serialize().

You may feel that OnDraw() is out of place here. It is normally thought of as a view function. But
this OnDraw() draws a depiction of the server item when it is inactive. It should look very much
like the view when it is active, and it makes sense to share the work between
CShowStringView::OnDraw() and CShowStringSrvrItem::OnDraw(). The boilerplate that
AppWizard provides is in Listing 15.7.

Listing 15.7 SrvrItem.cpp—CShowStringSrvrItem::OnDraw()

BOOL CShowStringSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: set mapping mode and extent
 // (The extent is usually the same as the size returned from OnGetExtent)
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowOrg(0,0);
 pDC->SetWindowExt(3000, 3000);

Untitled-1 2/19/99, 7:18 AM350

351

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

 // TODO: add drawing code here. Optionally, fill in the HIMETRIC extent.
 // All drawing takes place in the metafile device context (pDC).

 return TRUE;
}

This will change a great deal, but it’s worth noting now that unlike
CShowStringView::OnDraw(), this function takes two parameters. The second is the size in
which the inactive depiction is to be drawn. The extent, as mentioned in the boilerplate com-
ments, typically comes from OnGetExtent(), which is shown in Listing 15.8.

Listing 15.8 SrvrItem.cpp—CShowStringSrvrItem:: OnGetExtent()

BOOL CShowStringSrvrItem::OnGetExtent(DVASPECT dwDrawAspect, CSize& rSize)
{
 // Most applications, like this one, only handle drawing the content
 // aspect of the item. If you wish to support other aspects, such
 // as DVASPECT_THUMBNAIL (by overriding OnDrawEx), then this
 // implementation of OnGetExtent should be modified to handle the
 // additional aspect(s).

 if (dwDrawAspect != DVASPECT_CONTENT)
 return COleServerItem::OnGetExtent(dwDrawAspect, rSize);

 // CShowStringSrvrItem::OnGetExtent is called to get the extent in
 // HIMETRIC units of the entire item. The default implementation
 // here simply returns a hard-coded number of units.

 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: replace this arbitrary size

 rSize = CSize(3000, 3000); // 3000 x 3000 HIMETRIC units

 return TRUE;
}

You will replace this with real code very shortly.

CInPlaceFrame The in-place frame class, which inherits from COleIPFrameWnd, handles the
frame around the server item and the toolbars, status bars, and dialog-box bars, collectively
known as control bars, that it displays. It has the following three protected member variables:

 CToolBar m_wndToolBar;
 COleResizeBar m_wndResizeBar;
 COleDropTarget m_dropTarget;

The CToolBar class is discussed in Chapter 9, “Status Bars and Toolbars.” COleDropTarget is
discussed in the drag and drop section of Chapter 14. COleResizeBar looks just like a
CRectTracker, which was used extensively in Chapter 14, but allows the resizing of a server
item rather than a container item.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:19 AM351

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

352 Chapter 15 Building an ActiveX Server Application

The following are the seven member functions of CInPlaceFrame:

■ A constructor

■ A destructor

■ AssertValid()

■ Dump()

■ OnCreate()

■ OnCreateControlBars()

■ PreCreateWindow()

The constructor and destructor do nothing. AssertValid() and Dump() are debug functions
that simply call the base class functions. OnCreate() actually has code, shown in Listing 15.9.

Listing 15.9 IPFrame.cpp—CInPlaceFrame::OnCreate()

int CInPlaceFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (COleIPFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 // CResizeBar implements in-place resizing.
 if (!m_wndResizeBar.Create(this))
 {
 TRACE0(“Failed to create resize bar\n”);
 return -1; // fail to create
 }

 // By default, it is a good idea to register a drop-target that does
 // nothing with your frame window. This prevents drops from
 // “falling through” to a container that supports drag-drop.
 m_dropTarget.Register(this);

 return 0;
}

This function catches the WM_CREATE message that is sent when an in-place frame is created and
drawn onscreen. It calls the base class function and then creates the resize bar. Finally, it regis-
ters a drop target so that if anything is dropped over this in-place frame, it is dropped on this
server rather than the underlying container.

When a server document is activated in place, COleServerDoc::ActivateInPlace() calls
CInPlaceFrame::OnCreateControlBars(), which is shown in Listing 15.10.

Untitled-1 2/19/99, 7:19 AM352

353

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

Listing 15.10 IPFrame.cpp—CInPlaceFrame::OnCreateControlBars()

BOOL CInPlaceFrame::OnCreateControlBars(CFrameWnd* pWndFrame,
 CFrameWnd* pWndDoc)
{
 // Set owner to this window, so messages are delivered to correct app
 m_wndToolBar.SetOwner(this);

 // Create toolbar on client’s frame window
 if (!m_wndToolBar.Create(pWndFrame) ||
 !m_wndToolBar.LoadToolBar(IDR_SHOWSTTYPE_SRVR_IP))

 {
 TRACE0(“Failed to create toolbar\n”);
 return FALSE;
 }

 // TODO: Remove this if you don’t want tool tips or a resizeable toolbar
 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 // TODO: Delete these three lines if you don’t want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 pWndFrame->EnableDocking(CBRS_ALIGN_ANY);
 pWndFrame->DockControlBar(&m_wndToolBar);

 return TRUE;
}

This function creates a docking, resizable toolbar with ToolTips, docked against the edge of
the main frame window for the application.

If you are developing an MDI application and prefer the toolbar against the document frame, use
pWndDoc instead of PWndFrame, in the call to m_wndToolBar.Create() but be sure to check that
it is not NULL.

The last function in CInPlaceFrame is PreCreateWindow(). At the moment, it just calls the base
class, as shown in Listing 15.11.

Listing 15.11 IPFrame.cpp—CInPlaceFrame::PreCreateWindow()

BOOL CInPlaceFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return COleIPFrameWnd::PreCreateWindow(cs);
}

T I P

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:19 AM353

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

354 Chapter 15 Building an ActiveX Server Application

This function is called before OnCreate() and sets up the styles for the frame window through
a CREATESTRUCT.

CAUTION

Modifying these styles is not for the faint of heart. The Microsoft documentation recommends reading the
source code for all the classes in the hierarchy of your CInPlaceFrame (Cwnd, CFrameWnd,
COleIPFrameWnd) to see what CREATESTRUCT elements are already set before making any changes. For
this sample application, don’t change the CREATESTRUCT.

Shortcomings of This Server Apart from the fact that the starter application from AppWizard
doesn’t show a string, what’s missing from this server? The OnDraw() and GetExtent()TODOs
are the only significant tasks left for you by AppWizard. Try building ShowString, and then run
it once standalone just to register it.

Figure 15.4 shows the Object dialog box in Microsoft Word, reached by choosing Insert, Ob-
ject. ShowString appears in this list as ShowSt Document—not surprising considering the
menu name was IDR_SHOWSTTYPE. Developer Studio calls this document a ShowSt document.
This setting could have been overriden in AppWizard by choosing the Advanced button in Step
4 of AppWizard. Figure 15.5 shows this dialog box and the long and short names of the file
type.

FIG. 15.4
The ShowString
document type, called
ShowSt document, now
appears in the Object
dialog box when
inserting a new object
into a Word document.

Untitled-1 2/19/99, 7:20 AM354

355

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

So, the file type names used by the Registry have been set incorrectly for this project. The next
few pages take you on a tour of the way file type names are stored and show you how difficult
they are to change.

The file type name has been stored in the string table. It is the caption of the IDR_SHOWSTTYPE
resource, and AppWizard has set it to:

\nShowSt\nShowSt\n\n\nShowString.Document\nShowSt Document

To look at this string, choose String Table from the Resource View, open the only string table
there, click IDR_SHOWSTTYPE once to highlight it, and choose View, Properties (or double-click
the string). This string is saved in the document template when a new one is constructed in
CShowStringApp::InitInstance(), like this:

Listing 15.12 ShowString.cpp—Excerpt from ShowStringApp::InitInstance()

 pDocTemplate = new CMultiDocTemplate(
 IDR_SHOWSTTYPE,
 RUNTIME_CLASS(CShowStringDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CShowStringView));

The caption of the menu resource holds seven strings, and each is used by a different part of
the framework. They are separated by the newline character \n. The seven strings, their pur-
poses, and the values provided by AppWizard for ShowString are as follows:

■ Window Title—Used by SDI apps in the title bar. For ShowString: not provided.

■ Document Name—Used as the root for default document names. For ShowString:
ShowSt, so that new documents will be ShowSt1, ShowSt2, and so on.

FIG. 15.5
The Advanced Options
dialog box of Step 4 in
AppWizard provides an
opportunity to change
the name of the file
type.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:20 AM355

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

356 Chapter 15 Building an ActiveX Server Application

■ File New Name—Prompt in the File New dialog box for file type. (For example, in
Developer Studio there are eight file types, including Text File and Project Workspace.)
For ShowString: ShowSt.

■ Filter Name—An entry for the drop-down box Files of Type in the File Open dialog
box. For ShowString: not provided.

■ Filter Extension—The extension that matches the filter name. For ShowString: not
provided.

■ Registry File Type ID—A short string to be stored in the Registry. For ShowString:
ShowString.Document.

■ Registry File Type Name—A longer string that shows in dialog boxes involving the
Registry. For ShowString: ShowSt Document.

Look again at Figure 15.5 and you can see where these values came from. Try changing the
last entry. In the Properties dialog box, change the caption so that the last element of the string
is ShowString Document and press Enter. Build the project. Run it once and exit. In the output
section of Developer Studio, you see these messages:

Warning: Leaving value ‘ShowSt Document’ for key ‘ShowString.Document’
 in registry
 intended value was ‘ShowString Document’.
Warning: Leaving value ‘ShowSt Document’ for key
 ‘CLSID\{0B1DEE40-C373-11CF-870C-00201801DDD6}’ in registry
 intended value was ‘ShowString Document’.

This means that the call to UpdateRegistry() did not change these two keys. There is a way to
provide parameters to UpdateRegistry() to insist that the keys be updated, but it’s even more
complicated than the route you will follow. Because no code has been changed from that pro-
vided by AppWizard, it’s much quicker to delete the ShowString directory and create it again,
this time setting the long file type to ShowString Document.

CAUTION

Always test AppWizard-generated code before you add changes of your own. Until you are familiar with every
default you are accepting, it is worth a few moments to see what you have before moving on. Rerunning
AppWizard is easy, but if you’ve made several hours worth of changes and then decide to rerun it, it’s not
such a simple task.

Close Visual Studio, delete the ShowString folder entirely, and generate a new application with
AppWizard as before. This time, in Step 4, click the Advanced button and change the file type
names as shown in Figure 15.6. After you click Finish, AppWizard asks whether you wish to
reuse the existing CLSID, as shown in Figure 15.7. Click Yes and then OK to create the project.
This makes a new showstring.reg file for you with the correct Registry values.

Untitled-1 2/19/99, 7:20 AM356

357

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

This changes the string table as well as the showstring.reg file, so you might be tempted to
build and run the application to make this fix complete. It’s true, when you run the application,
it will update the Registry for you, using the values from the new string table. Alas, the
registration update will fail yet again. If you were to try it, these messages would appear in the
output window:

Warning: Leaving value ‘ShowSt Document’ for key
 ‘ShowString.Document’ in registry
 intended value was ‘ShowString Document’.
Warning: Leaving value ‘ShowSt Document’ for key
 ‘CLSID\{0B1DEE40-C373-11CF-870C-00201801DDD6}’ in registry
 intended value was ‘ShowString Document’.
Warning: Leaving value ‘ShowSt’ for key
 ‘CLSID\{0B1DEE40-C373-11CF-870C-00201801DDD6}\AuxUserType\2’
 in registry
 intended value was ‘ShowString’.

FIG. 15.6
The Advanced Options
dialog box of Step 4 of
AppWizard is the place
to improve the file type
names.

FIG. 15.7
AppWizard makes sure
that you don’t
accidentally reuse a
CLSID.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:20 AM357

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

358 Chapter 15 Building an ActiveX Server Application

So, how do you get out of this mess? You have to edit the Registry. If that doesn’t sound
intimidating, it should. Messing with the Registry can leave your system unusable. But you are
not going to go in by hand and change keys; instead, you are going to use the Registry file that
AppWizard generated for you. Here’s what to do:

1. Choose Start, Run.

2. Type regedit and press Enter.

3. Choose Registry, Import Registry File from the Registry Editor menu.

4. Using the Import Registry File dialog box, move through your folders until you reach
the one where the replacement ShowString server was just generated by AppWizard, as
shown in Figure 15.8. Click Open.

5. A success message is shown. Click OK.

6. Close the Registry Editor.

FIG. 15.8
Registry files generated
by AppWizard have the
extension .reg.

Now if you run ShowString again, those error messages don’t appear. Run Word again and
choose Insert, Object. The Object dialog box now has a more meaningful ShowString entry, as
shown in Figure 15.9.

There are three morals to this side trip. The first is that you should think really carefully
before clicking Finish on the AppWizard dialog box. The second is that you cannot ignore

the Registry if you are an ActiveX programmer. The third is that anything can be changed if you have the
nerve for it. ■

Click OK on the Object dialog box to insert a ShowString object into the Word document. You
can immediately edit it in place, as shown in Figure 15.10. You can see that the combined
server and container in-place menus are being used. There’s not much you can do to the em-
bedded object at this point because the ShowString code that actually shows a string has not

N O T E

Untitled-1 2/19/99, 7:21 AM358

359

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

been added. Press Esc to finish editing in place, and the menus return to the usual Word
menus, as shown in Figure 15.11.

FIG. 15.9
The updated long file
type name appears in
the Object dialog box of
other applications.

FIG. 15.10
While editing in place,
the in-place menus
replace the Word
menus.

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:21 AM359

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

360 Chapter 15 Building an ActiveX Server Application

Although this server doesn’t do anything, it is a perfectly good server. You can resize and move
the embedded item while it is active or inactive, and everything operates exactly as you expect.
All that remains is to restore the ShowString functionality.

Showing a String Again
As you did in Chapter 14, it is time to add the ShowString functionality to this version of the
program. If you went through this process before, it will be even quicker this time. Remember
to open the ShowString files from Chapter 8, so that you can copy code and resources from the
functional ShowString to the do-nothing ActiveX server you have just created and explored. (If
you didn’t code along in Chapter 8, you can get the completed code on the Web at
www.mcp.com/info or www.gregcons.com/uvc6.htm.) Here’s what to do:

1. In ShowStringDoc.h, add the private member variables and public Get functions to the
class.

2. In CShowStringDoc::Serialize(), paste in the code that saves or restores these
member variables.

3. In CShowStringDoc::OnNewDocument(), paste in the code that initializes the member
variables. Change the default values of horizcenter and vertcenter to FALSE. You’ll see
why towards the end of the chapter.

4. Copy the entire Tools menu from the old ShowString to the new server ShowString.
Choose File, Open to open the old ShowString.rc, open the IDR_SHOWSTTYPE menu, click
the Tools menu, and choose Edit, Copy. Open the new ShowString’s IDR_SHOWSTTYPE
menu, click the Window menu, and choose Edit, Paste.

FIG. 15.11
When the object is
inactive, Word reminds
the user of the object
type.

Untitled-1 2/19/99, 7:21 AM360

361

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

5. Paste the Tools menu into the IDR_SHOWSTTYPE_SRVR_IP (before the separator bars) and
IDR_SHOWSTTYPE_SRVR_EMB menus in the same way.

6. Add the accelerator Ctrl+T for ID_TOOLS_OPTIONS as described in Chapter 8. Add it to all
three accelerators.

7. Delete the IDD_ABOUTBOX dialog box from the new ShowString. Copy IDD_ABOUTBOX and
IDD_OPTIONS from the old ShowString to the new.

8. While IDD_OPTIONS has focus, choose View, ClassWizard. Create the COptionsDialog
class as in the original ShowString.

9. Use ClassWizard to arrange for CShowStringDoc to catch the ID_TOOLS_OPTIONS
command.

10. In ShowStringDoc.cpp, replace the ClassWizard version of
CShowStringDoc::OnToolsOptions() with the one that puts up the dialog box.

11. In ShowStringDoc.cpp, add #include “OptionsDialog.h” after the #include statements
already present.

12. Use ClassWizard to connect the dialog box controls to COptionsDialog member
variables as before. Connect IDC_OPTIONS_BLACK to m_color, IDC_OPTIONS_HORIZCENTER
to m_horizcenter, IDC_OPTIONS_STRING to m_string, and IDC_OPTIONS_VERTCENTER
to m_vertcenter.

To confirm you’ve made all the changes correctly, build the project—there should be no
errors.

You haven’t restored CShowStringView::OnDraw() yet because there are actually going to be
two OnDraw() functions. The first is in the view class, shown in Listing 15.13. It draws the string
when ShowString is running standalone and when the user is editing in place, and it’s the same
as in the old version of ShowString. Just copy it into the new one.

Listing 15.13 ShowStringView.cpp—CShowStringView::OnDraw()

void CShowStringView::OnDraw(CDC* pDC)
{
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 COLORREF oldcolor;
 switch (pDoc->GetColor())
 {
 case 0:
 oldcolor = pDC->SetTextColor(RGB(0,0,0)); //black
 break;
 case 1:
 oldcolor = pDC->SetTextColor(RGB(0xFF,0,0)); //red
 break;
 case 2:
 oldcolor = pDC->SetTextColor(RGB(0,0xFF,0)); //green
 break;
 }

continues

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:22 AM361

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

362 Chapter 15 Building an ActiveX Server Application

Listing 15.13 Continued

 int DTflags = 0;
 if (pDoc->GetHorizcenter())
 {
 DTflags |= DT_CENTER;
 }
 if (pDoc->GetVertcenter())
 {
 DTflags |= (DT_VCENTER|DT_SINGLELINE);
 }

 CRect rect;
 GetClientRect(&rect);
 pDC->DrawText(pDoc->GetString(), &rect, DTflags);
 pDC->SetTextColor(oldcolor);
}

When the embedded ShowString item is inactive, CShowStringSrvrItem::OnDraw() draws it.
The code in here should be very similar to the view’s OnDraw, but because it is a member of
CShowStringSrvrItem rather than CShowStringView, it doesn’t have access to the same mem-
ber variables. So although there is still a GetDocument() function you can call, GetClientRect
doesn’t work. It’s a member of the view class but not of the server item class. You use a few
CDC member functions instead. It’s a nice touch to draw the item slightly differently to help
remind the user that it is not active, as shown in Listing 15.14. You can paste in the drawing
code from the view’s OnDraw(), but change the colors slightly to give the user a reminder.

Listing 15.14 SrvrItem.cpp—CShowStringSrvrItem::OnDraw()

BOOL CShowStringSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: set mapping mode and extent
 // (The extent is usually the same as the size returned from OnGetExtent)
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowOrg(0,0);
 pDC->SetWindowExt(3000, 3000);

 COLORREF oldcolor;
 switch (pDoc->GetColor())
 {
 case 0:
 oldcolor = pDC->SetTextColor(RGB(0x80,0x80,0x80)); //gray
 break;
 case 1:
 oldcolor = pDC->SetTextColor(RGB(0xB0,0,0)); // dull red
 break;
 case 2:
 oldcolor = pDC->SetTextColor(RGB(0,0xB0,0)); // dull green
 break;
 }

Untitled-1 2/19/99, 7:22 AM362

363

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

 int DTflags = 0;
 if (pDoc->GetHorizcenter())
 {
 DTflags |= DT_CENTER;
 }
 if (pDoc->GetVertcenter())
 {
 DTflags |= (DT_VCENTER|DT_SINGLELINE);
 }

 CRect rect;
 rect.TopLeft() = pDC->GetWindowOrg();
 rect.BottomRight() = rect.TopLeft() + pDC->GetWindowExt();
 pDC->DrawText(pDoc->GetString(), &rect, DTflags);
 pDC->SetTextColor(oldcolor);

 return TRUE;
}

The function starts with the boilerplate from AppWizard. With an application that doesn’t just
draw itself in whatever space is provided, you would want to add code to determine the extent
rather than just using (3000,3000). (You’d want to add the code to OnGetExtent(), too.) But
hardcoding the numbers works for this simple example.

Build the application, fix any typos or other simple errors, and then start Word and insert a
ShowString document into your worksheet. ShowString should run as before, with Hello,
world! in the center of the view. Convince yourself that the Options dialog box still works and
that you have restored all the old functionality. Be sure to change at least one thing: the string,
the color, or the centering. Then, press Esc to finish editing in place. Oops! It still draws the old
Hello, world! in gray in the top left of the server area. Why?

Remember that in CShowStringDoc::OnToolsOptions(), after the user clicks OK, you tell the
document that it has been changed and arrange to have the view redrawn:

 SetModifiedFlag();
 UpdateAllViews(NULL);

You need to add another line there to make sure that any containers that are containing this
document are also notified:

 NotifyChanged();

Now build it again and insert a different ShowString object into a Word document. This time
the changes are reflected in the inactive server display as well. Figure 15.12 shows a
ShowString item being edited in place, and Figure 15.13 shows the same item inactive.

If you turn on either centering option, the string will not appear when the item is inactive. It
seems that DrawText is centering the string within a much larger rectangle than the one

you pass to it. Simpler CDC functions, such as DrawEllipse, don’t have this problem. It might be
wise to avoid centering text with DrawText() if your inactive appearance is important. ■

N O T E

Adding Server Capabilities to ShowString

Untitled-1 2/19/99, 7:22 AM363

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

364 Chapter 15 Building an ActiveX Server Application

Good old ShowString has been through a lot. It’s time for one more transformation.

FIG. 15.12
This ShowString item is
being edited in place.

FIG. 15.13
This ShowString item is
inactive.

Untitled-1 2/19/99, 7:22 AM364

365

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

Applications That Are Both Container and Server
As you might expect, adding container features to this version of ShowString is as difficult as
adding them to the ordinary ShowString of the previous chapter. If you add these features, you
gain an application that can tap the full power of ActiveX to bring extraordinary power to your
work and your documents.

Building Another Version of ShowString
The way to get a ShowString that is both a container and a server is to follow these steps:

1. Build a new ShowString with AppWizard that is a container and a full server. Run
AppWizard as usual but in a different directory than the one where you created the
server-only ShowString. Be sure to select the Both Container And Server radio button in
Step 3. In Step 4, click the Advanced button and change the filename types as you did
earlier in this chapter. Finally, when asked whether you want to use the same CLSID,
click No. This is a different application.

2. Make the container changes from the preceding chapter. When adding the Tools,
Options menu item and accelerator, add it to the main menu, the server in-place menu,
and the server-embedded menu.

3. Make the server changes from this chapter.

4. Add the ShowString functionality.

This section does not present the process of building a container and server application in
detail; that is covered in the “Adding Server Capabilities to ShowString” section of this chapter
and all of Chapter 14. Rather, the focus here is on the consequences of building such an
application.

Nesting and Recursion Issues
After an application is both a server (meaning its documents can be embedded in other applica-
tions) and a container, it is possible to create nested documents. For example, Microsoft Word
is both container and server. An Excel spreadsheet might contain a Word document, which in
turn contains a bitmap, as shown in Figure 15.14.

Within Excel, you can double-click the Word document to edit it in place, as shown in Figure
15.15, but you cannot go on to double-click the bitmap and edit it in place, too. You can edit it in
a window of its own, as shown in Figure 15.16. It is a limitation of ActiveX that you cannot nest
in-place editing sessions indefinitely.

Active Documents
The final, important recent addition to ActiveX is Active Documents, formerly known as
ActiveX Document Objects. An ordinary ActiveX server takes over the menus and interface of
a container application when the document is being edited in place but does so in cooperation
with the container application. An Active Document server takes over far more dramatically, as
you will shortly see.

Active Documents

Untitled-1 2/19/99, 7:22 AM365

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

366 Chapter 15 Building an ActiveX Server Application

FIG. 15.15
This Word document is
being edited in place.

FIG. 15.14
This Excel spreadsheet
contains a Word
document that contains
a bitmap.

Untitled-1 2/19/99, 7:23 AM366

367

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

What Active Documents Do
The first application to demonstrate the use of Active Documents is the Microsoft Office
Binder, shown in Figure 15.17. To the user, it appears that this application can open any Office
document. In reality, the documents are opened with their own server applications while the
frame around them and the list of other documents remain intact. Microsoft Internet Explorer
(version 3.0 and later) is also an Active Document container—Figure 15.18 shows a Word
document open in Explorer. Notice the menus are mostly Word menus, but the Explorer
toolbar can still be used. For example, clicking the Back button closes this Word document and
opens the document that was loaded previously.

To users, this is a complete transition to a document-centered approach. No matter what appli-
cation the user is working with, any kind of document can be opened and edited, using the
code written to work with that document but the interface that the user has learned for his or
her own application.

Making ShowString an Active Document Server
Making yet another version of ShowString, this one as an Active Document server, is pretty
simple. Follow the instructions from the “AppWizard’s Server Boilerplate” section at the begin-
ning of this chapter, with two exceptions: in AppWizard’s Step 3, select Active Document
Server and in AppWizard’s Step 4, click the Advanced button. Fix the file type names and fill in
the file extension as .SST, as shown in Figure 15.19. This helps Active Document containers
determine what application to launch when you open a ShowString file.

FIG. 15.16
This bitmap is nested
within a Word
document within an
Excel spreadsheet, and
so cannot be edited in
place. Instead, it is
edited in a separate
window.

Active Documents

Untitled-1 2/19/99, 7:23 AM367

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

368 Chapter 15 Building an ActiveX Server Application

FIG. 15.17
The Microsoft Office
Binder makes it simple
to pull Office documents
together.

FIG. 15.18
Microsoft Internet
Explorer is also a
container for Active
Documents.

Untitled-1 2/19/99, 7:23 AM368

369

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

FIG. 15.19
The Advanced
Options dialog box of
AppWizard’s Step 4
is where you specify
the extension for
ShowString files.

Document Extension Boilerplate Any one of the versions of ShowString built up to this point
could have had a document extension specified. AppWizard adds these lines to
CShowStringApp::InitInstance() when you specify a document extension for an Active Docu-
ment server application:

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

It is the call to RegisterShellFileTypes() that matters here, though the drag and drop is a
nice touch. You’re able to drag files from your desktop or a folder onto the ShowString icon or
an open copy of ShowString, and the file opens in ShowString.

Active Document Server Boilerplate Selecting Active Document support makes remarkably
little difference to the code generated by AppWizard. In CShowStringApp::InitInstance(),
the versions of ShowString that were not Active Document servers had this call to update the
Registry:

 m_server.UpdateRegistry(OAT_INPLACE_SERVER);

The Active Document version of ShowString has this line:

 m_server.UpdateRegistry(OAT_DOC_OBJECT_SERVER);

In both cases, m_server is a CShowStringSrvrItem, but now the Active Document server ver-
sion has a server item that inherits from CDocObjectServerItem. This causes a number of little
changes throughout the source and includes files for CShowStringSrvrItem, where base class
functions are called. Similarly, the in-place frame object, CInPlaceFrame, now inherits from
COleDocIPFrameWnd.

Active Documents

Untitled-1 2/19/99, 7:23 AM369

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

370 Chapter 15 Building an ActiveX Server Application

Showing Off the Newest ShowString Restore the ShowString functionality once again as
described in the section “Showing a String Again,” earlier in this chapter. Also copy the
OnDraw() code from an old version of ShowString to CshowStringDoc::OnDraw(). Build the
application, run it once to register it, and then run Microsoft Binder (if you have Office in-
stalled). Choose Section Add to bring up the Add Section dialog box shown in Figure 15.20. On
the General tab, highlight ShowString Document and click OK.

FIG. 15.20
Not many applications
on the market are Active
Document servers, but
you can write one in
minutes.

The menus include ShowString’s Tools menu, as before. Choose Tools, Options and change
something—for example, in Figure 15.21, the string has been changed to “Hello from the
Binder” and the horizontal centering has been turned on. You have access to all of
ShowString’s functionality, although it doesn’t look as though you are running ShowString.

Now run ShowString alone and save a document by choosing File, Save. You don’t need to
enter an extension: The extension .SST is used automatically. Open an Explorer window and
explore until you reach the file you saved. Bring up Internet Explorer 4.0 and drag the file you
saved onto Internet Explorer.

Your ShowString document opens in Explorer, as you can see in Figure 15.22. The toolbar is
clearly the Explorer toolbar, but the menu has the Tools item, and you can change the string,
centering, and color as before. If you use the Back button on the Explorer toolbar, you reload
the document you had open. If you change the ShowString document before clicking Back,
you’ll even be prompted to save your changes! Microsoft plans to integrate the desktop in the
next generation of Windows with the Internet Explorer interface. What you see here is a sneak
preview of how that will work.

Untitled-1 2/19/99, 7:23 AM370

371

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

15

IV
Part

Ch

FIG. 15.21
All of ShowString’s
functionality is available
from within the Binder.

FIG. 15.22
Internet Explorer
appears to be able to
read and write
ShowString files now.

You can also arrange for your applications to be Active Document containers. Perhaps you
noticed the check box on AppWizard’s Step 3 where you could ask AppWizard to turn on this
feature. It’s not much harder to do than serving Active Documents, so you can explore it on
your own. If you would like your users to be able to open Word files, Excel spreadsheets, or
other Active Documents from within your application, be sure to look into this feature.

Active Documents

Untitled-1 2/19/99, 7:23 AM371

A/B03 swg4 SEU Vis C++ #1539-2 7.20.98 Ayanna CH15 LP#3

372 Chapter 15 Building an ActiveX Server Application

Eventually Windows will look very much like Internet Explorer; Active Documents will make
that possible. ●

Untitled-1 2/19/99, 7:23 AM372

373

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

C H A P T E R

Building an Automation Server

16

In this chapter

Designing ShowString Again 374

Building a Controller Application in Visual Basic 387

Type Libraries and ActiveX Internals 389

Untitled-2 2/19/99, 7:25 AM373

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

374 Chapter 16 Building an Automation Server

Designing ShowString Again
Automation, formerly called OLE Automation and then ActiveX Automation, is about writing
code that other programs can call. Other programs call your code directly, not in the insulated
manner of a DLL. The jargon is that your code exposes methods (functions) and properties
(variables) to other applications. The good part is that if your application is an Automation
server, you don’t have to create a macro language for your application; you only have to make
hooks for a more universal macro language, Visual Basic for Applications, to grab on to.

All Microsoft Office applications are Automation servers, so you may have seen for yourself
what a nice feature it is for a program to expose its methods and properties in this way. What’s
more, Developer Studio itself is an Automation server, easy to control with VBScript.

If you’ve been building the sample applications throughout this book, you can probably design
ShowString in your sleep by now, but it’s time to do it once again. This time, ShowString won’t
have a Tools, Options menu; instead, other programs will directly set the string and other
display options. The member variables in the document will be the same, and the code in
OnDraw() will be the same as in all the other implementations of ShowString.

AppWizard’s Automation Boilerplate
To build the Automation server version of ShowString, first use AppWizard to create an empty
shell in a different directory from your other versions of ShowString. Make almost exactly the
same AppWizard choices as before: Call it ShowString and then choose an MDI application and
no database support. In AppWizard’s Step 3, choose No Compound Document Support (the
None radio buttons at the top of the dialog box) but turn on support for Automation. Continue
through the AppWizard process, selecting a docking toolbar, status bar, printing and print
preview, context-sensitive help, and 3D controls. Finally, select source file comments and a
shared DLL.

Even though the technology is now called ActiveX, and ActiveX Automation is starting to be
known simply as Automation, the AppWizard dialog boxes refer to Compound Document

Support. As well, many of the classes used throughout this chapter have Ole in their names, and
comments refer to OLE. Although Microsoft has changed the name of the technology, it hasn’t
propagated that change throughout Visual C++ yet. You’ll have to live with these contradictions until the
next release of Visual C++. ■

There are just a few differences in this application from the do-nothing application without
Automation support, primarily in the application object and the document.

CShowStringApp The application object, CShowStringApp, has a number of changes. In the
source file, just before InitInstance(), the code shown in Listing 16.1 has been added:

N O T E

Untitled-2 2/19/99, 7:25 AM374

375

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

Listing 16.1 ShowString.cpp—CLSID

// This identifier was generated to be statistically unique for your app.
// You may change it if you prefer to choose a specific identifier.

// {61C76C05-70EA-11D0-9AFF-0080C81A397C}
static const CLSID clsid =
{ 0x61c76c05, 0x70ea, 0x11d0, { 0x9a, 0xff, 0x0, 0x80, 0xc8,
 0x1a, 0x39, 0x7c } };

The numbers will be different in your code. This class ID identifies your Automation applica-
tion.

CShowStringApp::InitInstance() has several changes. The lines of code in Listing 16.2 initial-
ize the ActiveX (OLE) libraries.

Listing 16.2 ShowString.cpp—Initializing Libraries

// Initialize OLE libraries
if (!AfxOleInit())
{
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
}

As with the server application of Chapter 15, “Building an ActiveX Server Application,”
InitInstance() goes on to connect the document template to the COleTemplateServer after
the document template is initialized:

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);

Then InitInstance() checks whether the server is being launched as an Automation server
or to edit an embedded object. If so, there’s no need to display the main window, so the func-
tion returns early, as shown in Listing 16.3.

Listing 16.3 ShowString.cpp—How the App Was Launched

// Check to see if launched as OLE server
if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
{
 // Application was run with /Embedding or /Automation. Don’t show the
 // main window in this case.
 return TRUE;
}

// When a server application is launched stand-alone, it is a good idea
// to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);
COleObjectFactory::UpdateRegistryAll();

Designing ShowString Again

Untitled-2 2/19/99, 7:25 AM375

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

376 Chapter 16 Building an Automation Server

If ShowString is being run as a standalone application, the code in Listing 16.3 updates the
Registry as discussed in Chapter 15.

CShowStringDoc The document class, CShowStringDoc, still inherits from CDocument rather
than from any OLE document class, but that’s where the similarities to the old non-OLE
CShowStringDoc end. The first block of new code in ShowStringDoc.cpp is right after the mes-
sage map (see Listing 16.4).

Listing 16.4 ShowStringDoc.cpp—Dispatch Map

BEGIN_DISPATCH_MAP(CShowStringDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CShowStringDoc)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

This is an empty dispatch map. A dispatch map is like a message map in that it maps events in
the real world into function calls within this C++ class. When you expose methods and proper-
ties of this document with ClassWizard, the dispatch map will be updated.

After the dispatch map is another unique identifier, the IID (interface identifier). As Listing
16.5 shows, the IID is added as a static member, like the CLSID.

Listing 16.5 ShowStringDoc.cpp—IID

// Note: we add support for IID_IShowString to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {61C76C07-70EA-11D0-9AFF-0080C81A397C}
static const IID IID_IShowString =
{ 0x61c76c07, 0x70ea, 0x11d0, { 0x9a, 0xff, 0x0, 0x80,
 0xc8, 0x1a, 0x39, 0x7c } };

Then the interface map looks like this:

BEGIN_INTERFACE_MAP(CShowStringDoc, CDocument)
 INTERFACE_PART(CShowStringDoc, IID_IShowSt, Dispatch)
END_INTERFACE_MAP()

An interface map hides COM functions such as QueryInterface() from you, the programmer,
and, like a message map, enables you to think at a more abstract level. ShowString won’t have
multiple entries in the interface map, but many applications do. ClassWizard manages entries
in the interface map for you.

The document constructor has some setting up to do. The AppWizard code is in Listing 16.6.

Untitled-2 2/19/99, 7:26 AM376

377

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

Listing 16.6 ShowStringDoc.cpp—Constructor

CShowStringDoc::CShowStringDoc()
{
 // TODO: add one-time construction code here
 EnableAutomation();
 AfxOleLockApp();
}

EnableAutomation() does just what its name suggests—enables Automation for this docu-
ment. AfxOleLockApp() is used to ensure that an application isn’t closed while one of its
documents is still in use elsewhere. Imagine that a user has two applications open that use
ShowString objects. When the first application is closed, ShowString shouldn’t be closed
because it’s needed by the other application. ActiveX technology implements this by keeping a
count, within the framework, of the number of active objects. AfxOleLockApp() increases this
count. If it’s nonzero when users finish using a server application, the application is hidden but
not actually closed.

It shouldn’t be surprising, then, to see the destructor for ShowString’s document:

CShowStringDoc::~CShowStringDoc()
{
 AfxOleUnlockApp();
}

AfxOleUnlockApp() decreases the count of active objects so that eventually ShowString can be
closed.

Properties to Expose
At this point, you have an Automation server that doesn’t expose any methods or properties.
Also, the four member variables of the document that have been in all the previous versions of
ShowString haven’t been added to this version. These member variables are

■ string—The string to be shown

■ color—0 for black, 1 for red, and 2 for green

■ horizcenter—TRUE if the string should be centered horizontally

■ vertcenter—TRUE if the string should be centered vertically

These variables will be added as Automation properties, so you won’t type their names into the
class definition for CShowStringDoc. Bring up ClassWizard by clicking its toolbar button or
choosing View, ClassWizard. Click the Automation tab (see Figure 16.1) to add properties and
methods. Make sure that CShowStringDoc is selected in the Class Name box.

The first step in restoring the old ShowString functionality is to add member variables to the
document class that will be exposed as properties of the Automation server. There are two
ways to expose properties: as a variable and with functions. Exposing a property as a variable is
like declaring a public member variable of a C++ class; other applications can look at the value
of the property and change it directly. A notification function within your server is called when

Designing ShowString Again

Untitled-2 2/19/99, 7:26 AM377

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

378 Chapter 16 Building an Automation Server

the variable is changed from the outside. Exposing with Get and Set functions is like imple-
menting a private member variable with public access functions. Other applications appear to
access the variable directly, but the framework arranges for a call to your functions to Get and
Set the property. Your Get may make sure that the object is in a valid state (for example, that a
sorted list is now sorted or that a total has been calculated) before returning the property
value. Your Set function may do error checking (validation) or may calculate other variables
that depend on the property that the outside application is changing. To make a property read-
only, you add it as a Get/Set function property and then don’t implement a Set function.

FIG. 16.1
ClassWizard’s Automation
page handles most of the
work of building an
Automation server.

For the purposes of this chapter, you’ll add the two centering flags to the CShowStringDoc class
with Get and Set functions and add the string and color properties as direct-access properties.
To do so, follow these steps:

1. Make sure that CShowStringDoc is the selected class, and then click the Add Property
button to bring up the Add Property dialog box.

2. Type String in the External Name box. ClassWizard types along with you, filling in the
Variable Name and Notification Function boxes for you.

3. Choose CString from the drop-down list box for Type. The dialog box should resemble
Figure 16.2.

4. Click OK, click Add Property again, and then add Color as a direct-access property (see
Figure 16.3). Use short as the data type.

5. Click OK, click Add Property again, and then add HorizCenter.

6. Choose BOOL for the type and then select the Get/Set Methods radio button. The
Variable Name and Notification Function boxes are replaced by Get Function and Set
Function, already filled in, as shown in Figure 16.4. (If the type changes from BOOL,
choose BOOL again.) Click OK.

7. Add VertCenter in the same way that you added HorizCenter.

Untitled-2 2/19/99, 7:26 AM378

379

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

CAUTION

After you click OK to add a property, you can’t change the type, external name, or other properties of the
property. You have to delete it and then add one that has the new type, or external name, or whatever. Always
look over the Add Property dialog box before clicking OK.

FIG. 16.2
Add String as a
direct-access property.

FIG. 16.3
Add Color as a direct-
access property.

FIG. 16.4
Add HorizCenter as
a Get/Set method
property.

Designing ShowString Again

Untitled-2 2/19/99, 7:27 AM379

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

380 Chapter 16 Building an Automation Server

Figure 16.5 shows the ClassWizard summary of exposed properties and methods. The details
of each property are shown in the Implementation box below the list of properties. In Figure
16.5, VertCenter is highlighted, and the Implementation box reminds you that VertCenter has
a Get function and a Set function, showing their declarations. Click OK to close ClassWizard.

FIG. 16.5
ClassWizard provides a
summary of the
properties you’ve
added.

It should come as no surprise that as a result of these additions, ClassWizard has changed the
header and source files for CShowStringDoc. Listing 16.7 shows the new dispatch map in the
header file.

Listing 16.7 ShowStringDoc.h—Dispatch Map

//{{AFX_DISPATCH(CShowStringDoc)
CString m_string;
afx_msg void OnStringChanged();
short m_color;
afx_msg void OnColorChanged();
afx_msg BOOL GetHorizCenter();
afx_msg void SetHorizCenter(BOOL bNewValue);
afx_msg BOOL GetVertCenter();
afx_msg void SetVertCenter(BOOL bNewValue);
//}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

Two new member variables have been added: m_string and m_color.

It’s natural to wonder whether these are actually public member variables; they aren’t. Just
above this dispatch map is this line:

DECLARE_MESSAGE_MAP()

That macro, when it expands, declares a number of protected variables. Because these declarations
are immediately afterward, they are protected member variables and protected functions. They’re
accessed in just the same way that protected message-catching functions are—they’re called by a
member function hidden in the class that directs traffic by using these maps. ■

N O T E

Untitled-2 2/19/99, 7:27 AM380

381

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

A block of code has been added in the source file, but it’s boring, as you can see by looking at
Listing 16.8.

Listing 16.8 ShowStringDoc.cpp—Notification, Get, and Set Functions

///
// CShowStringDoc commands

void CShowStringDoc::OnColorChanged()
{
 // TODO: Add notification handler code

}

void CShowStringDoc::OnStringChanged()
{
 // TODO: Add notification handler code

}

BOOL CShowStringDoc::GetHorizCenter()
{
 // TODO: Add your property handler here

 return TRUE;
}

void CShowStringDoc::SetHorizCenter(BOOL bNewValue)
{
 // TODO: Add your property handler here

}

BOOL CShowStringDoc::GetVertCenter()
{
 // TODO: Add your property handler here

 return TRUE;
}

void CShowStringDoc::SetVertCenter(BOOL bNewValue)
{
 // TODO: Add your property handler here

}

The class still doesn’t have member variables for the centering flags. (You might have decided
to implement these in some other way than as two simple variables, so ClassWizard doesn’t
even try to guess what to add.) Add them by hand to the header file, ShowStringDoc.h, as
private member variables:

Designing ShowString Again

Untitled-2 2/19/99, 7:27 AM381

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

382 Chapter 16 Building an Automation Server

// Attributes
private:
 BOOL m_horizcenter;
 BOOL m_vertcenter;

Now you can write their Get and Set functions; Listing 16.9 shows the code.

Listing 16.9 ShowStringDoc.cpp—Get and Set Functions for the Centering
Flags

BOOL CShowStringDoc::GetHorizCenter()
{
 return m_horizcenter;
}

void CShowStringDoc::SetHorizCenter(BOOL bNewValue)
{
 m_horizcenter = bNewValue;
}

BOOL CShowStringDoc::GetVertCenter()
{
 return m_vertcenter;
}

void CShowStringDoc::SetVertCenter(BOOL bNewValue)
{
 m_vertcenter = bNewValue;
}

The OnDraw() Function
Restoring the member variables takes you halfway to the old functionality of ShowString.
Changing the view’s OnDraw() function will take you most of the rest of the way.

To write a version of OnDraw() that shows a string properly, you have a fair amount of back-
ground work to do. Luckily, you can open an old version of ShowString from your own work in
Chapter 8, “Building a Complete Application: ShowString,” and paste in the following bits of
code. (If any of this code is unfamiliar to you, Chapter 8 explains it fully.) First,
CShowStringDoc::OnNewDocument() in Listing 16.10 should initialize the member variables.

Listing 16.10 ShowStringDoc.cpp—CShowStringDoc::OnNewDocument()

BOOL CShowStringDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_string = “Hello, world!”;
 m_color = 0; //black

Untitled-2 2/19/99, 7:27 AM382

383

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

 m_horizcenter = TRUE;
 m_vertcenter = TRUE;

 return TRUE;
}

Next, edit the document’s Serialize function. Listing 16.11 shows the new code.

Listing 16.11 ShowStringDoc.cpp—CShowStringDoc::Serialize()

void CShowStringDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_string;
 ar << m_color;
 ar << m_horizcenter;
 ar << m_vertcenter;
 }
 else
 {
 ar >> m_string;
 ar >> m_color;
 ar >> m_horizcenter;
 ar >> m_vertcenter;
 }
}

Finally, the view’s OnDraw() function in Listing 16.12 actually shows the string.

Listing 16.12 ShowStringView.cpp—CShowStringView::OnDraw()

void CShowStringView::OnDraw(CDC* pDC)
{

 CShowStringDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 COLORREF oldcolor;
 switch (pDoc->GetColor())
 {
 case 0:
 oldcolor = pDC->SetTextColor(RGB(0,0,0)); //black
 break;
 case 1:
 oldcolor = pDC->SetTextColor(RGB(0xFF,0,0)); //red
 break;
 case 2:
 oldcolor = pDC->SetTextColor(RGB(0,0xFF,0)); //green
 break;
 }

continues

Designing ShowString Again

Untitled-2 2/19/99, 7:27 AM383

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

384 Chapter 16 Building an Automation Server

 int DTflags = 0;
 if (pDoc->GetHorizcenter())
 {
 DTflags |= DT_CENTER;
 }
 if (pDoc->GetVertcenter())
 {
 DTflags |= (DT_VCENTER|DT_SINGLELINE);
 }

 CRect rect;
 GetClientRect(&rect);
 pDC->DrawText(pDoc->GetString(), &rect, DTflags);
 pDC->SetTextColor(oldcolor);

}

When you added m_string, m_color, m_horizcenter, and m_vertcenter to the document with
ClassWizard, they were added as protected member variables. This view code needs access to
them. As you can see, the view calls public functions to get to these member variables of the
document.

You could have chosen instead to make the view a friend to the document so that it could
access the member variables directly, but that would give view functions the capability to

use and change all private and protected member variables of the document. This more limited access
is more appropriate and better preserves encapsulation. Encapsulation and other object-oriented
concepts are discussed in Appendix A, “ C++ Review and Object-Oriented Concepts.” ■

Several functions already in the document class access these variables, but they’re protected
functions for use by ActiveX. The four public functions you’ll add won’t be able to use those
names, because they’re taken, and will have to have not-so-good names. Add them inline, as
shown in Listing 16.13, to ShowStringDoc.h.

Listing 16.13 ShowStringDoc.h—Public Access Functions

public:
 CString GetDocString() {return m_string;}
 int GetDocColor() {return m_color;}
 BOOL GetHorizcenter() {return m_horizcenter;}
 BOOL GetVertcenter() {return m_vertcenter;}

In CShowStringView::OnDraw(), change the code that calls GetColor() to call GetDocColor()
and then change the code that calls GetString() to call GetDocString(). Build the project to
check for any typing mistakes or forgotten changes. Although it may be tempting to run
ShowString now, it won’t do what you expect until you make a few more changes.

Listing 16.12 Continued

N O T E

Untitled-2 2/19/99, 7:28 AM384

385

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

Showing the Window
By default, Automation servers don’t have a main window. Remember the little snippet from
CShowStringApp::InitInstance() in Listing 16.14.

Listing 16.14 ShowString.cpp—How the App Was Launched

// Check to see if launched as OLE server
if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
{
 // Application was run with /Embedding or /Automation. Don’t show the
 // main window in this case.
 return TRUE;
}

This code returns before showing the main window. Although you could remove this test so
that ShowString always shows its window, it’s more common to add a ShowWindow() method for
the controller application to call. You’ll also need to add a RefreshWindow() method that up-
dates the view after a variable is changed; ClassWizard makes it simple to add these functions.
Bring up ClassWizard, click the Automation tab, make sure that CShowStringDoc is still the
selected class, and then click Add Method. Fill in the External name as ShowWindow.
ClassWizard fills in the internal name for you, and there’s no need to change it. Choose void
from the Return Type drop-down list box. Figure 16.6 shows the dialog box after it’s filled in.

FIG. 16.6
ClassWizard makes it
simple to add a
ShowWindow()
method.

Click OK the dialog box, and ShowWindow() appears in the middle of the list of properties,
which turns out to be a list of properties and methods in alphabetical order. The C next to the
properties reminds you that these properties are custom properties. The M next to the meth-
ods reminds you that these are methods. With ShowWindow() highlighted, click Edit Code and
then type the function, as shown in Listing 16.15.

◊ See “Displaying the Current Value,” p. 399

Designing ShowString Again

Untitled-2 2/19/99, 7:28 AM385

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

386 Chapter 16 Building an Automation Server

Listing 16.15 ShowStringDoc.cpp—CShowStringDoc::ShowWindow()

void CShowStringDoc::ShowWindow()
{
 POSITION pos = GetFirstViewPosition();
 CView* pView = GetNextView(pos);
 if (pView != NULL)
 {
 CFrameWnd* pFrameWnd = pView->GetParentFrame();
 pFrameWnd->ActivateFrame(SW_SHOW);
 pFrameWnd = pFrameWnd->GetParentFrame();
 if (pFrameWnd != NULL)
 pFrameWnd->ActivateFrame(SW_SHOW);
 }
}

This code activates the view and asks for it to be shown. Bring up ClassWizard again, click Add
Method, and add RefreshWindow(), returning void. Click OK and then Edit Code. The code for
RefreshWindow(), shown in Listing 16.16, is even simpler.

Listing 16.16 ShowStringDoc.cpp—CShowStringDoc::RefreshWindow()

void CShowStringDoc::RefreshWindow()
{
 UpdateAllViews(NULL);
 SetModifiedFlag();
}

This arranges for the view (now that it’s active) and its parent frame to be redrawn. Because a
change to the document is almost certainly the reason for the redraw, this is a handy place to
put the call to SetModifiedFlag(); however, if you prefer, you can put it in each Set function
and the notification functions for the direct-access properties. You’ll add a call to
RefreshWindow() to each of those functions now—for example, SetHorizCenter():

void CShowStringDoc::SetHorizCenter(BOOL bNewValue)
{
 m_horizcenter = bNewValue;
 RefreshWindow();
}

And OnColorChanged() looks like this:

void CShowStringDoc::OnColorChanged()
{
 RefreshWindow();
}

Add the same RefreshWindow() call to SetVertCenter() and OnStringChanged(). Now you’re
ready to build and test. Build the project and correct any typing errors. Run ShowString as a
standalone application to register it and to test your drawing code. You can’t change the string,
color, or centering as you could with older versions of ShowString because this version doesn’t

Untitled-2 2/19/99, 7:28 AM386

387

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

implement the Tools, Options menu item and its dialog box. The controller application will do
that for this version.

Building a Controller Application in Visual Basic
This chapter has mentioned a controller application several times, and you may have wondered
where it will come from. You’ll put it together in Visual Basic. Figure 16.7 shows the Visual
Basic interface.

FIG. 16.7
Visual Basic makes
Automation controller
applications very
quickly.

If you don’t have Visual Basic but Visual C++ version 4.x or earlier, you can use DispTest, a watered-
down version of Visual Basic that once came with Visual C++. It was never added to the Start menu,
but you can run DISPTEST.EXE from the C:\MSDEV\BIN folder or from your old Visual C++ CD-ROM’s
\MSDEV\BIN folder. If you’ve written VBA macros in Excel and have a copy of Excel, you can use that,
too. For testing OLE Automation servers, it doesn’t matter which you choose.

To build a controller application for the ShowString Automation server, start by running Visual
Basic. Create and empty project by choosing File, New, and double-clicking Standard EXE. In
the window at the upper-right labeled Project1, click the View Code button. Choose Form from
the left drop-down list box in the new window that appears; the Form_Load() subroutine is
displayed. Enter the code in Listing 16.17 into that subroutine.

T I P

Building a Controller Application in Visual Basic

Untitled-2 2/19/99, 7:29 AM387

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

388 Chapter 16 Building an Automation Server

Listing 16.17 Form1.frm—Visual Basic Code

Private Sub Form_Load ()
 Set ShowTest = CreateObject(“ShowString.Document”)
 ShowTest.ShowWindow
 ShowTest.HorizCenter = False
 ShowTest.Color =
 ShowTest.String = “Hello from VB”
 Set ShowTest = Nothing
End Sub

Choose (General) from the left drop-down list box and then enter this line of code:

Dim ShowTest As Object

For those of you who don’t read Visual Basic, this code will be easier to understand if you
execute it one line at a time. Choose Debug, Step Into to execute the first line of code. Then
repeatedly press F8 to move through the routine. (Wait after each press until the cursor is back
to normal.) The line in the general code sets up an object called ShowTest. When the form is
loaded (which is whenever you run this little program), an instance of the ShowString object is
created. The next line calls the ShowWindow method to display the main window onscreen.
Whenever the debugger pauses, the line of code that will run next is highlighted in yellow.
Also notice that there is an arrow beside the highlighted line to further mark it. You will see
something like Figure 16.8 with the default ShowString behavior.

Marker arrow

Line of code that will run next

FIG. 16.8
The ShowWindow
method displays the
main ShowString
window.

Press F8 again to run the line that turns off horizontal centering. Notice that you don’t call the
function SetHorizCenter. You exposed HorizCenter as a property of the OLE Automation
server, and from Visual Basic you access it as a property. The difference is that the C++ frame-
work code calls SetHorizCenter to make the change, rather than just make the change and

Untitled-2 2/19/99, 7:29 AM388

389

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

then call a notification function to tell you that it was changed. After this line executes, your
screen will resemble Figure 16.9 because the SetHorizCenter method calls RefreshWindow()
to immediately redraw the screen.

FIG. 16.9
The Visual Basic
program has turned off
centering.

As you continue through this program, pressing F8 to move a step at a time, the string will turn
red and then change to Hello from VB. Notice that the change to these directly exposed prop-
erties looks no different than the change to the Get/Set method property, HorizCenter. When
the program finishes, the window goes away. You’ve successfully controlled your Automation
server from Visual Basic.

Type Libraries and ActiveX Internals
Many programmers are intimidated by ActiveX, and the last thing they want is to know what’s
happening under the hood. There’s nothing wrong with that attitude at all. It’s quite object-
oriented, really, to trust the already written ActiveX framework to handle the black magic of
translating ShowTest.HorizCenter = False into a call to CShowStringDoc::SetHorizCenter().
If you want to know how that “magic” happens or what to do if it doesn’t, you need to add one
more piece to the puzzle. You’ve already seen the dispatch map for ShowString, but you haven’t
seen the type library. It’s not meant for humans to read, but it is for ActiveX and the Registry.
It’s generated for you as part of a normal build from your Object Definition Language (ODL)
file. This file was generated by AppWizard and is maintained by ClassWizard.

Perhaps you’ve noticed, as you built this application, a new entry in the ClassView pane. Figure
16.10 shows this entry expanded—it contains all the properties and methods exposed in the
IShowString interface of your Automation server. If you right-click IShowString in this list, you
can use the shortcut menu to add methods or properties. If you double-click any properties or
methods, the .ODL file is opened for you to view. Listing 16.18 shows ShowString.odl.

Type Libraries and ActiveX Internals

Untitled-2 2/19/99, 7:29 AM389

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

390 Chapter 16 Building an Automation Server

Listing 16.18 ShowString.odl—ShowString Type Library

// ShowString.odl : type library source for ShowString.exe

// This file will be processed by the MIDL compiler to produce the
// type library (ShowString.tlb).

[uuid(61C76C06-70EA-11D0-9AFF-0080C81A397C), version(1.0)]
library ShowString
{
 importlib(“stdole32.tlb”);

 // Primary dispatch interface for CShowStringDoc

 [uuid(61C76C07-70EA-11D0-9AFF-0080C81A397C)]
 dispinterface IShowString
 {
 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CShowStringDoc)
 [id(1)] BSTR String;
 [id(2)] short Color;
 [id(3)] boolean HorizCenter;
 [id(4)] boolean VertCenter;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method information here.
 // Use extreme caution when editing this section.

FIG. 16.10
Automation servers have
an entry in the
ClassView for each of
their interfaces.

Untitled-2 2/19/99, 7:29 AM390

391

Brands 03 swg4 SEU Vis C++ 1539-2 7.20.98 ayanna CH16 LP#3

16

IV
Part

Ch

 //{{AFX_ODL_METHOD(CShowStringDoc)
 [id(5)] void ShowWindow();
 [id(6)] void RefreshWindow();
 //}}AFX_ODL_METHOD

 };

 // Class information for CShowStringDoc

 [uuid(61C76C05-70EA-11D0-9AFF-0080C81A397C)]
 coclass Document
 {
 [default] dispinterface IShowString;
 };

 //{{AFX_APPEND_ODL}}
 //}}AFX_APPEND_ODL}}
};

This explains why Visual Basic just thought of all four properties as properties; that’s how
they’re listed in this .ODL file. The two methods are here, too, in the methods section. You
passed “ShowString.Document” to CreateObject() because there is a coclass Document sec-
tion here. It points to a dispatch interface (dispinterface) called IShowString. Here’s the
interface map from ShowStringDoc.cpp:

BEGIN_INTERFACE_MAP(CShowStringDoc, CDocument)
 INTERFACE_PART(CShowStringDoc, IID_IShowString, Dispatch)
END_INTERFACE_MAP()

A call to CreateObject(“ShowString.Document”) leads to the coclass section of the .ODL file,
which points to IShowString. The interface map points from IShowString to CShowStringDoc,
which has a dispatch map that connects the properties and methods in the outside world to
C++ code. You can see that editing any of these sections by hand could have disastrous results.
Trust the wizards to do this for you.

In this chapter, you built an Automation server and controlled it from Visual Basic. Automation
servers are far more powerful than older ways of application interaction, but your server
doesn’t have any user interaction. If the Visual Basic program wanted to enable users to choose
the color, that would have to be built into the Visual Basic program. The next logical step is to
allow the little embedded object to react to user events such as clicks and drags and to report
to the controller program what has happened. That’s what ActiveX controls do, as you’ll see in
the next chapter. ●

Type Libraries and ActiveX Internals

Untitled-2 2/19/99, 7:30 AM391

Untitled-2 2/19/99, 7:30 AM392

393

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

C H A P T E R

Building an ActiveX Control

Creating a Rolling-Die Control 394

Displaying the Current Value 399

Reacting to a Mouse Click and Rolling the Die 403

Creating a Better User Interface 407

Generating Property Sheets 412

Rolling on Demand 422

Future Improvements 422

17

In this chapter

Untitled-3 2/19/99, 7:31 AM393

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

394 Chapter 17 Building an ActiveX Control

Creating a Rolling-Die Control
ActiveX controls replace OLE controls, though the change affects the name more than any-
thing else. (Much of the Microsoft documentation still refers to OLE controls.) The exciting
behavior of these controls is powered by COM (the Component Object Model), which also
powers OLE. This chapter draws, in part, on the work of the previous chapters. An ActiveX
control is similar to an Automation server, but an ActiveX control also exposes events, and
those enable the control to direct the container’s behavior.

ActiveX controls take the place that VBX controls held in 16-bit Windows programming, en-
abling programmers to extend the control set provided by the compiler. The original purpose
of VBX controls was to enable programmers to provide their users with unusual interface con-
trols. Controls that look like gas gauges or volume knobs became easy to develop. Almost
immediately, however, VBX programmers moved beyond simple controls to modules that
involved significant amounts of calculation and processing. In the same way, many ActiveX
controls are far more than just controls—they are components that can be used to build power-
ful applications quickly and easily.

The sample application for this chapter is a die, one of a pair of dice. Imagine a picture of a
cubic die with the familiar pattern of dots indicating the current value, between 1 and 6. When
the user clicks the picture, a new, randomly chosen number is shown. You might use one or
more dice in any game program.

Building the Control Shell
The process of building this die control starts, as always, with AppWizard. Begin Developer
Studio and then choose File, New. Click the Projects tab and then click MFC ActiveX
ControlWizard, which is in the list at the left of the dialog box; fill in a project name at the top,
choose an appropriate folder for the project files, and click OK. Figure 17.1 shows the com-
pleted dialog box, with the project name Dieroll.

FIG. 17.1
AppWizard makes
creating an ActiveX
control simple.

Even though the technology is now called ActiveX, many classnames used throughout this
chapter have Ole in their names, and comments refer to OLE. Though Microsoft has

changed the technology’s name, it has not yet propagated that change throughout Visual C++. You will
have to live with these contradictions until the next release of Visual C++. ■

N O T E

Untitled-3 2/19/99, 7:31 AM394

395

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

There are two steps in the ActiveX control wizard. Fill out the first dialog box as shown in
Figure 17.2: You want one control, no runtime licensing, source-file comments, and no Help
files. After you have completed the dialog box, click Next.

FIG. 17.2
AppWizard’s first step
sets your control’s basic
parameters.

Runtime Licensing
Many developers produce controls as a salable product. Other programmers buy the rights to use
such controls in their programs. Imagine that a developer, Alice, produces a fantastic die control and
sells it to Bob, who incorporates it into the best backgammon game ever. Carol buys the backgam-
mon game and loves the die control, and she decides that it would be perfect for a children’s board
game she is planning. Because the DIEROLL.OCX file is in the backgammon package, there is nothing
(other than ethics) to stop her from doing this.

Runtime licensing is simple: There is a second file, DIEROLL.LIC, that contains the licensing
information. Without that file, a control can’t be embedded into a form or program, though a program
into which the control is already embedded will work perfectly. Alice ships both DIEROLL.OCX and
DIEROLL.LIC to Bob, but their licensing agreement states that only DIEROLL.OCX goes out with the
backgammon game. Now Carol can admire DIEROLL.OCX, and it will work perfectly in the backgam-
mon game, but if she wants to include it in the game she builds, she’ll have to buy a license from
Alice.

You arrange for runtime licensing with AppWizard when you first build the control. If you decide, after
the control is already built, that you should have asked for runtime licensing after all, build a new
control with licensing and copy your changes into that control.

The second and final AppWizard step enables you to set the new control’s features. Make sure
that Activates When Visible, Available in “Insert Object” Dialog, and Has an “About Box” are
selected, as shown in Figure 17.3, and then click Finish. AppWizard summarizes your settings
in a final dialog box. Click OK, and AppWizard creates 19 files for you and adds them to a
project to make them easy to work with. These files are ready to compile, but they don’t do
anything at the moment. You have an empty shell; it’s up to you to fill it.

Creating a Rolling-Die Control

Untitled-3 2/19/99, 7:31 AM395

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

396 Chapter 17 Building an ActiveX Control

AppWizard’s Code
Nineteen files sound like a lot, but they aren’t. There are only three classes: CDierollApp,
CDierollCtrl, and CDierollPropPage. They take up six files; the other 13 are the project file,
make file, resource file, ClassWizard database, ODL file, and so on.

CDierollApp CDierollApp is a very small class. It inherits from COleControlModule and
provides overrides of InitInstance() and ExitInstance() that do nothing but call the base-
class versions of these functions. This is where you find _tlid, the external globally unique ID
for your control, and some version numbers that make delivering upgrades of your control
simpler. The lines in Dieroll.cpp that set up these identifiers are the following:

const GUID CDECL BASED_CODE _tlid =
 { 0x914b21a5, 0x7946, 0x11d0, { 0x9b, 0x1, 0, 0x80,
 0xc8, 0x1a, 0x39, 0x7c } };
const WORD _wVerMajor = 1;
const WORD _wVerMinor = 0;

CDierollCtrl The CDierollCtrl class inherits from COleControl, and it has a constructor and
destructor, plus overrides for these four functions:

■ OnDraw() draws the control.

■ DoPropExchange() implements persistence and initialization.

■ OnResetState() causes the control to be reinitialized.

■ AboutBox() displays the About box for the control.

None of the code for these functions is particularly interesting. However, some of the maps that
have been added to this class are of interest. There is an empty message map, ready to accept
new entries, and an empty dispatch map, ready for the properties and methods that you choose
to expose.

Message maps are explained in the “Message Maps” section of Chapter 3, “Messages and Com-
mands.” Dispatch maps are discussed in the “AppWizard’s Automation Boilerplate” section in Chapter
16, “Building an Automation Server.”

FIG. 17.3
AppWizard’s second
step governs your
control’s appearance
and behavior.

T I P

Untitled-3 2/19/99, 7:32 AM396

397

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

Below the empty message and dispatch maps comes a new map: the event map. Listing 17.1
shows the event map in the header file, and the source file event map is shown in Listing 17.2.

Listing 17.1 Excerpt from DierollCtl.h—Event Map

// Event maps
 //{{AFX_EVENT(CDierollCtrl)
 // NOTE - ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_EVENT
 DECLARE_EVENT_MAP()

Listing 17.2 Excerpt from DierollCtl.cpp—Event Map

BEGIN_EVENT_MAP(CDierollCtrl, COleControl)
 //{{AFX_EVENT_MAP(CDierollCtrl)
 // NOTE - ClassWizard will add and remove event map entries
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_EVENT_MAP
END_EVENT_MAP()

Event maps, like message maps and dispatch maps, link real-world happenings to your code.
Message maps catch things the user does, such as choosing a menu item or clicking a button.
They also catch messages sent from one part of an application to another. Dispatch maps direct
requests to access properties or invoke methods of an Automation server or ActiveX control.
Event maps direct notifications from an ActiveX control to the application that contains the
control (and are discussed in more detail later in this chapter).

There’s one more piece of code worth noting in DierollCtl.cpp. It appears in Listing 17.3.

Listing 17.3 Excerpt from DierollCtl.cpp—Property Pages

///
// Property pages

// TODO: Add more property pages as needed. Remember to increase the count!
BEGIN_PROPPAGEIDS(CDierollCtrl, 1)
 PROPPAGEID(CDierollPropPage::guid)
END_PROPPAGEIDS(CDierollCtrl)

The code in Listing 17.3 is part of the mechanism that implements powerful and intuitive prop-
erty pages in your controls. That mechanism is discussed later in this chapter.

CDierollPropPage The entire CDierollPropPage class is the domain of ClassWizard. Like
any class with a dialog box in it, it has significant data exchange components. The constructor
will initialize the dialog box fields using code added by ClassWizard. Listing 17.4 shows this
code.

Creating a Rolling-Die Control

Untitled-3 2/19/99, 7:32 AM397

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

398 Chapter 17 Building an ActiveX Control

Listing 17.4 DierollPpg.cpp—CDierollPropPage::CDierollPropPage()

CDierollPropPage::CDierollPropPage() :
 COlePropertyPage(IDD, IDS_DIEROLL_PPG_CAPTION)
{
 //{{AFX_DATA_INIT(CDierollPropPage)
 // NOTE: ClassWizard will add member initialization here
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_DATA_INIT
}

The DoDataExchange() function moderates the data exchange between CDierollPropPage,
which represents the dialog box that is the property page, and the actual boxes on the user’s
screen. It, too, will have code added by ClassWizard—Listing 17.5 shows the empty map
AppWizard made.

Listing 17.5 DierollPpg.cpp—CDierollPropPage::DoDataExchange()

void CDierollPropPage::DoDataExchange(CDataExchange* pDX)
{
 //{{AFX_DATA_MAP(CDierollPropPage)
 // NOTE: ClassWizard will add DDP, DDX, and DDV calls here
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_DATA_MAP
 DDP_PostProcessing(pDX);
}

There is, not surprisingly, a message map for CDierollPropPage, and some registration code
(shown in Listing 17.6), that enables the ActiveX framework to call this code when a user edits
the control’s properties.

Listing 17.6 DierollPpg.cpp—CDierollPropPageFactory::UpdateRegistry()

///
// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CDierollPropPage, “DIEROLL.DierollPropPage.1”,
 0x914b21a8, 0x7946, 0x11d0, 0x9b, 0x1, 0, 0x80, 0xc8, 0x1a, 0x39, 0x7c)

///
// CDierollPropPage::CDierollPropPageFactory::UpdateRegistry -
// Adds or removes system registry entries for CDierollPropPage

BOOL CDierollPropPage::CDierollPropPageFactory::UpdateRegistry(BOOL bRegister)
{
 if (bRegister)
 return AfxOleRegisterPropertyPageClass(AfxGetInstanceHandle(),
 m_clsid, IDS_DIEROLL_PPG);
 else
 return AfxOleUnregisterClass(m_clsid, NULL);
}

Untitled-3 2/19/99, 7:32 AM398

399

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

Designing the Control
Typically, a control has internal data (properties) and shows them in some way to the user.
The user provides input to the control to change its internal data and perhaps the way the
control looks. Some controls present data to the user from other sources, such as databases or
remote files. The only internal data that makes sense for the die-roll control, other than some
appearance settings that are covered later, is a single integer between 1 and 6 that represents
the current number showing in the die. Eventually, the control will show a dot pattern like a
real-world die, but the first implementation of OnDraw() will simply display the digit. Another
simplification is to hard-code the digit to a single value while coding the basic structure; add
the code to roll the die later, while dealing with input from the user.

Displaying the Current Value
Before the value can be displayed, the control must have a value. That involves adding a prop-
erty to the control and then writing the drawing code.

Adding a Property
ActiveX controls have four types of properties:

■ Stock. These are standard properties supplied to every control, such as font or color. The
developer must activate stock properties, but there is little or no coding involved.

■ Ambient. These are properties of the environment that surrounds the control—proper-
ties of the container into which it has been placed. These can’t be changed, but the
control can use them to adjust its own properties. For example, it can set the control’s
background color to match the container’s background color.

■ Extended. These are properties that the container handles, usually involving size and
placement onscreen.

■ Custom. These are properties added by the control developer.

To add the value to the die-roll control, use ClassWizard to add a custom property called
Number. Follow these steps:

1. Choose View, ClassWizard, and then click the Automation tab.

2. Make sure that the Project drop-down list box at the upper-left of the dialog box is set to
Dieroll (unless you chose a different name when building the control with AppWizard)
and that the Class Name drop-down list box on the right has the classname
CDieRollCtrl.

3. Click the Add Property button and fill in the dialog box as shown in Figure 17.4.

4. Type Number into the External Name combo box and notice how ClassWizard fills in
suggested values for the Variable Name and Notification Function boxes.

5. Select short for the type.

6. Click OK to close the Add Property dialog box and OK to close ClassWizard.

Displaying the Current Value

Untitled-3 2/19/99, 7:33 AM399

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

400 Chapter 17 Building an ActiveX Control

Before you can write code to display the value of the Number property, the property must have a
value to display. Control properties are initialized in DoPropExchange(). This method actually
implements persistence; that is, it enables the control to be saved as part of a document and
read back in when the document is opened. Whenever a new control is created, the properties
can’t be read from a file, so they are set to the default values provided in this method. Controls
don’t have a Serialize() method.

AppWizard generated a skeleton DoPropExchange() method; this code is in Listing 17.7.

Listing 17.7 DierollCtl.cpp—CDierollCtrl::DoPropExchange()

void CDierollCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom property.

}

Notice the use of the version numbers to ensure that a file holding the values was saved by the
same version of the control. Take away the TODO comment that AppWizard left for you, and add
this line:

 PX_Short(pPX, “Number”, m_number, (short)3);

PX_Short() is one of many property-exchange functions that you can call—one for each prop-
erty type that is supported. The parameters you supply are as follows:

■ The pointer that was passed to DoPropExchange()

■ The external name of the property as you typed it on the ClassWizard Add Property
dialog box

■ The member variable name of the property as you typed it on the ClassWizard Add
Property dialog box

■ The default value for the property (later, you can replace this hard-coded 3 with a
random value)

FIG. 17.4
ClassWizard simplifies
the process of adding a
custom property to your
die-rolling control.

Untitled-3 2/19/99, 7:33 AM400

401

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

The following are the PX functions:

PX_Blob() (for binary large object [BLOB] types)

PX_Bool()

PX_Color() (OLE_COLOR)

PX_Currency()

PX_DATAPATH (CDataPathProperty)

PX_Double()

PX_Float()

PX_Font()

PX_IUnknown() (for LPUNKNOWN types, COM interface pointer)

PX_Long()

PX_Picture()

PX_Short()

PX_String()

PX_ULong()

PX_UShort()

PX_VBXFontConvert()

Filling in the property’s default value is simple for some properties but not for others. For
example, you set colors with the RGB() macro, which takes values for red, green, and blue from
0 to 255 and returns a COLORREF. Say that you had a property with the external name EdgeColor
and the internal name m_edgecolor and you wanted the property to default to gray. You would
code that like the following:

PX_Short(pPX, “EdgeColor”, m_edgecolor, RGB(128,128,128));

Controls with font properties should, by default, set the font to whatever the container is using.
To get this font, call the COleControl method AmbientFont().

Writing the Drawing Code
The code to display the number belongs in the OnDraw() method of the control class,
CDierollCtrl. (Controls don’t have documents or views.) This function is called automatically
whenever Windows needs to repaint the part of the screen that includes the control.
AppWizard generated a skeleton of this method, too, shown in Listing 17.8.

Listing 17.8 DierollCtl.cpp—CDierollCtrl::OnDraw()

void CDierollCtrl::OnDraw(CDC* pdc, const CRect& rcBounds,
 const CRect& rcInvalid)
{
 // TODO: Replace the following code with your own drawing code.
 pdc->FillRect(rcBounds,

continues

Displaying the Current Value

Untitled-3 2/19/99, 7:33 AM401

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

402 Chapter 17 Building an ActiveX Control

 CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
 pdc->Ellipse(rcBounds);
}

As discussed in the “Scrolling Windows” section of Chapter 5, “Drawing on the Screen,” the
framework passes the function a device context to draw in, a CRect describing the space occu-
pied by your control, and another CRect describing the space that has been invalidated. The
code in Listing 17.8 draws a white rectangle throughout rcBounds and then draws an ellipse
inside that rectangle, using the default foreground color. You can keep the white rectangle for
now, but rather than draw an ellipse on it, draw a character that corresponds to the value in
Number. To do that, replace the last line in the skeletal OnDraw() with these lines:

 CString val; //character representation of the short value
 val.Format(“%i”,m_number);
 pdc->ExtTextOut(0, 0, ETO_OPAQUE, rcBounds, val, NULL);

These code lines convert the short value in m_number (which you associated with the Number
property on the Add Property dialog box) to a CString variable called val, using the new
CString::Format() function (which eliminates one of the last uses of sprintf() in C++ pro-
gramming). The ExtTextOut() function draws a piece of text—the character in val—within the
rcBounds rectangle. As the die-roll control is written now, that number will always be 3.

You can build and test the control right now if you would like to see how little effort it takes to
make a control that does something. Unlike the other ActiveX applications, a control isn’t run
as a standalone application in order to register it. Build the project and fix any typing mistakes.
Choose Tools, ActiveX Control Test Container to bring up the control test container, shown in
Figure 17.5.

Listing 17.8 Continued

FIG. 17.5
The ActiveX control test
container is the ideal
place to test your
control.

Untitled-3 2/19/99, 7:34 AM402

403

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

If the Tools menu in Developer Studio doesn’t include an ActiveX Control Test Container
item, you can add it to the menu by following these steps:

1. Choose Tools, Customize.

2. Click the Tools tab.

3. Look at the list of tools and make sure that ActiveX Control Test Container isn’t there.

4. Go to the bottom of the list and double-click the empty entry.

5. Type Activ&eX Control Test Container in the entry and press Enter.

6. Click the ... button to the right of the Command box and browse to your Visual C++ CD,
or to the hard drive on which you installed Visual C++, and to the BIN folder beneath
the Developer Studio folder. Highlight tstcon32.exe and click OK to finish browsing. On
many systems the full path will be C:\Program Files\Microsoft Visual
Studio\Common\Tools\TSTCON32.EXE. Your system may be different.

7. Click the rightward-pointing arrow beside the Initial Directory box and choose Target
Directory from the list that appears.

8. Make sure that the three check boxes across the bottom of the directory are not
selected.

9. Click the Close button.

If you haven’t built a release version and your target is a release version, or if you have not built a
debug version and your target is a debug version, you will receive an error message when you choose
Tools, ActiveX Control Test Container. Simply build the control and you will be able to choose the menu
item.

After you have installed the test container under the tools menu, you will not need to do so again. By
bringing up the test container from within Developer Studio like this, you make it simpler to load your
die-roll control into the test container. ■

Within the test container, choose Edit, Insert New Control and then choose Dieroll Control
from the displayed list. As Figure 17.6 shows, the control appears as a white rectangle display-
ing a small number 3. You can move and resize this control within the container, but that little 3
stays doggedly in the upper-left corner. The next step is to make that number change when a
user clicks the die.

Reacting to a Mouse Click and Rolling the Die
There are actually two things that you want your control to do when the user clicks the mouse
on the control: to inform the container that the control has been clicked and to roll the die and
display the new internal value.

N O T E

Reacting to a Mouse Click and Rolling the Die

Untitled-3 2/19/99, 7:34 AM403

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

404 Chapter 17 Building an ActiveX Control

Notifying the Container
Let’s first tackle using an event to notify a container. Events are how controls notify the con-
tainer of a user action. Just as there are stock properties, there are stock events. These events
are already coded for you:

■ Click is coded to indicate to the container that the user clicked.

■ DblClick is coded to indicate to the container that the user double-clicked.

■ Error is coded to indicate an error that can’t be handled by firing any other event.

■ KeyDown is coded to indicate to the container that a key has gone down.

■ KeyPress is coded to indicate to the container that a complete keypress (down and then
up) has occurred.

■ KeyUp is coded to indicate to the container that a key has gone up.

■ MouseDown is coded to indicate to the container that the mouse button has gone down.

■ MouseMove is coded to indicate to the container that the mouse has moved over the
control.

■ MouseUp is coded to indicate to the container that the mouse button has gone up.

The best way to tell the container that the user has clicked over the control is to fire a Click
stock event. The first thing to do is to add it to the control with ClassWizard. Follow these
steps:

1. Bring up ClassWizard by choosing View, ClassWizard, and click the ActiveX Events tab.
Make sure that the selected class is CDierollCtrl.

2. Click the Add Event button and fill in the Add Event dialog box, as shown in Figure 17.7.

3. The external name is Click; choose it from the drop-down list box and notice how the
internal name is filled in as FireClick.

4. Click OK to add the event, and your work is done. Close ClassWizard.

FIG. 17.6
By adding one property
and changing two
functions, you have
transformed the empty
shell into a control that
displays a 3.

Untitled-3 2/19/99, 7:35 AM404

405

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

You may notice the ClassView pane has a new addition: two icons resembling handles. Click
the + next to _DDierollEvents to see that Click is now listed as an event for this application, as
shown in Figure 17.8.

FIG. 17.7
ClassWizard helps you
add events to your
control.

FIG. 17.8
ClassView displays
events as well as
classes.

Now when the user clicks the control, the container class will be notified. If you are writing a
backgammon game, for example, the container can respond to the click by using the new value
on the die to evaluate possible moves or do some other backgammon-specific task.

The second part of reacting to clicks involves actually rolling the die and redisplaying it. Not
surprisingly, ClassWizard helps implement this. When the user clicks over your control, you
catch it with a message map entry, just as with an ordinary application. Bring up ClassWizard
and follow these steps:

1. Select the Message Maps tab this time and make sure that your control class,
CDierollCtrl, is selected in the Class Name combo box.

2. Scroll through the Messages list box until you find the WM_LBUTTONDOWN message, which
Windows generates whenever the left mouse button is clicked over your control.

3. Click Add Function to add a function that will be called automatically whenever this
message is generated—in other words, whenever the user clicks your control. This
function must always be named OnLButtonDown(), so ClassWizard doesn’t give you a
dialog box asking you to confirm the name.

Reacting to a Mouse Click and Rolling the Die

Untitled-3 2/19/99, 7:35 AM405

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

406 Chapter 17 Building an ActiveX Control

4. ClassWizard has made a skeleton version of OnLButtonDown() for you; click the Edit
Code button to close ClassWizard, and look at the new OnLButtonDown() code. Here’s
the skeleton:
void CDierollCtrl::OnLButtonDown(UINT nFlags, CPoint point)
{
 // TODO: Add your message handler code here and/or call default

 COleControl::OnLButtonDown(nFlags, point);
}

5. Replace the TODO comment with a call to a new function, Roll(), that you will write in the
next section. This function will return a random number between 1 and 6.
 m_number = Roll();

6. To force a redraw, next add this line:
 InvalidateControl();

7. Leave the call to COleControl::OnLButtonDown() at the end of the function; it handles
the rest of the work involved in processing the mouse click.

Rolling the Die
To add Roll() to CDierollCtrl, right-click on CDierollCtrl in the ClassView pane and then
choose Add Member Function from the shortcut menu that appears. As shown in Figure 17.9,
Roll() will be a public function that takes no parameters and returns a short.

FIG. 17.9
Use the Add Member
Function dialog box to
speed routine tasks.

What should Roll() do? It should calculate a random value between 1 and 6. The C++ function
that returns a random number is rand(), which returns an integer between 0 and RAND_MAX.
Dividing by RAND_MAX + 1 gives a positive number that is always less than 1, and multiplying
by 6 gives a positive number that is less than 6. The integer part of the number will be between
0 and 5, in other words. Adding 1 produces the result that you want: a number between 1 and 6.
Listing 17.9 shows this code.

Listing 17.9 DierollCtl.cpp—CDierollCtrl::Roll()

short CDierollCtrl::Roll(void)
{
 double number = rand();
 number /= RAND_MAX + 1;
 number *= 6;
 return (short)number + 1;
}

Untitled-3 2/19/99, 7:35 AM406

407

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

If RAND_MAX + 1 isn’t a multiple of 6, this code will roll low numbers slightly more often
than high ones. A typical value for RAND_MAX is 32,767, which means that 1 and 2 will,

on the average, come up 5,462 times in 32,767 rolls. However, 3 through 6 will, on the average, come
up 5,461 times. You’re neglecting this inaccuracy.

Some die-rolling programs use the modulo function instead of this approach, but it is far less
accurate. The lowest digits in the random number are least likely to be accurate. The algorithm used
here produces a much more random die roll. ■

The random number generator must be seeded before it is used, and it’s traditional (and practi-
cal) to use the current time as a seed value. In DoPropExchange(), add the following line before
the call to PX_Short():

 srand((unsigned)time(NULL));

Rather than hard-code the start value to 3, call Roll() to determine a random value. Change
the call to PX_Short() so that it reads as follows:

PX_Short(pPX, “Number”, m_number, Roll());

Make sure the test container is not still open, build the control, and then test it again in the test
container. As you click the control, the displayed number should change with each click. Play
around with it a little: Do you ever see a number less than 1 or more than 6? Any surprises at
all?

Creating a Better User Interface
Now that the basic functionality of the die-roll control is in place, it’s time to neaten it a little. It
needs an icon, and it needs to display dots instead of a single digit.

A Bitmap Icon
Because some die-roll control users might want to add this control to the Control Palette in
Visual Basic or Visual C++, you should have an icon to represent it. AppWizard has already
created one, but it is simply an MFC logo that doesn’t represent your control in particular. You
can create a more specialized one with Developer Studio. Click the ResourceView tab of the
Project Workspace window, click the + next to Bitmap, and double-click IDB_DIEROLL. You can
now edit the bitmap 1 pixel at a time. Figure 17.10 shows an icon appropriate for a die. From
now on, when you load the die-roll control into the test container, you will see your icon on the
toolbar.

Displaying Dots
The next step in building this die-roll control is to make the control look like a die. A nice 3D
effect with parts of some of the other sides showing is beyond the reach of an illustrative chap-
ter like this one, but you can at least display a dot pattern.

N O T E

Creating a Better User Interface

Untitled-3 2/19/99, 7:36 AM407

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

408 Chapter 17 Building an ActiveX Control

The first step is to set up a switch statement in OnDraw(). Comment out the three drawing lines
and then add the switch statement so that OnDraw() looks like Listing 17.10.

Listing 17.10 DierollCtl.cpp—CDierollCtrl::OnDraw()

void CDierollCtrl::OnDraw(
 CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{
 pdc->FillRect(rcBounds,
 CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
// CString val; //character representation of the short value
// val.Format(“%i”,m_number);
// pdc->ExtTextOut(0, 0, ETO_OPAQUE, rcBounds, val, NULL);

 switch(m_number)
 {
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 case 5:
 break;
 case 6:
 break;
 }
}

FIG. 17.10
The ResourceView of
Visual C++ enables you
to build your own icon
to be added to the
Control Palette in Visual
Basic.

Untitled-3 2/19/99, 7:36 AM408

409

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

Now all that remains is adding code to the case 1: block that draws one dot, to the case 2:
block that draws two dots, and so on. If you happen to have a real die handy, take a close look
at it. The width of each dot is about one quarter of the width of the whole die’s face. Dots near
the edge are about one-sixteenth of the die’s width from the edge. All the other rolls except 6
are contained within the layout for 5, anyway; for example, the single dot for 1 is in the same
place as the central dot for 5.

The second parameter of OnDraw(), rcBounds, is a CRect that describes the rectangle occupied
by the control. It has member variables and functions that return the control’s upper-left coor-
dinates, width, and height. The default code generated by AppWizard called CDC::Ellipse() to
draw an ellipse within that rectangle. Your code will call Ellipse(), too, passing a small rect-
angle within the larger rectangle of the control. Your code will be easier to read (and will ex-
ecute slightly faster) if you work in units that are one-sixteenth of the total width or height.
Each dot will be four units wide or high. Add the following code before the switch statement:

 int Xunit = rcBounds.Width()/16;
 int Yunit = rcBounds.Height()/16;

 int Top = rcBounds.top;
 int Left = rcBounds.left;

Before drawing a shape by calling Ellipse(), you need to select a tool with which to draw.
Because your circles should be filled in, they should be drawn with a brush. This code creates
a brush and tells the device context pdc to use it, while saving a pointer to the old brush so that
it can be restored later:

 CBrush Black;
 Black.CreateSolidBrush(RGB(0x00,0x00,0x00)); //solid black brush
 CBrush* savebrush = pdc->SelectObject(&Black);

After the switch statement, add this line to restore the old brush:

 pdc->SelectObject(savebrush);

Now you’re ready to add lines to those case blocks to draw some dots. For example, rolls of 2,
3, 4, 5, or 6 all need a dot in the upper-left corner. This dot will be in a rectangular box that
starts one unit to the right and down from the upper-left corner and extends five units right and
down. The call to Ellipse looks like this:

 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit);

The coordinates for the other dots are determined similarly. The switch statement ends up as
show in Listing 17.11.

Listing 17.11 DierollCtl.cpp—CDierollCtrl::OnDraw()

switch(m_number)
 {
 case 1:
 pdc->Ellipse(Left+6*Xunit, Top+6*Yunit,

continues

Creating a Better User Interface

Untitled-3 2/19/99, 7:36 AM409

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

410 Chapter 17 Building an ActiveX Control

 Left+10*Xunit, Top + 10*Yunit); //center
 break;
 case 2:
 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 pdc->Ellipse(Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 3:
 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 pdc->Ellipse(Left+6*Xunit, Top+6*Yunit,
 Left+10*Xunit, Top + 10*Yunit); //center
 pdc->Ellipse(Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 4:
 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 pdc->Ellipse(Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 pdc->Ellipse(Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 pdc->Ellipse(Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 5:
 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 pdc->Ellipse(Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 pdc->Ellipse(Left+6*Xunit, Top+6*Yunit,
 Left+10*Xunit, Top + 10*Yunit); //center
 pdc->Ellipse(Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 pdc->Ellipse(Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 6:
 pdc->Ellipse(Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 pdc->Ellipse(Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 pdc->Ellipse(Left+Xunit, Top+6*Yunit,
 Left+5*Xunit, Top + 10*Yunit); //center left
 pdc->Ellipse(Left+11*Xunit, Top+6*Yunit,
 Left+15*Xunit, Top + 10*Yunit); //center right
 pdc->Ellipse(Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 pdc->Ellipse(Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 }

Listing 17.11 Continued

Untitled-3 2/19/99, 7:36 AM410

411

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

Build the OCX again and try it out in the test container. You will see something similar to Fig-
ure 17.11, which actually looks like a die!

FIG. 17.11
Your rolling-die control
now looks like a die.

If you’re sharp-eyed or if you stretch the die very small, you might notice that the pattern of
dots is just slightly off-center. That’s because the control’s height and width are not always an
exact multiple of 16. For example, if Width() returned 31, Xunit would be 1, and all the dots
would be arranged between positions 0 and 16, leaving a wide blank band at the far right of the
control. Luckily, the width is typically far more than 31 pixels, and so the asymmetry is less
noticeable.

To fix this, center the dots in the control. Find the lines that calculate Xunit and Yunit, and
then add the new lines from the code fragment in Listing 17.12.

Listing 17.12 DierollCtl.cpp—Adjusting Xunit and Yunit

//dots are 4 units wide and high, one unit from the edge
int Xunit = rcBounds.Width()/16;
int Yunit = rcBounds.Height()/16;
int Xleft = rcBounds.Width()%16;
int Yleft = rcBounds.Height()%16;

// adjust top left by amount left over
int Top = rcBounds.top + Yleft/2;
int Left = rcBounds.left + Xleft/2;

Xleft and Yleft are the leftovers in the X and Y direction. By moving Top and Left over by half
the leftover, you center the dots in the control without having to change any other code.

Creating a Better User Interface

Untitled-3 2/19/99, 7:37 AM411

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

412 Chapter 17 Building an ActiveX Control

Generating Property Sheets
ActiveX controls have property sheets that enable the user to set properties without any
change to the container application. (Property sheets and pages are discussed in Chapter 12,
“Property Pages and Sheets.”) You set these up as dialog boxes, taking advantage of prewritten
pages for font, color, and other common properties. For this control, the obvious properties to
add are the following:

■ A flag to indicate whether the value should be displayed as a digit or a dot pattern

■ Foreground color

■ Background color

It’s easy to become confused about what exactly a property page is. Is each one of the
tabs on a dialog box a separate page, or is the whole collection of tabs a page? Each tab

is called a page and the collection of tabs is called a sheet. You set up each page as a dialog box and
use ClassWizard to connect the values on that dialog box to member variables. ■

Digits Versus Dots
It’s a simple enough matter to allow the user to choose whether to display the current value as
a digit or a dot pattern. Simply add a property that indicates this preference and then use the
property in OnDraw(). The user can set the property, using the property page.

First, add the property using ClassWizard. Here’s how: Bring up ClassWizard and select the
Automation tab. Make sure that the CDierollCtrl class is selected and then click Add Prop-
erty. On the Add Property dialog box, provide the external name Dots and the internal name
m_dots. The type should be BOOL because Dots can be either TRUE or FALSE. Implement this
new property as a member variable (direct-access) property. Click OK to complete the Add
Property dialog box and click OK to close ClassWizard. The member variable is added to the
class, the dispatch map is updated, and a stub is added for the notification function,
OnDotsChanged().

To initialize Dots and arrange for it to be saved with a document, add the following line to
DoPropExchange() after the call to PX_Short():

 PX_Bool(pPX, “Dots”, m_dots, TRUE);

Initializing the Dots property to TRUE ensures that the control’s default behavior is to display
the dot pattern.

In OnDraw(), uncomment those lines that displayed the digit. Wrap an if around them so that
the digit is displayed if m_dots is FALSE and dots are displayed if it is TRUE. The code looks like
Listing 17.13.

N O T E

Untitled-3 2/19/99, 7:37 AM412

413

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

Listing 17.13 DierollCtl.cpp—CDierollCtrl::OnDraw()

void CDierollCtrl::OnDraw(
 CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{
 pdc->FillRect(rcBounds,
 CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

 if (!m_dots)
 {
 CString val; //character representation of the short value
 val.Format(“%i”,m_number);
 pdc->ExtTextOut(0, 0, ETO_OPAQUE, rcBounds, val, NULL);
 }
 else
 {
 //dots are 4 units wide and high, one unit from the edge
 int Xunit = rcBounds.Width()/16;
 int Yunit = rcBounds.Height()/16;
 int Xleft = rcBounds.Width()%16;
 int Yleft = rcBounds.Height()%16;

 // adjust top left by amount left over
 int Top = rcBounds.top + Yleft/2;
 int Left = rcBounds.left + Xleft/2;

 CBrush Black;
 Black.CreateSolidBrush(RGB(0x00,0x00,0x00)); //solid black brush

 CBrush* savebrush = pdc->SelectObject(&Black);

 switch(m_number)
 {
 case 1:
 …
 }
 pdc->SelectObject(savebrush);
 }
}

To give the user a way to set Dots, you build a property page by following these steps:

1. Click the ResourceView tab in the Project Workspace window and then click the + next
to Dialog.

2. The OCX has two dialog boxes: one for the About box and one for the property page.
Double-click IDD_PROPPAGE_DIEROLL to open it. Figure 17.12 shows the boilerplate
property page generated by AppWizard.

3. Remove the static control with the TODO reminder by highlighting it and pressing Delete.

4. Drag a check box from the Control Palette onto the dialog box. Choose View, Properties
and then pin the Property dialog box in place.

Generating Property Sheets

Untitled-3 2/19/99, 7:37 AM413

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

414 Chapter 17 Building an ActiveX Control

5. Change the caption to Display Dot Pattern and change the resource ID to IDC_DOTS, as
shown in Figure 17.13.

FIG. 17.12
AppWizard generates an
empty property page.

FIG. 17.13
You build the property
page for the die-roll
control like any other
dialog box.

When the user brings up the property page and clicks to set or unset the check box, that
doesn’t directly affect the value of m_dots or the Dots property. To connect the dialog box to
member variables, use ClassWizard and follow these steps:

Untitled-3 2/19/99, 7:37 AM414

415

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

1. Bring up ClassWizard while the dialog box is still open and on top, and then select the
Member Variables tab.

2. Make sure that CDierollPropPage is the selected class and that the IDC_DOTS resource
ID is highlighted, and then click the Add Variable button.

3. Fill in m_dots as the name and BOOL as the type, and fill in the Optional Property Name
combo box with Dots, as shown in Figure 17.14.

4. Click OK, and ClassWizard generates code to connect the property page with the
member variables in CDierollPropPage::DoDataExchange().

FIG. 17.14
You connect the
property page to the
properties of the
control with
ClassWizard.

The path that data follows can be a little twisty. When the user brings up the property sheet,
the value of TRUE or FALSE is in a temporary variable. Clicking the check box toggles the value
of that temporary variable. When the user clicks OK, that value goes into
CDierollPropPage::m_dots and also to the Automation property Dots. That property has
already been connected to CDierollCtrl::m_dots, so the dispatch map in CDierollCtrl will
make sure that the other m_dots is changed. Because the OnDraw() function uses
CDierollCtrl::m_dots, the control’s appearance changes in response to the change made by
the user on the property page. Having the same name for the two member variables makes
things more confusing to first-time control builders but less confusing in the long run.

This works now. Build the control and insert it into the test container. To change the proper-
ties, choose Edit, Dieroll Control Object, and Properties; your own property page will appear,
as shown in Figure 17.15. (The Extended tab is provided for you, but as you can see, it doesn’t
really do anything. Your General tab is the important one at the moment.) Prove to yourself
that the control displays dots or a digit, depending on the page’s setting, by changing the set-
ting, clicking OK, and then watching the control redraw.

When the control is displaying the value as a number, you might want to display that number in
a font that’s more in proportion with the control’s current width and height and centered within
the control. That’s a relatively simple modification to OnDraw(), which you can investigate on
your own.

Generating Property Sheets

Untitled-3 2/19/99, 7:38 AM415

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

416 Chapter 17 Building an ActiveX Control

User-Selected Colors
The die you’ve created will always have black dots on a white background, but giving the user
control to change this is remarkably simple. You need a property for the foreground color and
another for the background color. These have already been implemented as stock properties:
BackColor and ForeColor.

Stock Properties Here is the complete list of stock properties available to a control that you
write:

■ Appearance. Specifies the control’s general look

■ BackColor. Specifies the control’s background color

■ BorderStyle. Specifies either the standard border or no border

■ Caption. Specifies the control’s caption or text

■ Enabled. Specifies whether the control can be used

■ Font. Specifies the control’s default font

■ ForeColor. Specifies the control’s foreground color

■ Text. Also specifies the control’s caption or text

■ hWnd. Specifies the control’s window handle

Ambient Properties Controls can also access ambient properties, which are properties of the
environment that surrounds the control—that is, properties of the container into which you
place the control. You can’t change ambient properties, but the control can use them to adjust
its own properties. For example, the control can set its background color to match that of the
container.

The container provides all support for ambient properties. Any of your code that uses an ambi-
ent property should be prepared to use a default value if the container doesn’t support that
property. Here’s how to use an ambient property called UserMode:

FIG. 17.15
The control test
container displays your
own property page.

Untitled-3 2/19/99, 7:38 AM416

417

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

BOOL bUserMode;
 if(!GetAmbientProperty(DISPID_AMBIENT_USERMODE,
 VT_BOOL, &bUserMode))
 {
 bUserMode = TRUE;
 }

This code calls GetAmbientProperty() with the display ID (DISPID) and variable type
(vartype) required. It also provides a pointer to a variable into which the value is placed. This
variable’s type must match the vartype. If GetAmbientProperty() returns FALSE, bUserMode is
set to a default value.

A number of useful DISPIDs are defined in olectl.h, including these:

DISPID_AMBIENT_BACKCOLOR

DISPID_AMBIENT_DISPLAYNAME

DISPID_AMBIENT_FONT

DISPID_AMBIENT_FORECOLOR

DISPID_AMBIENT_LOCALEID

DISPID_AMBIENT_MESSAGEREFLECT

DISPID_AMBIENT_SCALEUNITS

DISPID_AMBIENT_TEXTALIGN

DISPID_AMBIENT_USERMODE

DISPID_AMBIENT_UIDEAD

DISPID_AMBIENT_SHOWGRABHANDLES

DISPID_AMBIENT_SHOWHATCHING

DISPID_AMBIENT_DISPLAYASDEFAULT

DISPID_AMBIENT_SUPPORTSMNEMONICS

DISPID_AMBIENT_AUTOCLIP

DISPID_AMBIENT_APPEARANCE

Remember that not all containers support all these properties. Some might not support any,
and still others might support properties not included in the preceding list.

The vartypes include those shown in Table 17.1.

Table 17.1 Variable Types for Ambient Properties

vartype Description

VT_BOOL BOOL

VT_BSTR CString

VT_I2 short

continues

Generating Property Sheets

Untitled-3 2/19/99, 7:39 AM417

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

418 Chapter 17 Building an ActiveX Control

VT_I4 long

VT_R4 float

VT_R8 double

VT_CY CY

VT_COLOR OLE_COLOR

VT_DISPATCH LPDISPATCH

VT_FONT LPFONTDISP

Remembering which vartype goes with which DISPID and checking the return from
GetAmbientProperty() are a bothersome process, so the framework provides member func-
tions of COleControl to get the most popular ambient properties:

■ OLE_COLOR AmbientBackColor()

■ CString AmbientDisplayName()

■ LPFONTDISP AmbientFont() (Don’t forget to release the font by using Release().)

■ OLE_COLOR AmbientForeColor()

■ LCID AmbientLocaleID()

■ CString AmbientScaleUnits()

■ short AmbientTextAlign() (0 means general—numbers right, text left; 1 means left-
justify; 2 means center; and 3 means right-justify.)

■ BOOL AmbientUserMode() (TRUE means user mode; FALSE means design mode.)

■ BOOL AmbientUIDead()

■ BOOL AmbientShowHatching()

■ BOOL AmbientShowGrabHandles()

All these functions assign reasonable defaults if the container doesn’t support the requested
property.

Implementing BackColor and ForeColor To add BackColor and ForeColor to the control,
follow these steps:

1. Bring up ClassWizard, and select the Automation tab.

2. Make sure that CDierollCtrl is the selected class, and click Add Property.

3. Choose BackColor from the top combo box, and the rest of the dialog box is filled out for
you; it is grayed out to remind you that you can’t set any of these fields for a stock
property. Figure 17.16 shows the values provided for you.

Table 17.1 Continued

vartype Description

Untitled-3 2/19/99, 7:39 AM418

419

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

FIG. 17.16
ClassWizard describes
stock properties for
you.

4. Click OK and then add ForeColor in the same way. After you click OK, ClassWizard’s
Automation tab will resemble Figure 17.17. The S next to these new properties reminds
you that they are stock properties.

5. Click OK to close ClassWizard.

FIG. 17.17
An S precedes the
stock properties in the
OLE Automation list of
properties and
methods.

Setting up the property pages for these colors is almost as simple because there is a prewritten
page that you can use. Look through DierollCtl.cpp for a block of code like Listing 17.14.

Listing 17.14 DierollCtl.cpp—Property Pages

//
// Property pages

// TODO: Add more property pages as needed. Remember to increase the count!
BEGIN_PROPPAGEIDS(CDierollCtrl, 1)
 PROPPAGEID(CDierollPropPage::guid)
END_PROPPAGEIDS(CDierollCtrl)

Generating Property Sheets

Untitled-3 2/19/99, 7:40 AM419

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

420 Chapter 17 Building an ActiveX Control

Remove the TODO reminder, change the count to 2, and add another PROPPAGEID so that the
block looks like Listing 17.15.

Listing 17.15 DierollCtl.cpp—Property Pages

///
// Property pages

BEGIN_PROPPAGEIDS(CDierollCtrl, 2)
 PROPPAGEID(CDierollPropPage::guid)
 PROPPAGEID(CLSID_CColorPropPage)
END_PROPPAGEIDS(CDierollCtrl)

CLSID_CColorPropPage is a class ID for a property page that is used to set colors. Now when
the user brings up the property sheet, there will be two property pages: one to set colors and
the general page that you already created. Both ForeColor and BackColor will be available on
this page, so all that remains to be done is using the values set by the user. You will have a
chance to see that very soon, but first, your code needs to use these colors.

Changes to OnDraw() In OnDraw(), your code can access the background color with
GetBackColor(). Though you can’t see it, this function was added by ClassWizard when you
added the stock property. The dispatch map for CDierollCtrl now looks like Listing 17.16.

Listing 17.16 DierollCtl.cpp—Dispatch Map

BEGIN_DISPATCH_MAP(CDierollCtrl, COleControl)
 //{{AFX_DISPATCH_MAP(CDierollCtrl)
 DISP_PROPERTY_NOTIFY(CDierollCtrl, “Number”, m_number,
 [ccc] OnNumberChanged, VT_I2)
 DISP_PROPERTY_NOTIFY(CDierollCtrl, “Dots”, m_dots,
 [ccc] OnDotsChanged, VT_BOOL)
 DISP_STOCKPROP_BACKCOLOR()
 DISP_STOCKPROP_FORECOLOR()
 //}}AFX_DISPATCH_MAP
 DISP_FUNCTION_ID(CDierollCtrl, “AboutBox”,
 [ccc]DISPID_ABOUTBOX, AboutBox, VT_EMPTY, VTS_NONE)
END_DISPATCH_MAP()

The macro DISP_STOCKPROP_BACKCOLOR() expands to these lines:

#define DISP_STOCKPROP_BACKCOLOR() \
 DISP_PROPERTY_STOCK(COleControl, “BackColor”, \
 DISPID_BACKCOLOR, COleControl::GetBackColor, \
 COleControl::SetBackColor, VT_COLOR)

This code is calling another macro, DISP_PROPERTY_STOCK, which ends up declaring the
GetBackColor() function as a member of CDierollCtrl, which inherits from COleControl.
Although you can’t see it, this function is available to you. It returns an OLE_COLOR, which you
translate to a COLORREF with TranslateColor(). You can pass this COLORREF to

Untitled-3 2/19/99, 7:40 AM420

421

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

CreateSolidBrush() and use that brush to paint the background. Access the foreground color
with GetForeColor() and give it the same treatment. (Use SetTextColor() in the digit part of
the code.) Listing 17.17 shows the completed OnDraw() (with most of the switch statement
cropped out).

Listing 17.17 DierollCtl.cpp—CDierollCtrl::OnDraw()

void CDierollCtrl::OnDraw(CDC* pdc, const CRect& rcBounds,
 const CRect& rcInvalid)
{
 COLORREF back = TranslateColor(GetBackColor());
 CBrush backbrush;
 backbrush.CreateSolidBrush(back);
 pdc->FillRect(rcBounds, &backbrush);

 if (!m_dots)
 {
 CString val; //character representation of the short value
 val.Format(“%i”,m_number);
 pdc->SetTextColor(TranslateColor(GetForeColor()));
 pdc->ExtTextOut(0, 0, ETO_OPAQUE, rcBounds, val, NULL);
 }
 else
 {
 //dots are 4 units wide and high, one unit from the edge
 int Xunit = rcBounds.Width()/16;
 int Yunit = rcBounds.Height()/16;

 int Top = rcBounds.top;
 int Left = rcBounds.left;

 COLORREF fore = TranslateColor(GetForeColor());
 CBrush forebrush;
 forebrush.CreateSolidBrush(fore);

 CBrush* savebrush = pdc->SelectObject(&forebrush);

 switch(m_number)
 {
 ...
 }
 pdc->SelectObject(savebrush);
 }
}

Build the control again, insert it into the test container, and again bring up the property sheet
by choosing Edit, Dieroll Control Object, Properties. As Figure 17.18 shows, the new property
page is just fine for setting colors. Change the foreground and background colors a few times
and experiment with both dots and digit display to exercise all your new code.

Generating Property Sheets

Untitled-3 2/19/99, 7:40 AM421

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

422 Chapter 17 Building an ActiveX Control

Rolling on Demand
ActiveX controls expose methods (functions) just as Automation servers do. This control rolls
when the user clicks it, but you might want the container application to request a roll without
the user’s intervention. To do this, you add a function called DoRoll() and expose it.

Bring up ClassWizard, click the Automation tab, and then click Add Method. Name the new
function DoRoll, select Return Type of Void, and when it is added, click Edit Code and fill it in
like this:

void CDierollCtrl::DoRoll()
{
 m_number = Roll();
 InvalidateControl();
}

This simple code rolls the die and requests a redraw. Not everything about ActiveX controls
needs to be difficult!

You can test this code by building the project, opening the test container, inserting a dieroll
control, then choosing Control, Invoke Methods. On the Invoke Methods dialog box, shown in
Figure 17.19, select DoRoll(Method) from the upper drop-down box; then click Invoke. You will
see the die roll.

Future Improvements
The die-rolling control may seem complete, but it could be even better. The following sections
discuss improvements that can be made to the control for different situations.

Enable and Disable Rolling
In many dice games, you can roll the die only when it is your turn. At the moment, this control
rolls whenever it is clicked, no matter what. By adding a custom property called RollAllowed,

FIG. 17.18
Stock property pages
make short work of
letting the user set
colors.

Untitled-3 2/19/99, 7:40 AM422

423

Brands 03/4 SEU Vis C++ 6 #1539-2 7.21.98 AYANNA CH17 LP#3

17

IV
Part

Ch

you can allow the container to control the rolling. When RollAllowed is FALSE,
CDieCtrl::OnLButtonDown should just return without rolling and redrawing. Perhaps OnDraw
should draw a slightly different die (gray dots?) when RollAllowed is FALSE. You decide; it’s
your control. The container would set this property like any Automation property, according to
the rules of the game in which the control is embedded.

FIG. 17.19
You can invoke your
control’s methods in
the test container.

Dice with Unusual Numbers of Sides
Why restrict yourself to six-sided dice? There are dice that have 4, 8, 12, 20, and even 30 sides;
wouldn’t they make an interesting addition to a dice game? You’ll need to get one pair of these
odd dice so that you can see what they look like and change the drawing code in
CDierollCtrl::OnDraw(). You then need to change the hard-coded 6 in Roll() to a custom
property: an integer with the external name Sides and a member variable m_sides. Don’t for-
get to change the property page to enable the user to set Sides, and don’t forget to add a line to
CDieCtrl::DoPropExchange() to make Sides persistent and initialize it to 6.

There is such a thing as a two-sided die; it’s commonly called a coin.

Arrays of Dice
If you were writing a backgammon game, you would need two dice. One approach would be to
embed two individual die controls. How would you synchronize them, though, so that they
both rolled at once with a single click? Why not expand the control to be an array of dice? The
number of dice would be another custom property, and the control would roll the dice all at
once. The RollAllowed flag would apply to all the dice, as would Sides, so that you could have
two six-sided dice or three 12-sided dice, but not two four-sided dice and a 20-sider. Number
would become an array.

In Chapter 20, “Building an Internet ActiveX Control,” you discover one way to synchronize two or more
separate dice within one control container, and you’ll learn some of the difficulties involved.

T I P

T I P

Future Improvements

Untitled-3 2/19/99, 7:41 AM423

Untitled-3 2/19/99, 7:41 AM424

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 ayanna ptV LP#3

VP A R T

Internet Programming

18 Sockets, MAPI, and the Internet 427

19 Internet Programming with the WinInet Classes 443

20 Building an Internet ActiveX Control 465

21 The Active Template Library 491

Untitled-4 2/19/99, 7:42 AM425

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 ayanna ptV LP#3

Untitled-4 2/19/99, 7:42 AM426

427

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

C H A P T E R

Sockets, MAPI, and the Internet

18

In this chapter

Using Windows Sockets 428

Using the Messaging API (MAPI) 432

Using the WinInet Classes 437

Using Internet Server API (ISAPI) Classes 438

Untitled-5 2/19/99, 7:43 AM427

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

428 Chapter 18 Sockets, MAPI, and the Internet

Using Windows Sockets
There are a number of ways your applications can communicate with other applications
through a network like the Internet. This chapter introduces you to the concepts involved with
these programming techniques. Subsequent chapters cover some of these concepts in more
detail.

Before the Windows operating system even existed, the Internet existed. As it grew, it became
the largest TCP/IP network in the world. The early sites were UNIX machines, and a set of
conventions called Berkeley sockets became the standard for TCP/IP communication between
UNIX machines on the Internet. Other operating systems implemented TCP/IP communica-
tions, too, which contributed immensely to the Internet’s growth. On those operating systems,
things were becoming messy, with a wide variety of proprietary implementations of TCP/IP.
Then a group of more than 20 vendors banded together to create the Winsock specification.

The Winsock specification defines the interface to a DLL, typically called WINSOCK.DLL or
WSOCK32.DLL. Vendors write the code for the functions themselves. Applications can call the
functions, confident that each function’s name, parameter meaning, and final behavior are the
same no matter which DLL is installed on the machine. For example, the DLLs included with
Windows 95 and Windows NT are not the same at all, but a 32-bit Winsock application can run
unchanged on a Windows 95 or Windows NT machine, calling the Winsock functions in the
appropriate DLL.

Winsock isn’t confined to TCP/IP communication. IPX/SPX support is the second protocol
supported, and there will be others. For more information, check the Winsock specification

itself. The Stardust Labs Winsock Resource Page at http://www.stardust.com/wsresource/ is a great
starting point. ■

An important concept in sockets programming is a socket’s port. Every Internet site has a
numeric address called an IP address, typically written as four numbers separated by dots:
198.53.145.3, for example. Programs running on that machine are all willing to talk, by
using sockets, to other machines. If a request arrives at 198.53.145.3, which program
should handle it?

Requests arrive at the machine, carrying a port number—a number from 1,024 and up that
indicates which program the request is intended for. Some port numbers are reserved for
standard use; for example, Web servers traditionally use port 80 to listen for Web document
requests from client programs like Netscape Navigator.

Most socket work is connection-based: Two programs form a connection with a socket at each
end and then send and receive data along the connection. Some applications prefer to send
the data without a connection, but there is no guarantee that this data will arrive. The classic
example is a time server that regularly sends out the current time to every machine near it
without waiting until it is asked. The delay in establishing a connection might make the time
sent through the connection outdated, so it makes sense in this case to use a connectionless
approach.

N O T E

Untitled-5 2/19/99, 7:43 AM428

429

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

Winsock in MFC
At first, sockets programming in Visual C++ meant making API calls into the DLL. Many
developers built socket classes to encapsulate these calls. Visual C++ 2.1 introduced two new
classes: CAsyncSocket and CSocket (which inherits from CAsyncSocket). These classes handle
the API calls for you, including the startup and cleanup calls that would otherwise be easy
to forget.

Windows programming is asynchronous: lots of different things happen at the same time. In
older versions of Windows, if one part of an application was stuck in a loop or otherwise hung
up, the entire application—and sometimes the entire operating system—would stick or hang
with it. This is obviously something to avoid at all costs. Yet a socket call, perhaps a call to read
some information through a TCP/IP connection to another site on the Internet, might take a
long time to complete. (A function that is waiting to send or receive information on a socket is
said to be blocking.) There are three ways around this problem:

■ Put the function that might block in a thread of its own. The thread will block, but the
rest of the application will carry on.

■ Have the function return immediately after making the request, and have another
function check regularly (poll the socket) to see whether the request has completed.

■ Have the function return immediately, and send a Windows message when the request
has completed.

The first option was not available until recently, and the second is inefficient under Windows.
Most Winsock programming adopts the third option. The class CAsyncSocket implements this
approach. For example, to send a string across a connected socket to another Internet site, you
call that socket’s Send() function. Send() doesn’t necessarily send any data at all; it tries to, but
if the socket isn’t ready and waiting, Send() just returns. When the socket is ready, a message
is sent to the socket window, which catches it and sends the data across. This is called asyn-
chronous Winsock programming.

Winsock programming isn’t a simple topic; entire books have been written on it. If you
decide that this low-level sockets programming is the way to go, building standard

programs is a good way to learn the process. ■

CAsyncSocket The CAsyncSocket class is a wrapper class for the asynchronous Winsock
calls. It has a number of useful functions that facilitate using the Winsock API. Table 18.1 lists
the CAsyncSocket member functions and responsibilities.

Table 18.1 CAsyncSocket Member Functions

Method Name Description

Accept Handles an incoming connection on a listening socket, filling a new
socket with the address information.

N O T E

continues

Using Windows Sockets

Untitled-5 2/19/99, 7:44 AM429

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

430 Chapter 18 Sockets, MAPI, and the Internet

AsyncSelect Requests that a Windows message be sent when a socket is ready.

Attach Attaches a socket handle to a CAsyncSocket instance so that it can
form a connection to another machine.

Bind Associates an address with a socket.

Close Closes the socket.

Connect Connects the socket to a remote address and port.

Create Completes the initialization process begun by the constructor.

Detach Detaches a previously attached socket handle.

FromHandle Returns a pointer to the CAsyncSocket attached to the handle it was
passed.

GetLastErro Returns the error code of the socket. After an operation fails, call
GetLastError to find out why.

GetPeerName Finds the IP address and port number of the remote socket that the
calling object socket is connected to, or fills a socket address
structure with that information.

GetSockName Returns the IP address and port number of this socket, or fills a
socket address structure with that information.

GetSockOpt Returns the currently set socket options.

IOCtl Sets the socket mode most commonly to blocking or non-blocking.

Listen Instructs a socket to watch for incoming connections.

OnAccept Handles the Windows message generated when a socket has an
incoming connection to accept (often overridden by derived
classes).

OnClose Handles the Windows message generated when a socket closes
(often overridden by derived classes).

OnConnect Handles the Windows message generated when a socket becomes
connected or a connection attempt ends in failure (often overridden
by derived classes).

OnOutOfBandData Handles the Windows message generated when a socket has urgent,
out-of-band data ready to read.

OnReceive Handles the Windows message generated when a socket has data
that can be read with Receive() (often overridden by derived
classes).

Table 18.1 Continued

Method Name Description

Untitled-5 2/19/99, 7:44 AM430

431

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

OnSend Handles the Windows message generated when a socket is ready to
accept data that can be sent with Send() (often overridden by
derived classes).

Receive Reads data from the remote socket to which this socket is con-
nected.

ReceiveFrom Reads a datagram from a connectionless remote socket.

Send Sends data to the remote socket to which this socket is connected.

SendTo Sends a datagram without a connection.

SetSockOpt Sets socket options.

ShutDown Keeps the socket open but prevents any further Send() or
Receive() calls.

If you use the CAsyncSocket class, you’ll have to fill the socket address structures yourself, and
many developers would rather delegate a lot of this work. In that case, CSocket is a better
socket class.

CSocket CSocket inherits from CAsyncSocket and has all the functions listed for
CAsyncSocket. Table 18.2 describes the new methods added and the virtual methods overrid-
den in the derived CSocket class.

Table 18.2 CSocket Methods

Method Name Description

Attach Attaches a socket handle to a CAsyncSocket instance so that it can
form a connection to another machine

Create Completes the initialization after the constructor constructs a blank
socket

FromHandle Returns a pointer to the CSocket attached to the handle it was
passed

IsBlocking Returns TRUE if the socket is blocking at the moment, waiting for
something to happen

CancelBlockingCal Cancels whatever request had left the socket blocking

OnMessagePending Handles the Windows messages generated for other parts of your
application while the socket is blocking (often overridden by derived
classes)

In many cases, socket programming is no longer necessary because the WinInet classes,
ISAPI programming, and ActiveX controls for Web pages are bringing more and more power to

Method Name Description

Using Windows Sockets

Untitled-5 2/19/99, 7:45 AM431

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

432 Chapter 18 Sockets, MAPI, and the Internet

Internet programmers. If you would like to explore a sample socket program, try Chatter and
ChatSrvr, provided by Visual C++. Search either name in the online help to find the files.

Each session of Chatter emulates a user server. The ChatSrvr program is the server, acting as
traffic manager among several clients. Each Chatter can send messages to the ChatSrvr by
typing in some text, and the ChatSrvr sends the message to everyone logged on to the session.
Several traffic channels are managed at once.

If you’ve worked with sockets before, this short overview may be all you need to get started. If
not, you may not need to learn them. If you plan to write a client/server application that runs
over the Internet and doesn’t use the existing standard applications like mail or the Web, then
learning sockets is probably in your future. But, if you want to use email, the Web, FTP, and
other popular Internet information sources, you don’t have to do it by writing socket programs
at all. You may be able to use MAPI, the WinInet classes, or ISAPI to achieve the results you
are looking for.

Using the Messaging API (MAPI)
The most popular networking feature in most offices is electronic mail. You could add code to
your application to generate the right commands over a socket to transmit a mail message, but
it’s simpler to build on the work of others.

What Is MAPI?
MAPI is a way of pulling together applications that need to send and receive messages (messag-
ing applications) with applications that know how to send and receive messages (messaging
services and service providers), in order to decrease the work load of all the developers involved.
Figure 18.1 shows the scope of MAPI. Note that the word messaging covers far more than just
electronic mail: A MAPI service can send a fax or voice-mail message instead of an electronic
mail message. If your application uses MAPI, the messaging services, such as email clients
that the user has installed, will carry out the work of sending the messages that your applica-
tion generates.

The extent to which an application uses messaging varies widely:

■ Some applications can send a message, but sending messages isn’t really what the
application is about. For example, a word processor is fundamentally about entering and
formatting text and then printing or saving that text. If the word processor can also send
the text in a message, fine, but that’s incidental. Applications like this are said to be
messaging-aware and typically use just the tip of the MAPI functionality.

■ Some applications are useful without being able to send messages, but they are far more
useful in an environment where messages can be sent. For example, a personal sched-
uler program can manage one person’s To Do list whether messaging is enabled or not.
If it is enabled, a number of work group and client-contact features—such as sending
email to confirm an appointment—become available. Applications like this are said to be
messaging-enabled and use some, but not all, of the MAPI features.

Untitled-5 2/19/99, 7:45 AM432

433

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

■ Finally, some applications are all about messaging. Without messaging, these applica-
tions are useless. They are said to be messaging-based, and they use all of MAPI’s
functionality.

FIG. 18.1
The Messaging API
includes applications
that need messaging
and those that
provide it.

Simple MAPI Active Messaging CMC

Extended MAPI

MS Mail PROFS FAX Software

Spreadsheets Word processing Mail

Message
Spooler

Store
Provider

Address
Book

Provider

Message
Transport
Provider

M
A
P
I

Messaging Services

Services Provider
Interface

Client Interface

Messaging
Application

Using the Messaging API (MAPI)

Win95 Logo Requirements
The number-one reason for a developer to make an application messaging aware is to meet the
requirements of the Windows 95 Logo program. To qualify for the logo, an application must
have a Send item on the File menu that uses MAPI to send the document. (Exceptions are
granted to applications without documents.)

To add this feature to your applications, it’s best to think of it before you create the empty shell
with AppWizard. If you are planning ahead, here is a list of all the work you have to do to meet
this part of the logo requirement:

1. In Step 4 of AppWizard, select the MAPI (Messaging API) check box.

That’s it! The menu item is added, and message maps and functions are generated to catch the
menu item and call functions that use your Serialize() function to send the document
through MAPI. Figure 18.2 shows an application called MAPIDemo that is just an AppWizard
empty shell.

No additional code was added to this application, beyond the code generated by AppWizard,
and the Send item is on the File menu, as you can see. If you choose this menu item, your
MAPI mail client is launched to send the message. Figures 18.2 and 18.3 were captured on a
machine with Microsoft Exchange installed as an Internet mail client (Inbox), and so it is

Untitled-5 2/19/99, 7:45 AM433

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

434 Chapter 18 Sockets, MAPI, and the Internet

Microsoft Exchange that is launched, as shown in Figure 18.3. The message contains the cur-
rent document, and it is up to you to fill in the recipient, the subject, and any text you want to
send with the document.

FIG. 18.2
AppWizard adds the
Send item to the File
menu, as well as the
code that handles the
item.

If the Send item doesn’t appear on your menu, make sure that you have a MAPI client installed.
Microsoft Exchange is an easy-to-get MAPI client. The OnUpdateFileSendMail() function removes
the menu item Send from the menu if no MAPI client is registered on your computer.

If you didn’t request MAPI support from AppWizard when you built your application, here are
the steps to manually add the Send item:

1. Add the Send item to the File menu. Use a resource ID of ID_FILE_SEND_MAIL. The
prompt will be supplied for you.

2. Add these two lines to the document’s message map, outside the //AFX comments:

ON_COMMAND(ID_FILE_SEND_MAIL, OnFileSendMail)
ON_UPDATE_COMMAND_UI(ID_FILE_SEND_MAIL, OnUpdateFileSendMail)

FIG. 18.3
Microsoft Mail is
launched so that the
user can fill in the rest
of the email message
around the document
that is being sent.

T I P

Untitled-5 2/19/99, 7:45 AM434

435

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

Adding the mail support to your application manually isn’t much harder than asking
AppWizard to do it.

Advanced Use of MAPI
If you want more from MAPI than just meeting the logo requirements, things do become
harder. There are four kinds of MAPI client interfaces:

■ Simple MAPI, an older API not recommended for use in new applications

■ Common Messaging Calls (CMC), a simple API for messaging-aware and messaging-
enabled applications

■ Extended MAPI, a full-featured API for messaging-based applications

■ Active Messaging, an API with somewhat fewer features than Extended MAPI but ideal
for use with Visual C++

Common Messaging Calls There are only ten functions in the CMC API. That makes it easy
to learn, yet they pack enough punch to get the job done:

■ cmc_logon() connects to a mail server and identifies the user.

■ cmc_logoff() disconnects from a mail server.

■ cmc_send() sends a message.

■ cmc_send_documents() sends one or more files.

■ cmc_list() lists the messages in the user’s mailbox.

■ cmc_read() reads a message from the user’s mailbox.

■ cmc_act_on() saves or deletes a message.

■ cmc_look_up() resolves names and addresses.

■ cmc_query_configuration() reports what mail server is being used.

■ cmc_free() frees any memory allocated by other functions.

The header file XCMC.H declares a number of structures used to hold the information passed
to these functions. For example, recipient information is kept in this structure:

/*RECIPIENT*/
typedef struct {
 CMC_string name;
 CMC_enum name_type;
 CMC_string address;
 CMC_enum role;
 CMC_flags recip_flags;
 CMC_extension FAR *recip_extensions;
} CMC_recipient;

You could fill this structure with the name and address of the recipient of a mail message by
using a standard dialog box or by hard-coding the entries, like this:

CMC_recipient recipient = {
 “Kate Gregory”,
 CMC_TYPE_INDIVIDUAL,

Using the Messaging API (MAPI)

Untitled-5 2/19/99, 7:46 AM435

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

436 Chapter 18 Sockets, MAPI, and the Internet

 “SMTP:kate@gregcons.com”,
 CMC_ROLE_TO,
 CMC_RECIP_LAST_ELEMENT,
 NULL };

The type, role, and flags use one of these predefined values:

Listing 18.1 (Excerpt from \MSDev\Include\XCMC.H) Command
Definitions

/* NAME TYPES */
#define CMC_TYPE_UNKNOWN ((CMC_enum) 0)
#define CMC_TYPE_INDIVIDUAL ((CMC_enum) 1)
#define CMC_TYPE_GROUP ((CMC_enum) 2)

/* ROLES */
#define CMC_ROLE_TO ((CMC_enum) 0)
#define CMC_ROLE_CC ((CMC_enum) 1)
#define CMC_ROLE_BCC ((CMC_enum) 2)
#define CMC_ROLE_ORIGINATOR ((CMC_enum) 3)
#define CMC_ROLE_AUTHORIZING_USER ((CMC_enum) 4)

/* RECIPIENT FLAGS */
#define CMC_RECIP_IGNORE ((CMC_flags) 1)
#define CMC_RECIP_LIST_TRUNCATED ((CMC_flags) 2)
#define CMC_RECIP_LAST_ELEMENT ((CMC_flags) 0x80000000)

There is a message structure you could fill in the same way or by presenting the user with a
dialog box to enter the message details. This structure includes a pointer to the recipient struc-
ture you have already filled. Your program then calls cmc_logon(), cmc_send(), and
cmc_logoff() to complete the process.

Extended MAPI Extended MAPI is based on COM, the Component Object Model. Messages,
recipients, and many other entities are defined as objects rather than as C structures. There
are far more object types in Extended MAPI than there are structure types in CMC. Access to
these objects is through OLE (ActiveX) interfaces. The objects expose properties, methods,
and events. These concepts are discussed in Part IV, Chapter 13, “ActiveX Concepts.”

Active Messaging If you understand Automation (described in Chapter 16, “Building an
Automation Server”), you will easily understand Active Messaging. Your application must be an
Automation client, however, and building such a client is beyond the scope of this chapter.
Various ways to use Active Messaging are in Visual Basic programming and VBA scripts for
programs such as Excel. Your program would set up objects and then set their exposed proper-
ties (for example, the subject line of a message object) and invoke their exposed methods (for
example, the Send() method of a message object).

The objects used in Active Messaging include the following:

■ Session

■ Message

Untitled-5 2/19/99, 7:46 AM436

437

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

■ Recipient

■ Attachment

Active messaging is part of the Collaboration Data Objects (CDO) library. A detailed reference
of these objects, as well as their properties and methods, can be found in MSDN under Plat-
form SDK, Database and Messaging Services, Collaboration Data Objects, CDO Library, and
Reference. You’ll find three articles on using Active Messaging, and sample applications, under
Technical Articles, Database and Messaging Services, Microsoft Exchange Server.

Using the WinInet Classes
MFC 4.2 introduced a number of new classes that eliminate the need to learn socket program-
ming when your applications require access to standard Internet client services. Figure 18.4
shows the way these classes relate to each other. Collectively known as the WinInet classes,
they are the following:

■ CInternetSession

■ CInternetConnection

■ CInternetFile

■ HttpConnection

■ CHttpFile

■ CGopherFile

■ CFtpConnection

■ CGopherConnection

■ CFileFind

■ CFtpFileFind

■ CGopherFileFind

■ CGopherLocator

■ CInternetException

These classes help you write Internet client applications, with which users interact directly. If you want
to write server applications, which interact with client applications, you’ll be interested in ISAPI,
discussed in the next section.

First, your program establishes a session by creating a CInternetSession. Then, if you have a
uniform resource locator (URL) to a Gopher, FTP, or Web (HTTP) resource, you can call that
session’s OpenURL() function to retrieve the resource as a read-only CInternetFile. Your appli-
cation can read the file, using CStdioFile functions, and manipulate that data in whatever way
you need.

T I P

Using the WinInet Classes

Untitled-5 2/19/99, 7:46 AM437

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

438 Chapter 18 Sockets, MAPI, and the Internet

If you don’t have an URL or don’t want to retrieve a read-only file, you proceed differently after
establishing the session. Make a connection with a specific protocol by calling the session’s
GetFtpConnection(), GetGopherConnection(), or GetHttpConnection() functions, which
return the appropriate connection object. You then call the connection’s OpenFile() function.
CFtpConnection::OpenFile() returns a CInternetFile; CGopherConnection::OpenFile()
returns a CGopherFile; and CHttpConnection::OpenFile() returns a CHttpFile. The
CFileFind class and its derived classes help you find the file you want to open.

Chapter 19, “Internet Programming with the WinInet Classes,” works through a sample client
program using WinInet classes to establish an Internet session and retrieve information.

Though email is a standard Internet application, you’ll notice that the WinInet classes don’t
have any email functionality. That’s because email is handled by MAPI. There is no support

for Usenet news either, in the WinInet classes or elsewhere. ■

Using Internet Server API (ISAPI) Classes
ISAPI is used to enhance and extend the capabilities of your HTTP (World Wide Web) server.
ISAPI developers produce extensions and filters. Extensions are DLLs invoked by a user from a
Web page in much the same way as CGI (common gateway interface) applications are invoked
from a Web page. Filters are DLLs that run with the server and examine or change the data

FIG. 18.4
The WinInet classes
make writing Internet
client programs easier.

CObject

CHttpConnection

CGopherFile

CHttpFile

CInternetFile

CStdioFile

CFile

CGopherFileFind

CFtpFileFind

CFileFind

CGopherConnection

CFtpConnection

CInternetConnection

CGopherLocator

CInternetException

CException

CInternetSession

N O T E

Untitled-5 2/19/99, 7:47 AM438

439

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

going to and from the server. For example, a filter might redirect requests for one file to a
new location.

For the ISAPI extensions and filters that you write to be useful, your Web pages must be
kept on a server that is running an ISAPI-compliant server such as the Microsoft IIS Server.

You must have permission to install DLLs onto the server, and for an ISAPI filter, you must be able to
change the Registry on the server. If your Web pages are kept on a machine administered by your
Internet service provider (ISP), you will probably not be able to use ISAPI to bring more power to your
Web pages. You may choose to move your pages to a dedicated server (a powerful Intel machine
running Windows NT Server 4.0 and Microsoft IIS is a good combination) so that you can use ISAPI,
but this will involve considerable expense. Make sure that you understand the constraints of your
current Web server before embarking on a project with ISAPI.

One of the major advantages of ActiveX controls for the Internet (discussed in Chapter 20, “Building an
Internet ActiveX Control”) is that you don’t need access to the server in order to implement them. ■

The five MFC ISAPI classes form a wrapper for the API to make it easier to use:

■ CHttpServer

■ CHttpFilter

■ CHttpServerContext

■ CHttpFilterContext

■ CHtmlStream

Your application will have a server or a filter class (or both) that inherits from CHttpServer or
CHttpFilter. These are rather like the classes in a normal application that inherit from
CWinApp. There is only one instance of the class in each DLL, and each interaction of the server
with a client takes place through its own instance of the appropriate context class. (A DLL may
contain both a server and a filter but, at most, one of each.) CHtmlStream is a helper class that
describes a stream of HTML to be sent by a server to a client.

The ISAPI Extension Wizard is an AppWizard that simplifies creating extensions and filters. To
use this wizard, choose File, New (as always) and then the Project tab. Scroll down the list on
the left and select ISAPI Extension Wizard (as shown in Figure 18.5). Fill in the project name
and folder, and click OK.

Creating a server extension is a one-step process. That step, which is also the first step for a
filter, is shown in Figure 18.6. The names and descriptions for the filter and extension are
based on the project name that you chose.

If you choose to create a filter, the Next button is enabled and you can move to the second step
for filters, shown in Figure 18.7. This list of parameters gives you an idea of the power of an
ISAPI filter. You can monitor all incoming and outgoing requests and raw data, authenticate
users, log traffic, and more.

N O T E

Using Internet Server API (ISAPI) Classes

Untitled-5 2/19/99, 7:47 AM439

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

440 Chapter 18 Sockets, MAPI, and the Internet

AppWizard shows you a final confirmation screen, like the one in Figure 18.8, before creating
the files. When you create a server and a filter at the same time, 11 files are created for you,
including source and headers for the class that inherits from CHttpServer and the class that
inherits from CHttpFilter.

FIG. 18.5
The ISAPI Extension
Wizard is another kind
of AppWizard.

FIG. 18.6
The first step in the
ISAPI Extension Wizard
process is to name the
components of the DLL
that you are creating.

FIG. 18.7
The second step in the
ISAPI Extension Wizard
process is to set filter
parameters.

Untitled-5 2/19/99, 7:47 AM440

441

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

18

V
Part

Ch

Writing a filter from this shell is quite simple. You have been provided with a stub function to
react to each event for which notification was requested. For example, the filter class has a
function called OnEndOfNetSession(), which is called when a client’s session with this server is
ending. You add code to this function to log, monitor, or otherwise react to this event. When
the filter is complete, you edit the Registry by hand so that the server will run your DLL.

To write an extension, add one or more functions to your DLL. Each function will be passed a
CHttpContext pointer, which can be used to gather information such as the user’s IP address.
If the function is invoked from an HTML form, additional parameters such as values of other
fields on the form will also be passed to the function.

The details of what the function does depend on your application. If you are implementing an
online ordering system, the functions involved will be lengthy and complex. Other extensions
will be simpler.

When the function is complete, place the DLL in the executable folder for the server—usually
the folder where CGI programs are kept—and adjust your Web pages so that they include links
to your DLL, like this:

Now you can
place an order online!

For more information on ISAPI programming, be sure to read Que’s Special Edition Using
ISAPI. You will discover how ISAPI applications can make your Web site dynamic and interac-
tive, learn how to write filters and extensions, and cover advanced topics including debugging
ISAPI applications and writing multithreaded applications.

Adding the Internet to your applications is an exciting trend. It’s going to make lots of work for
programmers and create some powerful products that simplify the working life of anyone with
an Internet connection. Just a year ago, writing Internet applications meant getting your finger-
nails dirty with sockets programming, memorizing TCP/IP ports, and reading RFCs. The new
WinInet and ISAPI classes, as well as improvements to the old MAPI support, mean that today
you can add amazing power to your application with just a few lines of code or by selecting a
box on an AppWizard dialog box. ●

FIG. 18.8
The ISAPI Extension
Wizard process
summarizes the files
that will be created.

Using Internet Server API (ISAPI) Classes

Untitled-5 2/19/99, 7:47 AM441

B3A3 swg4 UsingVisualC++ 1539-2 7.17.98 ayanna chapter 18 LP#2

442 Chapter 18 Sockets, MAPI, and the Internet

Untitled-5 2/19/99, 7:48 AM442

443

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

C H A P T E R

Internet Programming with the WinInet
Classes

Designing the Internet Query Application 444

Building the Query Dialog Box 445

Querying HTTP Sites 448

Querying FTP Sites 453

Querying Gopher Sites 455

Using Gopher to Send a Finger Query 458

Using Gopher to Send a Whois Query 460

Future Work 462

19

In this chapter

Untitled-6 2/19/99, 7:50 AM443

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

444 Chapter 19 Internet Programming with the WinInet Classes

Designing the Internet Query Application
Chapter 18, “Sockets, MAPI, and the Internet,” introduces the WinInet classes that you can use
to build Internet client applications at a fairly high level. This chapter develops an Internet
application that demonstrates a number of these classes. The application also serves a useful
function: You can use it to learn more about the Internet presence of a company or organiza-
tion. You don’t need to learn about sockets or handle the details of Internet protocols to do this.

Imagine that you have someone’s email address (kate@gregcons.com, for example) and
you’d like to know more about the domain (gregcons.com in this example). Perhaps you have
a great idea for a domain name and want to know whether it’s already taken. This application,
Query, will try connecting to gregcons.com (or greatidea.org, or any other domain name that
you specify) in a variety of ways and will report the results of those attempts to the user.

This application will have a simple user interface. The only piece of information that the user
needs to supply is the domain name to be queried, and there is no need to keep this informa-
tion in a document. You might want a menu item called Query that brings up a dialog box in
which to specify the site name, but a better approach is to use a dialog-based application and
incorporate a Query button into the dialog box.

A dialog-based application, as discussed in the section “A Dialog-Based Application” of Chapter
1, “Building Your First Application,” has no document and no menu. The application displays a
dialog box at all times; closing the dialog box closes the application. You build the dialog box
for this application like any other, with Developer Studio.

To build this application’s shell, choose File, New from within Developer Studio and then click
the Project tab. Highlight MFC AppWizard(exe), name the application Query, and in Step 1
choose Dialog Based, as shown in Figure 19.1. Click Next to move to Step 2 of AppWizard.

FIG. 19.1
Choose a dialog-based
application for Query.

In Step 2 of AppWizard, request an About box, no context-sensitive Help, 3D controls, no auto-
mation or ActiveX control support, and no sockets support. (This application won’t be calling
socket functions directly.) Give the application a sensible title for the dialog box. The
AppWizard choices are summarized, as shown in Figure 19.2. Click Next to move to Step 3 of
AppWizard.

Untitled-6 2/19/99, 7:50 AM444

445

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

FIG. 19.2
This application doesn’t
need Help, automation,
ActiveX controls, or
sockets.

The rest of the AppWizard process will be familiar by now: You want comments, you want to
link to the MFC libraries as a shared DLL, and you don’t need to change any of the classnames
suggested by AppWizard. When the AppWizard process is completed, you’re ready to build the
heart of the Query application.

Building the Query Dialog Box
AppWizard produces an empty dialog box for you to start with, as shown in Figure 19.3. To edit
this dialog box, switch to the resource view, expand the Query Resources, expand the Dialogs
section, and double-click the IDD_QUERY_DIALOG resource. The following steps will transform
this dialog box into the interface for the Query application.

FIG. 19.3
AppWizard generates
an empty dialog box for
you.

Building the Query Dialog Box

Untitled-6 2/19/99, 7:50 AM445

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

446 Chapter 19 Internet Programming with the WinInet Classes

If working with dialog boxes is still new to you, be sure to read Chapter 2, “Dialogs and Controls.”

1. Change the caption on the OK button to Query.

2. Change the caption on the Cancel button to Close.

3. Delete the TODO static text.

4. Grab a sizing handle on the right edge of the dialog box and stretch it so that the dialog
box is 300 pixels wide or more. (The size of the currently selected item is in the lower-
right corner of the screen.)

5. At the top of the dialog box, add an edit box with the resource ID IDC_HOST. Stretch the
edit box as wide as possible.

6. Add a static label next to the edit box. Set the text to Site name.

7. Grab a sizing handle along the bottom of the dialog box and stretch it so that the dialog
box is 150 pixels high, or more.

8. Add another edit box and resize it to fill as much of the bottom part of the dialog box as
possible.

9. Give this edit box the resource ID IDC_OUT.

10. Click the Styles tab on the Properties box and select the Multiline, Horizontal Scroll,
Vertical Scroll, Border, and Read-Only check boxes. Make sure all the other check boxes
are deselected.

The finished dialog box and the Style properties of the large edit box will resemble Figure 19.4.

T I P

FIG. 19.4
Build the Query user
interface as a single
dialog box.

Untitled-6 2/19/99, 7:50 AM446

447

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

When the user clicks the Query button, this application should somehow query the site. The
last step in the building of the interface is to connect the Query button to code with
ClassWizard. Follow these steps to make that connection:

1. Choose View, Class Wizard to bring up ClassWizard.

2. There are three possible classes that could catch the command generated by the button
click, but CQueryDlg is the logical choice because the host name will be known by that
class. Make sure that CQueryDlg is the class selected in the Class Name drop-down list
box.

3. Highlight ID_OK (you did not change the resource ID of the OK button when you
changed the caption) in the left list box and BN_CLICKED in the right list box.

4. Click Add Function to add a function that will be called when the Query button is
clicked.

5. ClassWizard suggests the name OnOK; change it to OnQuery, as shown in Figure 19.5, and
then click OK.

FIG. 19.5
Add a function to
handle a click on the
Query button, still with
the ID IDOK.

6. Click the Member Variables tab to prepare to connect the edit controls on the dialog box
to member variables of the dialog class.

7. Highlight IDC_HOST and click Add Variable. As shown in Figure 19.6, you’ll connect this
control to a CString member variable of the dialog class m_host.

8. Connect IDC_OUT to m_out, also a CString.

Click OK to close ClassWizard. Now all that remains is to write CQueryDlg::OnQuery(), which
will use the value in m_host to produce lines of output for m_out.

Building the Query Dialog Box

Untitled-6 2/19/99, 7:51 AM447

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

448 Chapter 19 Internet Programming with the WinInet Classes

Querying HTTP Sites
The first kind of connection to try when investigating a domain’s Internet presence is HTTP
because so many sites have Web pages. The simplest way to make a connection using HTTP is
to use the WinInet class CInternetSession and call its OpenURL() function. This will return a
file, and you can display the first few lines of the file in m_out. First, add this line at the begin-
ning of QueryDlg.cpp, after the include of stdafx.h:

#include “afxinet.h”

This gives your code access to the WinInet classes. Because this application will try a number
of URLs, add a function called TryURL() to CQueryDlg. It takes a CString parameter called URL
and returns void. Right-click CQueryDlg in the ClassView and choose Add Member Function to
add TryURL() as a protected member function. The new function, TryURL(), will be called from
CQueryDlg::OnQuery(), as shown in Listing 19.1. Edit OnQuery() to add this code.

Listing 19.1 QueryDlg.cpp—CQueryDlg::OnQuery()

void CQueryDlg::OnQuery()
{
 const CString http = “http://”;

 UpdateData(TRUE);
 m_out = “”;
 UpdateData(FALSE);

 TryURL(http + m_host);

 TryURL(http + “www.” + m_host);
}

The call to UpdateData(TRUE) fills m_host with the value that the user typed. The call to
UpdateData(FALSE) fills the IDC_OUT read-only edit box with the newly cleared m_out. Then

FIG. 19.6
Connect IDC_HOST to
CQueryDlg::m_host.

Untitled-6 2/19/99, 7:51 AM448

449

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

come two calls to TryURL(). If, for example, the user typed microsoft.com, the first call would
try http://microsoft.com and the second would try http://www.microsoft.com. TryURL()
is shown in Listing 19.2.

Listing 19.2 QueryDlg.cpp—CQueryDlg::TryURL()

void CQueryDlg::TryURL(CString URL)
{
 CInternetSession session;

 m_out += “Trying “ + URL + “\r\n”;
 UpdateData(FALSE);

 CInternetFile* file = NULL;
 try
 {
 //We know for sure this is an Internet file,
 //so the cast is safe
 file = (CInternetFile*) session.OpenURL(URL);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set file to NULL
 file = NULL;
 pEx->Delete();
 }
 if (file)
 {
 m_out += “Connection established. \r\n”;
 CString line;

 for (int i=0; i < 20 && file->ReadString(line); i++)
 {
 m_out += line + “\r\n”;
 }
 file->Close();
 delete file;
 }
 else
 {
 m_out += “No server found there. \r\n”;
 }

 m_out += “------------------------\r\n”;
 UpdateData(FALSE);
}

The remainder of this section presents this code again, a few lines at a time. First, establish an
Internet session by constructing an instance of CInternetSession. There are a number of
parameters to this constructor, but they all have default values that will be fine for this applica-
tion. The parameters follow:

Querying HTTP Sites

Untitled-6 2/19/99, 7:51 AM449

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

450 Chapter 19 Internet Programming with the WinInet Classes

■ LPCTSTR pstrAgent The name of your application. If NULL, it’s filled in for you, using
the name that you gave to AppWizard.

■ DWORD dwContext The context identifier for the operation. For synchronous sessions,
this is not an important parameter.

■ DWORD dwAccessType The access type: INTERNET_OPEN_TYPE_PRECONFIG (default),
INTERNET_OPEN_TYPE_DIRECT, or INTERNET_OPEN_TYPE_PROXY.

■ LPCTSTR pstrProxyName The name of your proxy, if access is
INTERNET_OPEN_TYPE_PROXY.

■ LPCTSTR pstrProxyBypass A list of addresses to be connected directly rather than
through the proxy server, if access is INTERNET_OPEN_TYPE_PROXY.

■ DWORD dwFlags Options that can be OR’ed together. The available options are
INTERNET_FLAG_DONT_CACHE, INTERNET_FLAG_ASYNC, and INTERNET_FLAG_OFFLINE.

dwAccessType defaults to using the value in the Registry. Obviously, an application that insists
on direct Internet access or proxy Internet access is less useful than one that enables users to
configure that information. Making users set their Internet access type outside this program
might be confusing, though. To set your default Internet access, double-click the My Computer
icon on your desktop, then on the Control Panel, and then on the Internet tool in the Control
Panel. Choose the Connection tab (the version for Internet Explorer under Windows 95 is
shown in Figure 19.7) and complete the dialog box as appropriate for your setup. If you are
using NT or Windows 98, or if your browser version is different, you might see a slightly differ-
ent dialog, but you should still be able to choose your connection type.

FIG. 19.7
Set your Internet
connection settings
once, and all applica-
tions can retrieve them
from the Registry.

■ If you dial up to the Internet, select the Dial check box and fill in the parameters in the
top half of the page.

■ If you connect to the Internet through a proxy server, select the Proxy check box and
click the Settings button to identify your proxy addresses and ports.

■ If you are connected directly to the Internet, leave both check boxes unselected.

Untitled-6 2/19/99, 7:52 AM450

451

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

If you want to set up an asynchronous (nonblocking) session, for the reasons discussed in the
“Using Windows Sockets” section of Chapter 18, your options in dwFlags must include
INTERNET_FLAG_ASYNC. In addition, you must call the member function
EnableStatusCallback() to set up the callback function. When a request is made through the
session—such as the call to OpenURL() that occurs later in TryURL()—and the response will not
be immediate, a nonblocking session returns a pseudo error code, ERROR_IO_PENDING. When
the response is ready, these sessions automatically invoke the callback function.

For this simple application, there is no need to allow the user to do other work or interact with
the user interface while waiting for the session to respond, so the session is constructed as a
blocking session and all the other default parameters are also used:

 CInternetSession session;

Having constructed the session, TryURL() goes on to add a line to m_out that echoes the URL
passed in as a parameter. The “\r\n” characters are return and newline, and they separate the
lines added to m_out. UpdateData(FALSE) gets that onscreen:

 m_out += “Trying “ + URL + “\r\n”;
 UpdateData(FALSE);

Next is a call to the session’s OpenURL() member function. This function returns a pointer to
one of several file types because the URL might have been to one of four protocols:

■ file:// opens a file. The function constructs a CStdioFile and returns a pointer to it.

■ ftp:// goes to an FTP site and returns a pointer to a CInternetFile object.

■ gopher:// goes to a Gopher site and returns a pointer to a CGopherFile object.

■ http:// goes to a World Wide Web site and returns a pointer to a CHttpFile object.

Because CGopherFile and CHttpFile both inherit from CInternetFile and because you can be
sure that TryURL() will not be passed a file:// URL, it is safe to cast the returned pointer to a
CInternetFile.

There is some confusion in Microsoft’s online documentation whenever sample URLs are shown. A
backslash (\) character will never appear in an URL. In any Microsoft example that includes
backslashes, use forward slashes (/) instead.

If the URL would not open, file will be NULL, or OpenURL()_ will throw an exception. (For
background on exceptions, see Chapter 26, “Exceptions and Templates.”) Whereas in a normal
application it would be a serious error if an URL didn’t open, in this application you are making
up URLs to see whether they work, and it’s expected that some won’t. As a result, you should
catch these exceptions yourself and do just enough to prevent runtime errors. In this case, it’s
enough to make sure that file is NULL when an exception is thrown. To delete the exception
and prevent memory leaks, call CException::Delete(), which safely deletes the exception.
The block of code containing the call to OpenURL() is in Listing 19.3.

T I P

Querying HTTP Sites

Untitled-6 2/19/99, 7:53 AM451

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

452 Chapter 19 Internet Programming with the WinInet Classes

Listing 19.3 QueryDlg.cpp—CQueryDlg::TryURL()

 CInternetFile* file = NULL;
 try
 {
 //We know for sure this is an Internet file,
 //so the cast is safe
 file = (CInternetFile*) session.OpenURL(URL);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set file to NULL
 file = NULL;
 pEx->Delete();
 }

If file is not NULL, this routine will display some of the Web page that was found. It first echoes
another line to m_out. Then, in a for loop, the routine calls CInternetFile::ReadString() to
fill the CString line with the characters in file up to the first \r\n, which are stripped off. This
code simply tacks line (and another \r\n) onto m_out. If you would like to see more or less
than the first 20 lines of the page, adjust the number in this for loop. When the first few lines
have been read, TryURL() closes and deletes the file. That block of code is shown in Listing
19.4.

Listing 19.4 QueryDlg.cpp—CQueryDlg::TryURL()

 if (file)
 {
 m_out += “Connection established. \r\n”;
 CString line;

 for (int i=0; i < 20 && file->ReadString(line); i++)
 {
 m_out += line + “\r\n”;
 }
 file->Close();
 delete file;
 }

If the file could not be opened, a message to that effect is added to m_out:

 else
 {
 m_out += “No server found there. \r\n”;
 }

Then, whether the file existed or not, a line of dashes is tacked on m_out to indicate the end of
this attempt, and one last call to UpdateData(FALSE) puts the new m_out onscreen:

Untitled-6 2/19/99, 7:53 AM452

453

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

 m_out += “------------------------\r\n”;
 UpdateData(FALSE);
}

You can now build and run this application. If you enter microsoft.com in the text box and
click Query, you’ll discover that there are Web pages at both http://microsoft.com and
http://www.microsoft.com. Figure 19.8 shows the results of that query.

FIG. 19.8
Query can find
Microsoft’s Web sites.

If Query doesn’t find Web pages at either the domain name you provided or www. plus the
domain name, it doesn’t mean that the domain doesn’t exist or even that the organization that
owns the domain name doesn’t have a Web page. It does make it less likely, however, that the
organization both exists and has a Web page. If you see a stream of HTML, you know for cer-
tain that the organization exists and has a Web page. You might be able to read the HTML
yourself, but even if you can’t, you can now connect to the site with a Web browser such as
Microsoft’s Internet Explorer.

Querying FTP Sites
As part of a site name investigation, you should check whether there is an FTP site, too. Most
FTP sites have names like ftp.company.com, though some older sites don’t have names of
that form. Checking for these sites isn’t as simple as just calling TryURL() again because
TryURL() assumes that the URL leads to a file, and URLs like ftp.greatidea.org lead to a list of
files that cannot simply be opened and read. Rather than make TryURL() even more compli-
cated, add a protected function to the class called TryFTPSite(CString host). (Right-click
CQueryDlg in the ClassView and choose Add Member Function to add the function. It can
return void.)

TryFTPSite() has to establish a connection within the session, and if the connection is estab-
lished, it has to get some information that can be added to m_out to show the user that the
connection has been made. Getting a list of files is reasonably complex; because this is just an
illustrative application, the simpler task of getting the name of the default FTP directory is the
way to go. The code is in Listing 19.5.

Querying FTP Sites

Untitled-6 2/19/99, 7:53 AM453

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

454 Chapter 19 Internet Programming with the WinInet Classes

Listing 19.5 QueryDlg.cpp—CQueryDlg::TryFTPSite()

void CQueryDlg::TryFTPSite(CString host)
{
 CInternetSession session;

 m_out += “Trying FTP site “ + host + “\r\n”;
 UpdateData(FALSE);

 CFtpConnection* connection = NULL;
 try
 {
 connection = session.GetFtpConnection(host);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set connection to NULL
 connection = NULL;
 pEx->Delete();
 }
 if (connection)
 {
 m_out += “Connection established. \r\n”;
 CString line;

 connection->GetCurrentDirectory(line);
 m_out += “default directory is “ + line + “\r\n”;

 connection->Close();
 delete connection;
 }
 else
 {
 m_out += “No server found there. \r\n”;
 }

 m_out += “------------------------\r\n”;
 UpdateData(FALSE);
}

This code is very much like TryURL(), except that rather than open a file with
session.OpenURL(), it opens an FTP connection with session.GetFtpConnection(). Again,
exceptions are caught and essentially ignored, with the routine just making sure that the con-
nection pointer won’t be used. The call to GetCurrentDirectory() returns the directory on the
remote site in which sessions start. The rest of the routine is just like TryURL().

Add two lines at the end of OnQuery() to call this new function:

 TryFTPSite(m_host);
 TryFTPSite(“ftp.” + m_host);

Build the application and try it: Figure 19.9 shows Query finding no FTP site at microsoft.com
and finding one at ftp.microsoft.com. The delay before results start to appear might be a little

Untitled-6 2/19/99, 7:54 AM454

455

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

disconcerting. You can correct this by using asynchronous sockets, or threading, so that early
results can be added to the edit box while later results are still coming in over the wire. How-
ever, for a simple demonstration application like this, just wait patiently until the results appear.
It might take several minutes, depending on network traffic between your site and Microsoft’s,
your line speed, and so on.

FIG. 19.9
Query finds one
Microsoft FTP site.

If Query doesn’t find Web pages or FTP sites, perhaps this domain doesn’t exist at all or
doesn’t have any Internet services other than email, but there are a few more investigative
tricks available. The results of these investigations will definitely add to your knowledge of
existing sites.

Querying Gopher Sites
As with FTP, TryURL() won’t work when querying a Gopher site like gopher.company.com
because this returns a list of filenames instead of a single file. The solution is to write a pro-
tected member function called TryGopherSite() that is almost identical to TryFTPSite(),
except that it opens a CGopherConnection. Also, rather than echo a single line describing the
default directory, it echoes a single line describing the Gopher locator associated with the site.
Add TryGopherSite to CQueryDlg by right-clicking the classname in ClassView and choosing
Add Member Function, as you did for TryFTPSite(). The code for TryGopherSite() is in List-
ing 19.6.

Listing 19.6 QueryDlg.cpp—CQueryDlg::TryGopherSite()

void CQueryDlg::TryGopherSite(CString host)
{
 CInternetSession session;

 m_out += “Trying Gopher site “ + host + “\r\n”;
 UpdateData(FALSE);

 CGopherConnection* connection = NULL;
 try
 {

continues

Querying Gopher Sites

Untitled-6 2/19/99, 7:54 AM455

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

456 Chapter 19 Internet Programming with the WinInet Classes

 connection = session.GetGopherConnection(host);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set connection to NULL
 connection = NULL;
 pEx->Delete();
 }
 if (connection)
 {
 m_out += “Connection established. \r\n”;
 CString line;

 CGopherLocator locator = connection->CreateLocator(NULL, NULL,
 GOPHER_TYPE_DIRECTORY);
 line = locator;
 m_out += “first locator is “ + line + “\r\n”;

 connection->Close();
 delete connection;
 }
 else
 {
 m_out += “No server found there. \r\n”;
 }

 m_out += “------------------------\r\n”;
 UpdateData(FALSE);
}

The call to CreateLocator() takes three parameters. The first is the filename, which might
include wild cards. NULL means any file. The second parameter is a selector that can be NULL.
The third is one of the following types:

GOPHER_TYPE_TEXT_FILE

GOPHER_TYPE_DIRECTORY

GOPHER_TYPE_CSO

GOPHER_TYPE_ERROR

GOPHER_TYPE_MAC_BINHEX

GOPHER_TYPE_DOS_ARCHIVE

GOPHER_TYPE_UNIX_UUENCODED

GOPHER_TYPE_INDEX_SERVER

GOPHER_TYPE_TELNET

GOPHER_TYPE_BINARY

GOPHER_TYPE_REDUNDANT

Listing 19.6 Continued

Untitled-6 2/19/99, 7:54 AM456

457

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

GOPHER_TYPE_TN3270

GOPHER_TYPE_GIF

GOPHER_TYPE_IMAGE

GOPHER_TYPE_BITMAP

GOPHER_TYPE_MOVIE

GOPHER_TYPE_SOUND

GOPHER_TYPE_HTML

GOPHER_TYPE_PDF

GOPHER_TYPE_CALENDAR

GOPHER_TYPE_INLINE

GOPHER_TYPE_UNKNOWN

GOPHER_TYPE_ASK

GOPHER_TYPE_GOPHER_PLUS

Normally, you don’t build locators for files or directories; instead, you ask the server for them.
The locator that will be returned from this call to CreateLocator() describes the locator asso-
ciated with the site you are investigating.

Add a pair of lines at the end of OnQuery() that call this new TryGopherSite() function:

 TryGopherSite(m_host);
 TryGopherSite(“gopher.” + m_host);

Build and run the program again. Again, you might have to wait several minutes for the results.
Figure 19.10 shows that Query has found two Gopher sites for harvard.edu. In both cases,
the locator describes the site itself. This is enough to prove that there is a Gopher site at
harvard.edu, which is all that Query is supposed to do.

FIG. 19.10
Query finds two Harvard
Gopher sites.

Gopher is an older protocol that has been supplanted almost entirely by the World Wide Web. As a
general rule, if a site has a Gopher presence, it’s been on the Internet since before the World Wide Web
existed (1989) or at least before the huge upsurge in popularity began (1992). What’s more, the site
was probably large enough in the early 1990s to have an administrator who would set up the Gopher
menus and text.

T I P

Querying Gopher Sites

Untitled-6 2/19/99, 7:54 AM457

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

458 Chapter 19 Internet Programming with the WinInet Classes

Using Gopher to Send a Finger Query
There is another protocol that can give you information about a site. It’s one of the oldest proto-
cols on the Internet, and it’s called Finger. You can finger a single user or an entire site, and
though many sites have disabled Finger, many more will provide you with useful information in
response to a Finger request.

There is no MFC class or API function with the word finger in its name, but that doesn’t mean
you can’t use the classes already presented. This section relies on a trick—and on knowledge
of the Finger and Gopher protocols. Although the WinInet classes are a boon to new Internet
programmers who don’t quite know how the Internet works, they also have a lot to offer to old-
timers who know what’s going on under the hood.

As discussed in the “Using Windows Sockets” section of Chapter 18, all Internet transactions
involve a host and a port. Well-known services use standard port numbers. For example, when
you call CInternetSession::OpenURL() with an URL that begins with http://, the code be-
hind the scenes connects to port 80 on the remote host. When you call GetFtpConnection(),
the connection is made to port 21 on the remote host. Gopher uses port 70. If you look at Fig-
ure 19.10, you’ll see that the locator that describes the gopher.harvard.edu site includes a
mention of port 70.

The Gopher documentation makes this clear: If you build a locator with a host name, port 70,
Gopher type 0 (GOPHER_TYPE_TEXT_FILE is defined to be 0), and a string with a filename, any
Gopher client simply sends the string, whether it’s a filename or not, to port 70. The Gopher
server listening on that port responds by sending the file.

Finger is a simple protocol, too. If you send a string to port 79 on a remote host, the Finger
server that is listening there will react to the string by sending a Finger reply. If the string is
only \r\n, the usual reply is a list of all the users on the host and some other information about
them, such as their real names. (Many sites consider this an invasion of privacy or a security
risk, and they disable Finger. Many other sites, though, deliberately make this same informa-
tion available on their Web pages.)

Putting this all together, if you build a Gopher locator using port 79—instead of the default
70—and an empty filename, you can do a Finger query using the MFC WinInet classes. First,
add another function to CQueryDlg called TryFinger(), which takes a CString host and re-
turns void. The code for this function is very much like TryGopherSite(), except that the
connection is made to port 79:

 connection = session.GetGopherConnection(host,NULL,NULL,79);

After the connection is made, a text file locator is created:

 CGopherLocator locator = connection->CreateLocator(NULL, NULL,
 GOPHER_TYPE_TEXT_FILE);

This time, rather than simply cast the locator into a CString, use it to open a file:

 CGopherFile* file = connection->OpenFile(locator);

Then echo the first 20 lines of this file, just as TryURL() echoed the first 20 lines of the file
returned by a Web server. The code for this is in Listing 19.7.

Untitled-6 2/19/99, 7:55 AM458

459

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

Listing 19.7 QueryDlg.cpp—CQueryDlg::TryFinger() Excerpt

 if (file)
 {
 CString line;

 for (int i=0; i < 20 && file->ReadString(line); i++)
 {
 m_out += line + “\r\n”;
 }
 file->Close();
 delete file;
 }

Putting it all together, Listing 19.8 shows TryFinger().

Listing 19.8 QueryDlg.cpp—CQueryDlg::TryFinger()

void CQueryDlg::TryFinger(CString host)
{
 CInternetSession session;

 m_out += “Trying to Finger “ + host + “\r\n”;
 UpdateData(FALSE);

 CGopherConnection* connection = NULL;

 try
 {
 connection = session.GetGopherConnection(host,NULL,NULL,79);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set connection to NULL
 connection = NULL;
 pEx->Delete();
 }
 if (connection)
 {
 m_out += “Connection established. \r\n”;

 CGopherLocator locator = connection->CreateLocator(NULL, NULL,
 GOPHER_TYPE_TEXT_FILE);

 CGopherFile* file = connection->OpenFile(locator);
 if (file)
 {
 CString line;

 for (int i=0; i < 20 && file->ReadString(line); i++)
 {
 m_out += line + “\r\n”;
 }

continues

Using Gopher to Send a Finger Query

Untitled-6 2/19/99, 7:55 AM459

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

460 Chapter 19 Internet Programming with the WinInet Classes

 file->Close();
 delete file;
 }

 connection->Close();
 delete connection;
 }
 else
 {
 m_out += “No server found there. \r\n”;
 }

 m_out += “------------------------\r\n”;
 UpdateData(FALSE);

}

Add a line at the end of OnQuery() that calls this new function:

 TryFinger(m_host);

Now, build and run the application. Figure 19.11 shows the result of a query on the site
whitehouse.gov, scrolled down to the Finger section.

Listing 19.8 Continued

FIG. 19.11
Query gets email
addresses from the
White House Finger
server.

If the site you are investigating isn’t running a Finger server, the delay will be longer than
usual and a message box will appear, telling you the connection timed out. Click OK on the

message box if it appears. ■

Using Gopher to Send a Whois Query
One last protocol provides information about sites. It, too, is an old protocol not supported
directly by the WinInet classes. It is called Whois, and it’s a service offered by only a few serv-
ers on the whole Internet. The servers that offer this service are maintained by the organiza-
tions that register domain names. For example, domain names that end in .com are registered
through an organization called InterNIC, and it runs a Whois server called rs.internic.net
(the rs stands for Registration Services.) Like Finger, Whois responds to a string sent on its

N O T E

Untitled-6 2/19/99, 7:55 AM460

461

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

own port; the Whois port is 43. Unlike Finger, you don’t send an empty string in the locator;
you send the name of the host that you want to look up. You connect to rs.internic.net every
time. (Dedicated Whois servers offer users a chance to change this, but in practice, no one
ever does.)

Add a function called TryWhois(); as usual, it takes a CString host and returns void. The code
is in Listing 19.9.

Listing 19.9 QueryDlg.cpp—CQueryDlg::TryWhois()

void CQueryDlg::TryWhois(CString host)
{
 CInternetSession session;

 m_out += “Trying Whois for “ + host + “\r\n”;
 UpdateData(FALSE);

 CGopherConnection* connection = NULL;
 try
 {
 connection = session.GetGopherConnection
 ➥(“rs.internic.net”,NULL,NULL,43);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set connection to NULL
 connection = NULL;
 pEx->Delete();
 }
 if (connection)
 {
 m_out += “Connection established. \r\n”;
 CGopherLocator locator = connection->CreateLocator(NULL, host,
 GOPHER_TYPE_TEXT_FILE);
 CGopherFile* file = connection->OpenFile(locator);
 if (file)
 {
 CString line;
 for (int i=0; i < 20 && file->ReadString(line); i++)
 {
 m_out += line + “\r\n”;
 }
 file->Close();
 delete file;
 }
 connection->Close();
 delete connection;
 }
 else
 {
 m_out += “No server found there. \r\n”;
 }
 m_out += “------------------------\r\n”;
 UpdateData(FALSE);
}

Using Gopher to Send a Whois Query

Untitled-6 2/19/99, 7:55 AM461

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

462 Chapter 19 Internet Programming with the WinInet Classes

Add a line at the end of OnQuery() to call it:

 TryWhois(m_host);

Build and run the application one last time. Figure 19.12 shows the Whois part of the report for
mcp.com—this is the domain for Macmillan Computer Publishing, Que’s parent company.

FIG. 19.12
Query gets real-life
addresses and names
from the InterNIC Whois
server.

Adding code after the Finger portion of this application means that you can no longer ignore
the times when the Finger code can’t connect. When the call to OpenFile() in TryFinger()
tries to open a file on a host that isn’t running a Finger server, an exception is thrown. Control
will not return to OnQuery(), and TryWhois() will never be called. To prevent this, you must
wrap the call to OpenFile() in a try and catch block. Listing 19.10 shows the changes to make.

Listing 19.10 QueryDlg.cpp Changes to TryFinger()

//replace this line:
 CGopherFile* file = connection->OpenFile(locator);
//with these lines:
 CGopherFile* file = NULL;
 try
 {
 file = connection->OpenFile(locator);
 }
 catch (CInternetException* pEx)
 {
 //if anything went wrong, just set file to NULL
 file = NULL;
 pEx->Delete();
 }

Change TryFinger(), build Query again, and query a site that doesn’t run a Finger server,
such as microsoft.com. You will successfully reach the Whois portion of the application.

Future Work
The Query application built in this chapter does a lot, but it could do much more. There are
email and news protocols that could be reached by stretching the WinInet classes a little more

Untitled-6 2/19/99, 7:55 AM462

463

Brands 03 swg4 SEU Vis C++ #1539-2 7.16.98 Ayanna CH19 LP#2

19

V
Part

Ch

and using them to connect to the standard ports for these other services. You could also con-
nect to some well-known Web search engines and submit queries by forming URLs according
to the pattern used by those engines. In this way, you could automate the sort of poking around
on the Internet that most of us do when we’re curious about a domain name or an organization.

If you’d like to learn more about Internet protocols, port numbers, and what’s happening when
a client connects to a server, you might want to read Que’s Building Internet Applications with
Visual C++. The book was written for Visual C++ 2.0, and though all the applications in the
book compile and run under later versions of MFC, the applications would be much shorter
and easier to write now. Still, the insight into the way the protocols work is valuable.

The WinInet classes, too, can do much more than you’ve seen here. Query doesn’t use them to
retrieve real files over the Internet. Two of the WinInet sample applications included with
Visual C++ 6.0 do a fine job of showing how to retrieve files:

■ FTPTREE builds a tree list of the files and directories on an FTP site.

■ TEAR brings back a page of HTML from a Web site.

There are a lot more Microsoft announcements to come in the next few months. Keep an eye
on the Web site www.microsoft.com for libraries and software development kits that will
make Internet software development even easier and faster. ●

Future Work

Untitled-6 2/19/99, 7:56 AM463

Untitled-6 2/19/99, 7:56 AM464

465

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

C H A P T E R

Building an Internet ActiveX Control

20

In this chapter

Embedding an ActiveX Control in a Microsoft Internet
Explorer Web Page 466

Embedding an ActiveX Control in a Netscape
Navigator Web Page 469

Registering as Safe for Scripting and Initializing 470

Choosing Between ActiveX and Java Applets 474

Using AppWizard to Create Faster ActiveX
Controls 475

Speeding Control Loads with Asynchronous
Properties 480

Untitled-7 2/19/99, 7:57 AM465

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

466 Chapter 20 Building an Internet ActiveX Control

Embedding an ActiveX Control in a Microsoft
Internet Explorer Web Page

In Chapter 17, “Building an ActiveX Control,” you learned how to build your own controls and
include them in forms-based applications written in Visual Basic, Visual C++, and the VBA
macro language. There’s one other place those controls can go—on a Web page. However, the
ActiveX controls generated by older versions of Visual C++ were too big and slow to put on a
Web page. This chapter shows you how to place these controls on your Web pages and how to
write faster, sleeker controls that will make your pages a pleasure to use.

It’s a remarkably simple matter to put an ActiveX control on a Web page that you know will be
loaded by Microsoft Internet Explorer 3.0 or later. You use the <OBJECT> tag, a relatively new
addition to HTML that describes a wide variety of objects that you might want to insert in a
Web page: a moving video clip, a sound, a Java applet, an ActiveX control, and many more kinds
of information and ways of interacting with a user. Listing 20.1 shows the HTML source for a
page that displays the Dieroll control from Chapter 17.

Listing 20.1 fatdie.html—Using <OBJECT>

<HEAD>
<TITLE>A Web page with a rolling die</TITLE>
</HEAD>
<BODY>
<OBJECT ID=”Dieroll1"
CLASSID=”CLSID:46646B43-EA16-11CF-870C-00201801DDD6"
CODEBASE=”dieroll.cab#Version=1,0,0,1"
WIDTH=”200"
HEIGHT=”200">
<PARAM NAME=”ForeColor” VALUE=”0">
<PARAM NAME=”BackColor” VALUE=”16777215">
If you see this text, your browser does not support the OBJECT tag.

</OBJECT>

Here is some text after the die
</BODY>
</HTML>

The only ugly thing here is the CLSID, and the easiest way to get that, because you’re a soft-
ware developer, is to cut and paste it from dieroll.odl, the Object Description Library. Open the
dieroll project you built in Chapter 17 and use FileView to open dieroll.odl quickly. Here’s the
section in dieroll.odl that includes the CLSID:

 // Class information for CDierollCtrl

 [uuid(46646B43-EA16-11CF-870C-00201801DDD6),
 helpstring(“Dieroll Control”), control]

Untitled-7 2/19/99, 7:57 AM466

467

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

This section is at the end of dieroll.odl—the earlier CLSIDs do not refer to the whole control,
only to portions of it. Copy the uuid from inside the brackets into your HTML source.

Microsoft has a product called the Control Pad that gets CLSIDs from the Registry for you and makes
life easier for Web page builders who are either intimidated by instructions like “open the ODL file” or
don’t have the ODL file because it’s not shipped with the control. Because you’re building this control
and know how to open files in Developer Studio, this chapter will not describe the Control Pad tool. If
you’re curious, see Microsoft’s Control Pad Web page at http://www.microsoft.com/workshop/
author/cpad/ for more details.

The CODEBASE attribute of the OBJECT tag specifies where the OCX file is kept, so if the user
doesn’t have a copy of the ActiveX control, one will be downloaded automatically. The use of
the CLSID means that if this user has already installed this ActiveX control, there is no down-
load time; the control is used immediately. You can simply specify an URL to the OCX file, but
to automate the DLL downloading, this CODEBASE attribute points to a CAB file. Putting your
control in a CAB file will cut your download time by nearly half. You can learn more about CAB
technology at http://www.microsoft.com/intdev/cab/. That page is written for Java devel-
opers, but the technology works just as well to cut the download time for ActiveX controls.

If you don’t have access to a Web server in which to put controls while you’re developing them, use a
file:// URL in the CODEBASE attribute that points to the control’s location on your hard drive.

The remaining OBJECT tag attributes will be intuitive if you’ve built a Web page before: ID is
used by other tags on the page to refer to this control; WIDTH and HEIGHT specify the size, in
pixels, of the control’s appearance; and HSPACE and VSPACE are horizontal and vertical blank
spaces, in pixels, around the entire control.

Everything after the <OBJECT ...> tag and before the </OBJECT> tag is ignored by browsers
that understand the OBJECT tag. (The <OBJECT...> tag is usually many lines long and contains
all the information to describe the object.) Browsers that don’t understand the OBJECT tag
ignore the <OBJECT ...> tag and the </OBJECT> tag and display the HTML between them (in
this case, a line of text pointing out that this browser doesn’t support the tag). This is part of
the specification for a Web browser: It should ignore tags it doesn’t understand.

Figure 20.1 shows this page displayed in Microsoft Explorer 3.0. Clicking the die rolls it, and
everything works beautifully. Things certainly look simple and amazing, but two flaws appear
immediately:

■ Not all browsers support the OBJECT tag.

■ It can take a long time to download the control.

T I P

T I P

Embedding an ActiveX Control in a Microsoft Internet Explorer Web Page

Untitled-7 2/19/99, 7:58 AM467

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

468 Chapter 20 Building an Internet ActiveX Control

Figure 20.2 shows the same page displayed in Netscape Navigator 3.0. It doesn’t support the
OBJECT tag, so it doesn’t show the die. Also, Netscape Navigator is used by more than half the
people who browse the Web! Does that mean it’s not worth writing ActiveX controls for Web
pages? Not at all. As you’ll see in the very next section, there’s a way that Navigator users can
use the same controls as Explorer users.

FIG. 20.1
Microsoft Internet
Explorer can show
ActiveX controls.

FIG. 20.2
Netscape Navigator
can’t show ActiveX
controls.

Untitled-7 2/19/99, 7:58 AM468

469

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

The size issue is a bigger worry. The release version of the Dieroll control, as built for Chapter
17, is 26KB. Many designers put a 50KB limit per Web page for graphics and other material to
be downloaded, and this simple control uses half that limit. A more powerful control would
easily exceed it. The majority of this chapter deals with ways to reduce that size or otherwise
minimize the download time for ActiveX controls. Web page designers can then tap the con-
trols’ full power without worrying that users will label their pages as slow, one of the worst
knocks against any Web site.

There’s a third flaw that you won’t notice because you have Visual C++ installed on your com-
puter. The control requires the MFC DLL. The user must download it and install it before the
controls can run. The mechanism that automatically downloads and installs controls doesn’t
automatically download and install this DLL, though using a CAB file as discussed earlier can
make it possible.

For an example of a Web page that includes a CAB file for the Dieroll control and the MFC DLLs, come
to http://www.gregcons.com/dieroll.htm.

It might occur to you to try linking the MFC Library statically into your control. It seems easy
enough to do: Choose Project, Settings, and on the General tab there is a drop-down list

box inviting you to choose static linking. If you do that and build, you’ll get hundreds of linker errors:
The COleControl and CPropPage functions are not in the DLL that is linked statically. (That’s
because Microsoft felt it would be foolish to link the MFC functions statically in a control.) Setting up
another library to link in those functions is beyond the scope of this chapter, especially because all
this work would lead to an enormous (more than 1MB) control that would take far too long to
download the first time. ■

Embedding an ActiveX Control in a Netscape
Navigator Web Page

NCompass Labs (www.ncompasslabs.com) has produced a Netscape plug-in, called
ScriptActive, that enables you to embed an ActiveX control in a page to be read with Netscape
Navigator. The HTML for the page must be changed, as shown in Listing 20.2. (Resist the
temptation to get the plug-in and load this HTML into Netscape yourself until you have regis-
tered the control as safe for initializing and scripting in the next section.)

You can download a demonstration version of the plug-in for a free 30-day trial from the NCompass
Labs Web site.

T I P

T I P

Embedding an ActiveX Control in a Netscape Navigator Web Page

N O T E

Untitled-7 2/19/99, 7:58 AM469

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

470 Chapter 20 Building an Internet ActiveX Control

Listing 20.2 fatdie2.html—Using <OBJECT> and <EMBED>

<HTML>
<HEAD>
<TITLE>A Web page with a rolling die</TITLE>
</HEAD>
<BODY>
<OBJECT ID=”Dieroll1"
CLASSID=”CLSID:46646B43-EA16-11CF-870C-00201801DDD6"
CODEBASE=”dieroll.cab#Version=1,0,0,1"
WIDTH=”200"
HEIGHT=”200">
<PARAM NAME=”ForeColor” VALUE=”0">
<PARAM NAME=”BackColor” VALUE=”16777215">
<PARAM NAME=”Image” VALUE=”beans.bmp”>
<EMBED LIVECONNECT NAME=”Dieroll1"
WIDTH=”200"
HEIGHT=”200"
CLASSID=”CLSID:46646B43-EA16-11CF-870C-00201801DDD6"
TYPE=”application/oleobject”
CODEBASE=”dieroll.cab#Version=1,0,0,1"
PARAM_ForeColor=”0"
PARAM_BackColor=”16777215">
</OBJECT>

Here is some text after the die
</BODY>
</HTML>

It is the <EMBED> tag that brings up the plug-in. Because it’s inside the <OBJECT>...</OBJECT>
tag, Microsoft Internet Explorer and other browsers that know the OBJECT tag will ignore the
EMBED. This means that this HTML source will display the control equally well in Netscape
Navigator and in Explorer. You’ll probably want to include a link on your page to the NCompass
page to help your readers find the plug-in and learn about it.

Microsoft is committed to establishing ActiveX controls as a cross-platform, multibrowser
solution that will, in the words of its slogan, “Activate the Internet.” The ActiveX control specifi-
cation is no longer a proprietary document but has been released to a committee that will
maintain the standard. Don’t pay any attention to people who suggest you should only build
these controls if your readers use Internet Explorer!

Registering as Safe for Scripting and Initializing
For any of your readers who operate with a Medium safety level, the control should be regis-
tered as safe for scripting and initializing. This assures anyone who wants to view a page con-
taining the control that no matter what functions are called from a script or what parameters
are initialized through the PARAM attribute, nothing unsafe will happen. For an example of a
control that isn’t safe, think of a control that deletes a file on your machine when it executes.
The default file is one you won’t miss or that probably won’t exist. A page that put this control
in a script, or that initialized the filename with PARAM attributes, might order the control to

Untitled-7 2/19/99, 7:58 AM470

471

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

delete a very important file or files, based on guesses about where most people keep docu-
ments. It would be simple to delete C:\MSOFFICE\WINWORD\WINWORD.EXE, for example,
and that would be annoying for Word users. Figure 20.3 shows the error message displayed in
Explorer when you are using the Medium safety level and load a page featuring a control that
isn’t registered as script-safe or init-safe. The NCompass Labs plug-in, ScriptActive, also
refuses to load controls that are not registered as script-safe and init-safe.

FIG. 20.3
Explorer alerts you to
controls that might run
amok.

First, you need to add three functions to DierollCtl.cpp. (They come unchanged from the
ActiveX SDK.) These functions are called by code presented later in this section. Don’t forget
to add declarations of these functions to the header file, too. The code is in Listing 20.3.

Listing 20.3 DierollCtl.cpp—New Functions to Mark the Control as Safe

 //
 // Copied from the ActiveX SDK
 // This code is used to register and unregister a
 // control as safe for initialization and safe for scripting

 HRESULT CreateComponentCategory(CATID catid, WCHAR* catDescription)
 {
 ICatRegister* pcr = NULL ;
 HRESULT hr = S_OK ;

 hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
 NULL, CLSCTX_INPROC_SERVER, IID_ICatRegister, (void**)&pcr);
 if (FAILED(hr))
 return hr;

 // Make sure the HKCR\Component Categories\{..catid...}
 // key is registered
 CATEGORYINFO catinfo;
 catinfo.catid = catid;
 catinfo.lcid = 0x0409 ; // english

 // Make sure the provided description is not too long.
 // Only copy the first 127 characters if it is
 int len = wcslen(catDescription);
 if (len>127)
 len = 127;
 wcsncpy(catinfo.szDescription, catDescription, len);
 // Make sure the description is null terminated
 catinfo.szDescription[len] = ‘\0’;

continues

Registering as Safe for Scripting and Initializing

Untitled-7 2/19/99, 7:59 AM471

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

472 Chapter 20 Building an Internet ActiveX Control

Listing 20.3 Continued

 hr = pcr->RegisterCategories(1, &catinfo);
 pcr->Release();

 return hr;
}

HRESULT RegisterCLSIDInCategory(REFCLSID clsid, CATID catid)
{
 // Register your component categories information.
 ICatRegister* pcr = NULL ;
 HRESULT hr = S_OK ;
 hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
 NULL, CLSCTX_INPROC_SERVER, IID_ICatRegister, (void**)&pcr);
 if (SUCCEEDED(hr))
 {
 // Register this category as being “implemented” by
 // the class.
 CATID rgcatid[1] ;
 rgcatid[0] = catid;
 hr = pcr->RegisterClassImplCategories(clsid, 1, rgcatid);
 }

 if (pcr != NULL)
 pcr->Release();

 return hr;
}

HRESULT UnRegisterCLSIDInCategory(REFCLSID clsid, CATID catid)
{
 ICatRegister* pcr = NULL ;
 HRESULT hr = S_OK ;
 hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
 NULL, CLSCTX_INPROC_SERVER, IID_ICatRegister, (void**)&pcr);
 if (SUCCEEDED(hr))
 {
 // Unregister this category as being “implemented” by
 // the class.
 CATID rgcatid[1] ;
 rgcatid[0] = catid;
 hr = pcr->UnRegisterClassImplCategories(clsid, 1, rgcatid);
 }

 if (pcr != NULL)
 pcr->Release();

 return hr;
}

Second, add two #include statements at the top of DierollCtl.cpp:

#include “comcat.h”
#include “objsafe.h”

Untitled-7 2/19/99, 7:59 AM472

473

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Finally, modify UpdateRegistry() in DierollCtl.cpp to call these new functions. The new code
calls CreateComponentCategory() to create a category called CATID_SafeForScripting and
adds this control to that category. Then it creates a category called
CATID_SafeForInitializing and adds the control to that category as well. Listing 20.4 shows
the new version of UpdateRegistry().

Listing 20.4 DierollCtl.cpp—CDierollCtrl::CDierollCtrlFactory::UpdateRegistry()

BOOL CDierollCtrl::CDierollCtrlFactory::UpdateRegistry(BOOL bRegister)
{
 // TODO: Verify that your control follows apartment-model threading rules.
 // Refer to MFC TechNote 64 for more information.
 // If your control does not conform to the apartment-model rules, then
 // you must modify the code below, changing the 6th parameter from
 // afxRegInsertable | afxRegApartmentThreading to afxRegInsertable.

 if (bRegister)
 {
 HRESULT hr = S_OK ;

 // register as safe for scripting
 hr = CreateComponentCategory(CATID_SafeForScripting,
 L”Controls that are safely scriptable”);

 if (FAILED(hr))
 return FALSE;

 hr = RegisterCLSIDInCategory(m_clsid, CATID_SafeForScripting);

 if (FAILED(hr))
 return FALSE;

 // register as safe for initializing
 hr = CreateComponentCategory(CATID_SafeForInitializing,
 L”Controls safely initializable from persistent data”);

 if (FAILED(hr))
 return FALSE;

 hr = RegisterCLSIDInCategory(m_clsid, CATID_SafeForInitializing);

 if (FAILED(hr))
 return FALSE;

 return AfxOleRegisterControlClass(
 AfxGetInstanceHandle(),
 m_clsid,
 m_lpszProgID,
 IDS_DIEROLL,
 IDB_DIEROLL,
 afxRegInsertable | afxRegApartmentThreading,
 _dwDierollOleMisc,

continues

Registering as Safe for Scripting and Initializing

Untitled-7 2/19/99, 7:59 AM473

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

474 Chapter 20 Building an Internet ActiveX Control

Listing 20.4 Continued

 _tlid,
 _wVerMajor,
 _wVerMinor);

 else
 {
 HRESULT hr = S_OK ;
 hr = UnRegisterCLSIDInCategory(m_clsid, CATID_SafeForScripting);

 if (FAILED(hr))
 return FALSE;

 hr = UnRegisterCLSIDInCategory(m_clsid, CATID_SafeForInitializing);

 if (FAILED(hr))
 return FALSE;

 return AfxOleUnregisterClass(m_clsid, m_lpszProgID);
 }
}

To confirm that this works, open Explorer and set your safety level to Medium. Load the
HTML page that uses the control; it should warn you the control is unsafe. Then make these
changes, build the control, and reload the page. The warning will not reappear.

Choosing Between ActiveX and Java Applets
Java is an application development language as well as an applet development language, which
means you can develop ActiveX controls in Java if you choose to, using a tool like Microsoft’s
Visual J++ integrated into Developer Studio. When most people frame a showdown like ActiveX
versus Java, though, they mean ActiveX versus Java applets, which are little, tightly contained
applications that run on a Web page and can’t run standalone.

Many people are concerned about the security of running an application they did not code,
when they do not know the person or organization supplying the application. The Java ap-
proach attempts to restrict the actions that applets can perform so that even malicious applets
can’t do any real damage. However, regular announcements of flaws in the restriction approach
are damaging Java’s credibility. Even if a Java applet were guaranteed to be safe, these same
restrictions prevent it from doing certain useful tasks, since they cannot read or write files,
send email, or load information from other Internet sites.

The approach taken by Microsoft with ActiveX is the trusted supplier approach, which is ex-
tendable to Java and any other code that can execute instructions. Code is digitally signed so
that you are sure who provided it and that it has not been changed since it was signed. This
won’t prevent bad things from happening if you run the code, but it will guarantee that you
know who is to blame if bad things do occur. This is just the same as buying shrink-
wrapped software from the shelf in the computer store. For more details, look at

Untitled-7 2/19/99, 7:59 AM474

475

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

http://www.microsoft.com/ie/most/howto/trusted.htm and follow some of the links from
that page.

Probably the biggest difference between the ActiveX approach and the Java applet approach is
downloading. Java code is downloaded every time you load the page that contains it. ActiveX
code is downloaded once, unless you already have the control installed some other way (per-
haps a CD-ROM was sent to you in a magazine, for example) and then never again. A copy is
stored on the user’s machine and entered in the Registry. The Java code that is downloaded is
small because most of the code involved is in the Java Virtual Machine installed on your com-
puter, probably as part of your browser.

The ActiveX code that’s downloaded can be much larger, though the optimizations discussed in
the next section can significantly reduce the size by relying on DLLs and other code already on
the user’s computer. If users come to this page once and never again, they might be annoyed to
find ActiveX controls cluttering their disk and Registry. On the other hand, if they come to the
same page repeatedly, they will be pleased to find that there is no download time: The control
simply activates and runs.

There are still other differences. Java applets can’t fire events to notify the container that some-
thing has happened. Java applets can’t be licensed and often don’t distinguish between design-
time and runtime use. Java applets can’t be used in Visual Basic forms, VC++ programs, or
Word documents in the same way that ActiveX controls can. ActiveX controls are nearly 10
times faster than Java applets. In their favor, Java applets are genuinely multiplatform and typi-
cally smaller than the equivalent ActiveX control.

Using AppWizard to Create Faster ActiveX Controls
Microsoft did not develop OCX controls to be placed in Web pages, and changing their name to
ActiveX controls didn’t magically make them faster to load or smaller. So the AppWizard that
comes with Visual C++ has a number of options available to achieve those ends. This chapter
changes these options in the Dieroll control that was already created, just to show how it’s
done. Because Dieroll is already a lean control and loads quickly, these simple changes won’t
make much difference. It’s worth learning the techniques, though, for your own controls,
which will surely be fatter than Dieroll.

The first few options to reduce your control’s size have always been available on Step 2 of the
ActiveX ControlWizard:

■ Activates When Visible

■ Invisible at Runtime

■ Available in Insert Object Dialog Box

■ Has an About Box

■ Acts as a Simple Frame Control

Using AppWizard to Create Faster ActiveX Controls

Untitled-7 2/19/99, 7:59 AM475

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

476 Chapter 20 Building an Internet ActiveX Control

If you are developing your control solely for the Web, many of these settings won’t matter
anymore. For example, it doesn’t matter whether your control has an About box; users won’t
be able to bring it up when they are viewing the control in a Web page.

The Activates When Visible option is very important. Activating a control takes a lot of over-
head activity and should be postponed as long as possible so that your control appears to load
quickly. If your control activates as soon as it is visible, you’ll add to the time it takes to load
your control. To deselect this option in the existing Dieroll code, open the Dieroll project in
Developer Studio if it isn’t still open, and open DierollCtl.cpp with FileView. Look for a block of
code like the one in Listing 20.5.

Listing 20.5 Excerpt from DierollCtl.cpp—Setting Activates When Visible

///
// Control type information

static const DWORD BASED_CODE _dwDierollOleMisc =
 OLEMISC_ACTIVATEWHENVISIBLE |
 OLEMISC_SETCLIENTSITEFIRST |
 OLEMISC_INSIDEOUT |
 OLEMISC_CANTLINKINSIDE |
 OLEMISC_RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CDierollCtrl, IDS_DIEROLL, _dwDierollOleMisc)

Delete the OLEMISC_ACTIVATEWHENVISIBLE line. Build a release version of the application.
Though the size of the Dieroll OCX file is unchanged, Web pages with this control should load
more quickly because the window isn’t created until the user first clicks on the die. If you re-
load the Web page with the die in it, you’ll see the first value immediately, even though the
control is inactive. The window is created to catch mouse clicks, not to display the die roll.

There are more optimizations available. Figure 20.4 shows the list of advanced options for
ActiveX ControlWizard, reached by clicking the Advanced button on Step 2. You can choose
each of these options when you first build the application through the ControlWizard. They can
also be changed in an existing application, saving you the trouble of redoing AppWizard and
adding your own functionality again. The options are

■ Windowless Activation

■ Unclipped Device Context

■ Flicker-Free Activation

■ Mouse Pointer Notifications When Inactive

■ Optimized Drawing Code

■ Loads Properties Asynchronously

Untitled-7 2/19/99, 7:59 AM476

477

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Windowless activation is going to be very popular because of the benefits it provides. If you
want a transparent control or one that isn’t a rectangle, you must use windowless activation.
However, because it reduces code size and speeds execution, every control should consider
using this option. Modern containers provide the functionality for the control. In older contain-
ers, the control creates the window anyway, denying you the savings but ensuring that the
control still works.

To implement the Windowless Activation option in Dieroll, override
CDierollCtrl::GetControlFlags() like this:

DWORD CDierollCtrl::GetControlFlags()
{
 return COleControl::GetControlFlags()| windowlessActivate;
}

Add the function quickly by right-clicking CDierollCtrl in ClassView and choosing Add Mem-
ber Function. If you do this to Dieroll, build it, and reload the Web page that uses it, you’ll
notice no apparent effect because Dieroll is such a lean control. You’ll at least notice that it still
functions perfectly and doesn’t mind not having a window.

The next two options, Unclipped Device Context and Flicker-Free Activation, are not available
to windowless controls. In a control with a window, choosing Unclipped Device Context means
that you are completely sure that you never draw outside the control’s client rectangle. Skip-
ping the checks that make sure you don’t means your control runs faster, though it could mean
trouble if you have an error in your draw code. If you were to do this in Dieroll, the override of
GetControlFlags() would look like this:

DWORD CDierollCtrl::GetControlFlags()
{
 return COleControl::GetControlFlags()& ~clipPaintDC;
}

Don’t try to combine this with windowless activation: It doesn’t do anything.

FIG. 20.4
The Advanced button
on Step 2 of the ActiveX
ControlWizard leads to
a choice of optimiza-
tions.

Using AppWizard to Create Faster ActiveX Controls

Untitled-7 2/19/99, 8:00 AM477

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

478 Chapter 20 Building an Internet ActiveX Control

Flicker-free activation is useful for controls that draw their inactive and active views identically.
(Think back to Chapter 15, “Building an ActiveX Server Application,” in which the server ob-
ject was drawn in dimmed colors when the objects were inactive.) If there is no need to redraw,
because the drawing code is the same, you can select this option and skip the second draw.
Your users won’t see an annoying flicker as the control activates, and activation will be a tiny bit
quicker. If you were to do this in Dieroll, the GetControlFlags() override would be

DWORD CDierollCtrl::GetControlFlags()
{
 return COleControl::GetControlFlags()| noFlickerActivate;
}

Like unclipped device context, don’t try to combine this with windowless activation: It doesn’t
do anything.

Mouse pointer notifications, when inactive, enable more controls to turn off the Activates
When Visible option. If the only reason to be active is to have a window to process mouse inter-
actions, this option will divert those interactions to the container through an IPointerInactive
interface. To enable this option in an application that is already built, you override
GetControlFlags()again:

 DWORD CDierollCtrl::GetControlFlags()
{
 return COleControl::GetControlFlags()| pointerInactive;
}

Now your code will receive WM_SETCURSOR and WM_MOUSEMOVE messages through message map
entries, even though you have no window. The container, whose window your control is using,
will send these messages to you through the IPointerInactive interface.

The other circumstance under which you might want to process window messages while still
inactive, and so without a window, is if the user drags something over your control and drops it.
The control needs to activate at that moment so that it has a window to be a drop target. You
can arrange that with an override to GetActivationPolicy():

DWORD CDierollCtrl::GetActivationPolicy()
{
 return POINTERINACTIVE_ACTIVATEONDRAG;
}

Don’t bother doing this if your control isn’t a drop target, of course.

The problem with relying on the container to pass on your messages through the
IPointerInactive interface is that the container might have no idea such an interface exists
and no plans to pass your messages on with it. If you think your control might end up in such a
container, don’t remove the OLEMISC_ACTIVATEWHENVISIBLE flag from the block of code shown
previously in in Listing 20.5

Instead, combine another flag, OLEMISC_IGNOREACTIVATEWHENVISIBLE, with these flags using
the bitwise or operator. This oddly named flag is meaningful to containers that understand
IPointerInactive and means, in effect, “I take it back— don’t activate when visible after all.”

Untitled-7 2/19/99, 8:00 AM478

479

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Containers that don’t understand IPointerInactive don’t understand this flag either, and your
control will activate when visible and thus be around to catch mouse messages in these con-
tainers.

Optimized drawing code is only useful to controls that will be sharing the container with a
number of other drawing controls. As you might recall from Chapter 5, “Drawing on the
Screen,” the typical pattern for drawing a view of any kind is to set the brush, pen, or other
GDI object to a new value, saving the old. Then you use the GDI object and restore it to the
saved value. If there are several controls doing this in turn, all those restore steps can be
skipped in favor of one restore at the end of all the drawing. The container saves all the GDI
object values before instructing the controls to redraw and afterwards restores them all.

If you would like your control to take advantage of this, you need to make two changes. First, if
a pen or other GDI object is to remain connected between draw calls, it must not go out of
scope. That means any local pens, brushes, and fonts should be converted to member variables
so that they stay in scope between function calls. Second, the code to restore the old objects
should be surrounded by an if statement that calls COleControl::IsOptimizedDraw() to see
whether the restoration is necessary. A typical draw routine would set up the colors and pro-
ceed like this:

...
if(!m_pen.m_hObject)
{
 m_pen.CreatePen(PS_SOLID, 0, forecolor);
}
if(!m_brush.m_hObject)
{
 m_brush.CreateSolidBrush(backcolor);
}

CPen* savepen = pdc->SelectObject(&m_pen);
CBrush* savebrush = pdc->SelectObject(&m_brush);

...
// use device context
...
if(!IsOptimizedDraw())
{
 pdc->SelectObject(savepen);
 pdc->SelectObject(savebrush);
}
...

The device context has the addresses of the member variables, so when it lets go of them at
the direction of the container, their m_hObject member becomes NULL. As long as it isn’t NULL,
there is no need to reset the device context, and if this container supports optimized drawing
code, there is no need to restore it either.

If you select this optimized drawing code option from the Advanced button in AppWizard Step
2, the if statement with the call to IsOptimizedDraw() is added to your draw code, with some
comments to remind you what to do.

The last optimization option, Loads Properties Asynchronously, is covered in the next section.

Using AppWizard to Create Faster ActiveX Controls

Untitled-7 2/19/99, 8:00 AM479

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

480 Chapter 20 Building an Internet ActiveX Control

Speeding Control Loads with Asynchronous
Properties

Asynchronous refers to spreading out activities over time and not insisting that one activity be
completed before another can begin. In the context of the Web, it’s worth harking back to the
features that made Netscape Navigator better than Mosaic, way back when it was first released.
The number one benefit cited by people who were on the Web then was that the Netscape
browser, unlike Mosaic, could display text while pictures were still loading. This is classic
asynchronous behavior. You don’t have to wait until the huge image files have transferred, to
see what the words on the page are and whether the images are worth waiting for.

Faster Internet connections and more compact image formats have lessened some of the con-
cerns about waiting for images. Still, being asynchronous is a good thing. For one thing, wait-
ing for video clips, sound clips, and executable code has made many Web users long for the
good old days when they had to wait only 30 seconds for pages to find all their images.

Properties
The die that comes up in your Web page is the default die appearance. There’s no way for the
user to access the control’s properties. The Web page developer can, using the <PARAM> tag
inside the <OBJECT> tag. (Browsers that ignore OBJECT also ignore PARAM.) Here’s the PARAM tag
to add to your HTML between <OBJECT> and </OBJECT> to include a die with a number instead
of dots:

<PARAM NAME=”Dots” value=”0">

The PARAM tag has two attributes: NAME provides a name that matches the external ActiveX
name (Dots), and value provides the value (0, or FALSE). The die displays with a number.

To demonstrate the value of asynchronous properties, Dieroll needs to have some big proper-
ties. Because this is a demonstration application, the next step is to add a big property. A natu-
ral choice is to give the user more control over the die’s appearance. The user (which means
the Web page designer if the control is being used in a Web page) can specify an image file and
use that as the background for the die. Before you learn how to make that happen, imagine
what the Web page reader will have to wait for when loading a page that uses Dieroll:

■ The HTML has to be loaded from the server.

■ The browser lays out the text and nontext elements and starts to display text.

■ The browser searches the Registry for the control’s CLSID.

■ If necessary, the control is downloaded, using the CODEBASE parameter.

■ The control properties are initialized, using the PARAM tags.

■ The control runs and draws itself.

When Dieroll gains another property—an image file that might be quite large—there will be
another delay while the image file is retrieved from wherever it is kept. If nothing happens in
the meantime, the Web page reader will eventually tire of staring at an empty square and go to

Untitled-7 2/19/99, 8:01 AM480

481

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

another page. Using asynchronous properties means that the control can roughly draw itself
and start to be useful, even while the large image file is still being downloaded. For Dieroll,
drawing the dots on a plain background, using GetBackColor(), will do until the image file is
ready.

Using BLOBs
A BLOB is a binary large object. It’s a generic name for things like the image file you are about
to add to the Dieroll control. The way a control talks to a BLOB is through a moniker. That’s
not new. It’s just that monikers have always been hidden away inside OLE. If you already un-
derstand them, you still have a great deal more to learn about them because things are chang-
ing with the introduction of asynchronous monikers. If you’ve never heard of them before, no
problem. Eventually there will be all sorts of asynchronous monikers, but at the moment only
URL monikers have been implemented. These are a way for ActiveX to connect BLOB proper-
ties to URLs. If you’re prepared to trust ActiveX to do this for you, you can achieve some amaz-
ing things. The remainder of this subsection explains how to work with URL monikers to load
BLOB properties asynchronously.

Remember, the idea here is that the control will start drawing itself even before it has all its
properties. Your OnDraw() code will be structured like this:

// prepare to draw
if(AllPropertiesAreLoaded)
{
 // draw using the BLOB
}
else
{
 // draw without the BLOB
}
//cleanup after drawing

There are two problems to solve here. First, what will be the test to see whether all the
properties are loaded? Second, how can you arrange to have OnDraw() called again when the
properties are ready, if it’s already been called and has already drawn the control the BLOBless
way?

The first problem has been solved by adding two new functions to COleControl.
GetReadyState()returns one of these values:

■ READYSTATE_UNINITIALIZED means the control is completely unitialized.

■ READYSTATE_LOADING means the control properties are loading.

■ READYSTATE_LOADED means the properties are all loaded.

■ READYSTATE_INTERACTIVE means the control can talk to the user but isn’t fully loaded yet.

■ READYSTATE_COMPLETE means there is nothing more to wait for.

The function InternalSetReadyState() sets the ready state to one of these values.

The second problem, getting a second call to OnDraw() after the control has already been
drawn without the BLOB, has been solved by a new class called CDataPathProperty and its

Speeding Control Loads with Asynchronous Properties

Untitled-7 2/19/99, 8:01 AM481

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

482 Chapter 20 Building an Internet ActiveX Control

derived class CCachedDataPathProperty. These classes have a member function called
OnDataAvailable() that catches the Windows message generated when the property has been
retrieved from the remote site. The OnDataAvailable() function invalidates the control, forc-
ing a redraw.

Changing Dieroll
Make a copy of the Dieroll folder you created in Chapter 17 and change it to windowless
activation as described earlier in this chapter. Now you’re ready to begin. There is a lot to
do to implement asynchronous properties, but each step is straightforward.

Add the CDierollDataPathProperty Class Bring up ClassWizard, click the Automation tab,
and click the Add Class button. From the drop-down menu that appears under the button,
choose New. This brings up the Create New Class dialog box. Name the class
CDierollDataPathProperty. Click the drop-down box for Base Class and choose
CCachedDataPathProperty. The dialog box will resemble Figure 20.5. Click OK to create the
class and add it to the project.

FIG. 20.5
Create a new class to
handle asynchronous
properties.

The reason that the new class should inherit from CCachedDataProperty is that it will load the
property information into a file, which is an easier way to handle the bitmap. If the control has a
property that was downloaded because it changed often (for example, current weather),
CDataPathProperty would be a better choice.

Add the Image Property to CDierollCtrl With the new CDierollDataPathProperty class
added to the Dieroll control, add the property to the original CDierollCtrl class that you cop-
ied: In ClassWizard, on the Automation tab, make sure that CDierollCtrl is selected in the far
right drop-down box. Click Add Property and fill out the dialog as shown in Figure 20.6. The
external name you choose is the one that will appear in the HTML: Image is simple and doesn’t
require a lot of typing. The type should be BSTR—that choice won’t be in the drop-down box for
type until you change the Implementation to Get/Set Methods.

Untitled-7 2/19/99, 8:01 AM482

483

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

ClassWizard adds the Get and Set functions to your control class, but the TODO comments (see
Listing 20.6) are cryptic.

Listing 20.6 DierollCtl.cpp—Get and Set Functions

BSTR CDierollCtrl::GetImage()
{
 CString strResult;
 // TODO: Add your property handler here

 return strResult.AllocSysString();
}

void CDierollCtrl::SetImage(LPCTSTR lpszNewValue)
{
 // TODO: Add your property handler here

 SetModifiedFlag();
}

As with other Get and Set properties, you’ll have to add a member variable to the control class
and add code to these functions to get or set its value. It is an instance of the new
CDierollDataPathProperty class. Right-click CDierollCtrl in ClassView and choose Add
Member Variable. Figure 20.7 shows how to fill in the dialog box to declare the member vari-
able mdpp_image. (The dpp in the name is to remind you that this is a data path property.)

FIG. 20.6
The image file is added
as a BSTR property.

FIG. 20.7
The image file member
variable is an instance
of the new class.

Now you can finish the Get and Set functions, as shown in Listing 20.7.

Speeding Control Loads with Asynchronous Properties

Untitled-7 2/19/99, 8:02 AM483

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

484 Chapter 20 Building an Internet ActiveX Control

Listing 20.7 DierollCtl.cpp—Completed Get and Set Functions

BSTR CDierollCtrl::GetImage()
{
 CString strResult;
 strResult = mdpp_image.GetPath();
 return strResult.AllocSysString();
}

void CDierollCtrl::SetImage(LPCTSTR lpszNewValue)
{
 Load(lpszNewValue, mdpp_image);
 SetModifiedFlag();
}

At the top of the header file for CDierollCtrl, add this include statement:

#include “DierollDataPathProperty.h”

Now there are some bits and pieces to deal with because you are changing an existing control
rather than turning on asynchronous properties when you first built Dieroll. First, in
CDierollCtrl::DoPropExchange(), arrange persistence and initialization for mdpp_image by
adding this line:

PX_DataPath(pPX, _T(“Image”), mdpp_image);

Second, add a line to the stub of CDierollCtrl::OnResetState() that ClassWizard provided,
to reset the data path property when the control is reset. Listing 20.8 shows the function.

Listing 20.8 DierollCtl.cpp—CDierollCtrl::OnResetState()

///
// CDierollCtrl::OnResetState - Reset control to default state

void CDierollCtrl::OnResetState()
{
 COleControl::OnResetState(); // Resets defaults found in DoPropExchange

 mdpp_image.ResetData();
}

Add the ReadyStateChange Event and the ReadyState Property Use ClassWizard to add
the stock event ReadyStateChange. In ClassWizard, click the ActiveX Events tab, then the Add
Event button. Choose ReadyStateChange from the drop-down box and click OK. Figure 20.8
shows the Add Event dialog box for this event. Events, as discussed in Chapter 17, notify the
control’s container that something has happened within the control. In this case, what has
happened is that the rest of the control’s data has arrived and the control’s state of readiness
has changed.

Untitled-7 2/19/99, 8:02 AM484

485

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Use ClassWizard to add a property to CDierollCtrl for the ready state. In ClassWizard, click
the Automation tab, then the Add Property button. Choose ReadyState from the drop-down
box, and because this is a stock property, the rest of the dialog box is filled in for you, as shown
in Figure 20.9. Click OK to finish adding the property and then close ClassWizard.
ClassWizard doesn’t add a stub function for GetReadyState() because CDierollCtrl will in-
herit this from COleControl.

FIG. 20.8
Add a stock event to
notify the container of a
change in the control’s
readiness.

FIG. 20.9
Add a stock property to
track the control’s
readiness.

Add code to the constructor to connect the cached property to this control and to initialize the
member variable in COleControl that is used in COleControl::GetReadyState() and set by
COleControl::InternalSetReadyState(). Because the control can be used right away, the
readiness state should start at READYSTATE_INTERACTIVE. Listing 20.9 shows the new
constructor.

Listing 20.9 DierollCtl.cpp—CDierollCtrl::CDierollCtrl()

CDierollCtrl::CDierollCtrl()
{
 InitializeIIDs(&IID_DDieroll, &IID_DDierollEvents);
 mdpp_image.SetControl(this);
 m_lReadyState = READYSTATE_INTERACTIVE;
}

Speeding Control Loads with Asynchronous Properties

Untitled-7 2/19/99, 8:02 AM485

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

486 Chapter 20 Building an Internet ActiveX Control

Implement CDierollDataPathProperty There is some work to do in
CDierollDataPathProperty before changing CDierollCtrl::OnDraw(). This class loads a
bitmap, and this chapter isn’t going to explain most of what’s involved in reading a BMP file
into a CBitmap object. The most important function is OnDataAvailable(), which is in Listing
20.10. Add this function to the class by right-clicking CDierollCtrl in ClassView and choosing
Add Virtual Function. Select OnDataAvailable from the list on the left, and click Add and Edit;
then type this code.

Listing 20.10 DierollDataPathProperty.cpp—OnDataAvailable()

void CDierollDataPathProperty::OnDataAvailable(DWORD dwSize, DWORD grfBSCF)
{
 CCachedDataPathProperty::OnDataAvailable(dwSize, grfBSCF);

 if(grfBSCF & BSCF_LASTDATANOTIFICATION)
 {
 m_Cache.SeekToBegin();
 if (ReadBitmap(m_Cache))
 {
 BitmapDataLoaded = TRUE;
 // safe because this control has only one property:
 GetControl()->InternalSetReadyState(READYSTATE_COMPLETE);
 GetControl()->InvalidateControl();
 }
 }
}

Every time a block of data is received from the remote site, this function is called. The first line
of code uses the base class version of the function to deal with that block and set the flag called
grfBSCF. If, after dealing with the latest block, the download is complete, the ReadBitmap()
function is called to read the cached data into a bitmap object that can be displayed as the
control background. (The code for ReadBitmap() isn’t presented or discussed here, though it is
on the Web site for you to copy into your application.) After the bitmap has been read, the
control’s ready state is complete and the call to InvalidateControl() arranges for a redraw.

Revise CDierollCtrl::OnDraw() The structure of CDierollCtrl::OnDraw() was laid out long
ago. In this block of code, the background is filled in before the code that checks whether to
draw dots or a number:

 COLORREF back = TranslateColor(GetBackColor());
 CBrush backbrush;
 backbrush.CreateSolidBrush(back);
 pdc->FillRect(rcBounds, &backbrush);

Replace that block with the one in Listing 20.11.

Untitled-7 2/19/99, 8:03 AM486

487

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Listing 20.11 DierollDataPathProperty.cpp—New Code for OnDraw()

 CBrush backbrush;
 BOOL drawn = FALSE;
 if (GetReadyState() == READYSTATE_COMPLETE)
 {
 CBitmap* image = mdpp_image.GetBitmap(*pdc);
 if (image)
 {
 CDC memdc;
 memdc.CreateCompatibleDC(pdc);
 memdc.SelectObject(image);
 BITMAP bmp; // just for height and width
 image->GetBitmap(&bmp);
 pdc->StretchBlt(0, // upper left
 0, // upper right
 rcBounds.Width(), // target width
 rcBounds.Height(), // target height
 &memdc, // the image
 0, // offset into image -x
 0, // offset into image -y
 bmp.bmWidth, // width
 bmp.bmHeight, // height
 SRCCOPY); // copy it over

 drawn = TRUE;
 }
 }
 if (!drawn)
 {
 COLORREF back = TranslateColor(GetBackColor());
 backbrush.CreateSolidBrush(back);
 pdc->FillRect(rcBounds, &backbrush);
 }

The BOOL variable drawn ensures that if the control is complete, but something goes wrong with
the attempt to use the bitmap, the control will be drawn the old way. If the control is complete,
the image is loaded into a CBitmap* and then drawn into the device context. Bitmaps can only
be selected into a memory device context and then copied over to an ordinary device context.
Using StretchBlt() will stretch the bitmap during the copy, though a sensible Web page de-
signer will have specified a bitmap that matches the HEIGHT and WIDTH attributes of the OBJECT
tag. The old drawing code is still here, used if drawn remains FALSE.

Testing and Debugging Dieroll
Having made all those changes, build the control, which will register it. One way to test it
would be to bring up that HTML page in Explorer again, but you might prefer to debug the
control. It is possible to debug a control even though you can’t run it standalone. Normally, a
developer would arrange to debug the control in the test container, but you can use any
application that can contain the control.

Speeding Control Loads with Asynchronous Properties

Untitled-7 2/19/99, 8:03 AM487

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

488 Chapter 20 Building an Internet ActiveX Control

In Developer Studio, choose Project Settings. Click the Debug tab and make sure that all the
lines in the far left list box are selected. Select General in the top drop-down box, and in the
edit box labeled Executable for Debug Session, enter the full path to Microsoft Internet Ex-
plorer on your computer. (If there’s a shorcut to Microsoft Internet Explorer on your desktop,
right-click it and choose Properties to get the path to the executable. Otherwise, use the Find
utility on the Start menu to find iexplore.exe. Figure 20.10 shows an example.) Now when you
choose Build, Start Debug, Go or click the Go toolbar button, Explorer will launch. Open a
page of HTML that loads the control, and the control will run in the debugger. You can set
breakpoints, step through code, and examine variables, just as with any other application.

FIG. 20.10
Arrange to run Explorer
when you debug the
control.

Here’s the syntax for an OBJECT tag that sets the Image property:

<OBJECT
CLASSID=”clsid:46646B43-EA16-11CF-870C-00201801DDD6"
CODEBASE=”http://www.gregcons.com/test/dieroll.ocx”
ID=die1
WIDTH=200
HEIGHT=200
ALIGN=center
HSPACE=0
VSPACE=0
>
<PARAM NAME=”Dots” VALUE=”1">
<PARAM NAME=”Image” VALUE=”http://www.gregcons.com/test/beans.bmp”>
If you see this text, your browser does not support the OBJECT tag. </BR>
</OBJECT>

Remember, don’t just copy these HTML samples to your own machine if you are building Dieroll
yourself. You need to use your own CLSID, an URL to the location of your copy of the OCX, and the
image file you are using.

T I P

Untitled-7 2/19/99, 8:03 AM488

489

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna CH20 LP#3

20

V
Part

Ch

Figure 20.11 shows the control with a background image of jelly beans. It takes 30–60 seconds
to load this 40KB image through the Web, and while it is loading, the control is perfectly usable
as a plain die with no background image. That’s the whole point of asynchronous properties,
and that’s what all the effort of the previous sections achieves.

FIG. 20.11
Now the die displays on
a field of jelly beans or
on any other image you
choose.

Speeding Control Loads with Asynchronous Properties

Untitled-7 2/19/99, 8:03 AM489

Untitled-7 2/19/99, 8:03 AM490

491

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

C H A P T E R

The Active Template Library

21

In this chapter

Why Use the ATL? 492

Using AppWizard to Get Started 492

Using the Object Wizard 493

Adding Properties to the Control 497

Drawing the Control 508

Persistence and a Property Page 512

Using the Control in Control Pad 516

Adding Events 517

Exposing the DoRoll() Function 520

Registering as init Safe and script Safe 522

Preparing the Control for Use in Design Mode 522

Minimizing Executable Size 523

Using the Control in a Web Page 525

Untitled-8 2/19/99, 8:05 AM491

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

492 Chapter 21 The Active Template Library

The Active Template Library (ATL) is a collection of C++ class templates that you can use to
build ActiveX controls. These small controls generally don’t use MFC, the Microsoft Founda-
tion Classes, at all. Writing an ActiveX control with ATL requires a lot more knowledge of COM
and interfaces than writing an MFC ActiveX control, because MFC protects you from a lot of
low-level COM concepts. Using ATL is not for the timid, but it pays dividends in smaller, tighter
controls. This chapter rewrites the Dieroll control of Chapter 17, “Building an ActiveX Con-
trol,” and Chapter 20, “Building an Internet ActiveX Control,” by using ATL rather than MFC
as in those chapters. You will learn the important COM/ActiveX concepts that were skimmed
over while you were using MFC.

Why Use the ATL?
Building an ActiveX Control with MFC is simple, as you saw in Chapters 17 and 20. You can get
by without knowing what a COM interface is or how to use a type library. Your control can use
all sorts of handy MFC classes, such as CString and CWnd, can draw itself by using CDC mem-
ber functions, and more. The only downside is that users of your control need the MFC DLLs,
and if those DLLs aren’t on their system already, the delay while 600KB or so of CAB file down-
loads will be significant.

The alternative to MFC is to obtain the ActiveX functionality from the ATL and to call Win32
SDK functions, just as C programmers did when writing for Windows in the days before Visual
C++ and MFC. The Win32 SDK is a lot to learn and won’t be fully covered in this chapter. The
good news is that if you’re familiar with major MFC classes, such as CWnd and CDC, you will
recognize a lot of these SDK functions, even if you’ve never seen them before. Many MFC
member functions are merely wrappers for SDK functions.

How much download time can you save? The MFC control from Chapter 20 is nearly 30KB
plus, of course, the MFC DLLs. The ATL control built in this chapter is, at most, 100KB and is
fully self-contained. With a few tricks, you could reduce it to 50KB of control and 20KB for the
ATL DLL—one-tenth the size of the total control and DLL from Chapter 20!

Using AppWizard to Get Started
There’s an AppWizard that knows how to make ATL controls, and it makes your job much
simpler than it would be without the wizard. As always, choose File, New and click the Projects
tab on the New dialog. Fill in an appropriate directory and name the project DieRollControl,
as shown in Figure 21.1. Click OK.

It’s tempting to name the project DieRoll, but later in this process you will be inserting a
control into the project—that control will be called DieRoll, so to avoid name conflicts,

choose a longer name for the project. ■

N O T E

Untitled-8 2/19/99, 8:05 AM492

493

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

There is only one step in the ATL COM AppWizard, and it is shown in Figure 21.2. The default
choices—DLL control, no merging proxy/stub code, no MFC support, no MTS support—are
the right ones for this project. The file extension will be DLL rather than OCX, as it was for
MFC controls, but that’s not an important difference. Click Finish.

FIG. 21.1
AppWizard makes
creating an ATL control
simple.

The New Project Information dialog box, shown in Figure 21.3, confirms the choices you have
made. Click OK to create the project.

Using the Object Wizard
The ATL COM AppWizard created 13 files, but you don’t have a skeleton control yet. First, you
have to follow the instructions included in the Step 1 dialog box and insert an ATL object into
the project.

Adding a Control to the Project
Choose Insert, New ATL Object from the menu bar. This opens the ATL Object Wizard, shown
in Figure 21.4.

FIG. 21.2
Create a DLL control.

Using the Object Wizard

Untitled-8 2/19/99, 8:05 AM493

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

494 Chapter 21 The Active Template Library

You can add several kinds of ATL objects to your project, but at the moment you are interested
only in controls, so select Controls in the list box on the left. The choices in the list box on the
left include Full Control, Lite Control, and Property Page. If you know for certain that this
control will be used only in Internet Explorer, perhaps as part of an intranet project, you could
choose Lite Control and save a little space. This DieRoll control might end up in any browser, a
Visual Basic application, or anywhere else for that matter, so a Full Control is the way to go.
You will add a property page later in this chapter. Select Full Control and click Next.

Naming the Control
Now the ATL Object Wizard Properties dialog box appears. The first tab is the Names tab.
Here you can customize all the names used for this control. Enter DieRoll for the Short Name
of DieRoll, and the rest will default to names based on it, as shown in Figure 21.5. You could
change these names if you want, but there is no need. Note that the Type, DieRoll Class, is the
name that will appear in the Insert Object dialog box of most containers. Because the MFC
version of DieRoll is probably already in your Registry, having a different name for this version
is a good thing. On other projects, you might consider changing the type name.

FIG. 21.3
Your ATL choices are
summarized before you
create the project.

FIG. 21.4
Add an ATL control to
your project.

Untitled-8 2/19/99, 8:05 AM494

495

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Setting Control Attributes
Click the Attributes tab. Leave the default values: Apartment Threading Model, Dual Interface,
and Yes for Aggregation. Select the check boxes Support ISupportErrorInfo and Support Con-
nection Points. Leave Free Threaded Marshaler deselected, as shown in Figure 21.6. Each of
these choices is discussed in the paragraphs that follow.

FIG. 21.5
Set the names of the
files and the control.

Threading Models Avoid selecting the Single Threading Model, even if your controls don’t
have any threading. To be sure that no two functions of such a control are running at the same
time, all calls to methods of a single-threaded control must be marshalled through a proxy,
which significantly slows execution. The Apartment setting is a better choice for new controls.

The Apartment model refers to STA (Single-Threaded Apartment model). This means that
access to any resources shared by instances of the control (globals and statics) is through
serialization. Instance data—local automatic variables and objects dynamically allocated on the
heap—doesn’t need this protection. This makes STA controls faster than single-threaded con-
trols. Internet Explorer exploits STA in controls it contains.

If the design for your control includes a lot of globals and statics, it might be a great deal of work to
use the Apartment model. This isn’t a good reason to write a single-threaded control; it’s a good reason
to redesign your control as a more object-oriented system.

FIG. 21.6
Set the COM properties
of your control.

T I P

Using the Object Wizard

Untitled-8 2/19/99, 8:06 AM495

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

496 Chapter 21 The Active Template Library

The Free Threading (Multithreaded Apartment or MTA) Model refers to controls that are
threaded and that already include protection against thread collisions. Although writing a
multithreaded control might seem like a great idea, using such a control in a nonthreaded or
STA container will result in marshalling again, this time to protect the container against having
two functions called at once. This, too, introduces inefficiencies. Also, you, the developer, will
do a significant amount of extra work to create a free-threaded control, because you must add
the thread collision protection.

The Both option in the Threading Model column asks the wizard to make a control that can be
STA or MTA, avoiding inefficiences when used in a container that is single-threaded or STA,
and exploiting the power of MTA models when available. You will have to add the threading-
protection work, just as when you write an MTA control.

At the moment, controls for Internet Explorer should be STA. DCOM controls that might be
accessed by several connections at once can benefit from being MTA.

Dual and Custom Interfaces COM objects communicate through interfaces, which are col-
lections of function names that describe the possible behavior of a COM object. To use an
interface, you obtain a pointer to it and then call a member function of the interface. All Auto-
mation servers and ActiveX controls have an IDispatch interface in addition to any other inter-
faces that might be specific to what the server or control is for. To call a method of a control,
you can use the Invoke() method of the IDispatch interface, passing in the dispid of the
method you want to invoke. (This technique was developed so that methods could be called
from Visual Basic and other pointerless languages.)

Simply put, a dual-interface control lets you call methods both ways: by using a member func-
tion of a custom interface or by using IDispatch. MFC controls use only IDispatch, but this is
slower than using a custom interface. The Interface column on this dialog box lets you choose
Dual or Custom: Custom leaves IDispatch out of the picture. Select Dual so that the control
can be used from Visual Basic, if necessary.

Aggregation The third column, Aggregation, governs whether another COM class can use
this COM class by containing a reference to an instance of it. Choosing Yes means that other
COM objects can use this class, No means they can’t, and Only means they must—this object
can’t stand alone.

Other Control Settings Selecting support for ISupportErrorInfo means that your control
will be able to return richer error information to the container. Selecting support for Connec-
tion Points is vital for a control, like this one, that will fire events. Selecting Free-Threaded
Marshaler isn’t required for an STA control.

Click the Miscellaneous tab and examine all the settings, which can be left at their default
values (see Figure 21.7). The control should be Opaque with a Solid Background and should
use a normalized DC, even though that’s slightly less efficient, because your draw code will be
much easier to write.

Untitled-8 2/19/99, 8:06 AM496

497

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

If you’d like to see how a DC is normalized for an ATL control, remember that the entire ATL source is
available to you, just as the MFC source is. In Program Files\Microsoft Visual Studio\VC98\ATL\
Include\\ATLCTL.CPP, you will find CComControlBase::OnDrawAdvanced(), which normalizes a
DC and calls OnDraw() for you.

T I P

Supporting Stock Properties
Click the Stock Properties tab to specify which stock properties the control will support. To
add support for a stock property, select it in the Not Supported list box; then click the > button,
and it will be moved to the Supported list on the right. Add support for Background Color and
Foreground Color, as shown in Figure 21.8. If you plan to support a lot of properties, use the >>
button to move them all to the supported list and then move back the ones you don’t want to
support.

FIG. 21.7
Leave the Miscella-
neous properties at the
defaults.

Click OK on the Object Wizard to complete the control creation. At this point, you can build
the project if you want, though the control does nothing at the moment.

Adding Properties to the Control
The MFC versions of DieRoll featured three stock properties: BackColor, ForeColor, and
ReadyState. The first two have been added already, but the ReadyState stock properties must
be added by hand. Also, there are two custom properties, Number and Dots, and an asynchro-
nous property, Image.

FIG. 21.8
Support Background
Color and Foreground
Color.

Adding Properties to the Control

Untitled-8 2/19/99, 8:06 AM497

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

498 Chapter 21 The Active Template Library

Code from the Object Wizard
A COM class that implements or uses an interface does so by inheriting from a class represent-
ing that interface. Listing 21.1 shows all the classes that CDieRoll inherits from.

Listing 21.1 Excerpt from DieRoll.h in the DieRollControl Project—Inheritance

class ATL_NO_VTABLE CDieRoll :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CStockPropImpl<CDieRoll, IDieRoll, &IID_IDieRoll,
 ➥&LIBID_DIEROLLCONTROLLib>,
 public CComControl<CDieRoll>,
 public IPersistStreamInitImpl<CDieRoll>,
 public IOleControlImpl<CDieRoll>,
 public IOleObjectImpl<CDieRoll>,
 public IOleInPlaceActiveObjectImpl<CDieRoll>,
 public IViewObjectExImpl<CDieRoll>,
 public IOleInPlaceObjectWindowlessImpl<CDieRoll>,
 public ISupportErrorInfo,
 public IConnectionPointContainerImpl<CDieRoll>,
 public IPersistStorageImpl<CDieRoll>,
 public ISpecifyPropertyPagesImpl<CDieRoll>,
 public IQuickActivateImpl<CDieRoll>,
 public IDataObjectImpl<CDieRoll>,
 public IProvideClassInfo2Impl<&CLSID_DieRoll,
 ➥&DIID__IDieRollEvents, &LIBID_DIEROLLCONTROLLib>,
 public IPropertyNotifySinkCP<CDieRoll>,
 public CComCoClass<CDieRoll, &CLSID_DieRoll>,

Now you can see where the T in ATL comes in: All these classes are template classes. (If you
aren’t familiar with templates, read Chapter 26, “Exceptions and Templates.”) You add support
for an interface to a control by adding another entry to this list of interface classes from which
it inherits.

Notice that some names follow the pattern IxxxImpl: That means that this class
implements the Ixxx interface. Classes inheriting from IxxxImpl inherit code as

well as function names. For example, CDieRoll inherits from ISupportErrorInfo, not
ISupportErrorInfoImpl<CDieRoll>, even though such a template does exist. That is because
the code in that template implementation class isn’t appropriate for an ATL control, so the control
inherits only the names of the functions from the original interface and provides code for them in the
source file, as you will shortly see. ■

Farther down the header file, you will find the COM map shown in Listing 21.2.

Listing 21.2 Excerpt from DieRollControl.h—COM Map

BEGIN_COM_MAP(CDieRoll)
 COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)
 COM_INTERFACE_ENTRY(IDieRoll)

N O T E

Untitled-8 2/19/99, 8:07 AM498

499

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(IViewObjectEx)
 COM_INTERFACE_ENTRY(IViewObject2)
 COM_INTERFACE_ENTRY(IViewObject)
 COM_INTERFACE_ENTRY(IOleInPlaceObjectWindowless)
 COM_INTERFACE_ENTRY(IOleInPlaceObject)
 COM_INTERFACE_ENTRY2(IOleWindow, IOleInPlaceObjectWindowless)
 COM_INTERFACE_ENTRY(IOleInPlaceActiveObject)
 COM_INTERFACE_ENTRY(IOleControl)
 COM_INTERFACE_ENTRY(IOleObject)
 COM_INTERFACE_ENTRY(IPersistStreamInit)
 COM_INTERFACE_ENTRY2(IPersist, IPersistStreamInit)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
 COM_INTERFACE_ENTRY(IConnectionPointContainer)
 COM_INTERFACE_ENTRY(ISpecifyPropertyPages)
 COM_INTERFACE_ENTRY(IQuickActivate)
 COM_INTERFACE_ENTRY(IPersistStorage)
 COM_INTERFACE_ENTRY(IDataObject)
 COM_INTERFACE_ENTRY(IProvideClassInfo)
 COM_INTERFACE_ENTRY(IProvideClassInfo2)
 END_COM_MAP()

This COM map is the connection between IUnknown::QueryInterface() and all the interfaces
supported by the control. All COM objects must implement IUnknown, and QueryInterface()
can be used to determine what other interfaces the control supports and obtain a pointer to
them. The macros connect the Ixxx interfaces to the IxxxImpl classes from which CDieRoll
inherits.

IUnknown and QueryInterface are discussed in Chapter 13, “ActiveX Concepts,” in the section
titled “The Component Object Model.”

Looking back at the inheritance list for CDieRoll, most templates take only one parameter, the
name of this class, and come from AppWizard. This entry came from ObjectWizard:

public CStockPropImpl<CDieRoll, IDieRoll, &IID_IDieRoll,
 ➥&LIBID_DIEROLLCONTROLLib>,

This line is how ObjectWizard arranged for support for stock properties. Notice that there is
no indication which properties are supported. Farther down the header file, two member vari-
ables have been added to CDieRoll:

OLE_COLOR m_clrBackColor;
OLE_COLOR m_clrForeColor;

The ObjectWizard also updated DieRollControl.idl, the interface definition file, to show these
two stock properties, as shown in Listing 21.3. (Double-click on the interface, IDieRoll, in
ClassView to edit the .IDL file.)

T I P

Adding Properties to the Control

Untitled-8 2/19/99, 8:07 AM499

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

500 Chapter 21 The Active Template Library

Listing 21.3 Excerpt from DieRollControl.idl—Stock Properties

 [
 object,
 uuid(2DE15F32-8A71-11D0-9B10-0080C81A397C),
 dual,
 helpstring(“IDieRoll Interface”),
 pointer_default(unique)
]
 interface IDieRoll : IDispatch
 {
 [propput, id(DISPID_BACKCOLOR)]
 HRESULT BackColor([in]OLE_COLOR clr);
 [propget, id(DISPID_BACKCOLOR)]
 HRESULT BackColor([out,retval]OLE_COLOR* pclr);
 [propput, id(DISPID_FORECOLOR)]
 HRESULT ForeColor([in]OLE_COLOR clr);
 [propget, id(DISPID_FORECOLOR)]
 HRESULT ForeColor([out,retval]OLE_COLOR* pclr);
 };

This class will provide all the support for the get and put functions and will notify the container
when one of these properties changes.

Adding the ReadyState Stock Property
Although ReadyState wasn’t on the stock property list in the ATL Object Wizard, it’s supported
by CStockPropImpl. You can add another stock property by editing the header and idl files. In
the header file, immediately after the lines that declare m_clrBackColor and m_clrForeColor,
declare another member variable:

long m_nReadyState;

This property will be used in the same way as the ReadyState property in the MFC version of
DieRoll: to implement Image as an asynchronous property. In DieRollControl.idl, add these
lines to the IDispatch block, after the lines for BackColor and ForeColor:

[propget, id(DISPID_READYSTATE)]
HRESULT ReadyState([out,retval]long* prs);

You don’t need to add a pair of lines to implement put for this property, because external ob-
jects can’t update ReadyState. Save the header and idl files to update ClassView—if you don’t,
you won’t be able to add more properties with ClassView. Expand CDieRoll and IDieRoll in
ClassView to see that the member variable has been added to CDieRoll and a ReadyState()
function has been added to IDieRoll.

Adding Custom Properties
To add custom properties, you will use an ATL tool similar to the MFC ClassWizard. Right-
click on IDieRoll (the top-level one, not the one under CDieRoll) in ClassView to open the
shortcut menu shown in Figure 21.9, and choose Add Property.

Untitled-8 2/19/99, 8:07 AM500

501

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

The Add Property to Interface dialog box, shown in Figure 21.10, appears. Choose short for
the type and fill in Number for the name. Deselect Put Function because containers won’t
need to change the number showing on the die. Leave the rest of the settings unchanged and
click OK to add the property.

FIG. 21.9
ATL projects have a
different ClassView
shortcut menu than
MFC projects.

Repeat this process for the BOOL Dots, which should have both get and put functions. (Leave
the Put radio button at PropPut.) The ClassView now shows entries under both CDieRoll and
IDieRoll related to these new properties. Try double-clicking the new entries. For example,
double-clicking get_Dots() under the IDieRoll that is under CDieRoll opens the source (cpp)
file scrolled to the get_Dots() function. Double-clicking Dots() under the top-level IDieRoll
opens the idl file scrolled to the propget entry for Dots.

Although a number of entries have been added to CDieRoll, no member variables have been
added. Only you can add the member variables that correspond to the new properties. Al-
though in many cases it’s safe to assume that the new properties are simply member variables
of the control class, they might not be. For example, Number might have been the dimension of
some array kept within the class rather than a variable of its own.

Add the following to the header file, after the declarations of m_clrBackColor, m_clrForeColor,
and m_nReadyState:

short m_sNumber;
BOOL m_bDots;

FIG. 21.10
Add Number as a
read-only property.

Adding Properties to the Control

Untitled-8 2/19/99, 8:08 AM501

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

502 Chapter 21 The Active Template Library

In the idl file, the new propget and propput entries use hard-coded dispids of 1 and 2, like this:

[propget, id(1), helpstring(“property Number”)]
 HRESULT Number([out, retval] short *pVal);
[propget, id(2), helpstring(“property Dots”)]
 HRESULT Dots([out, retval] BOOL *pVal);
[propput, id(2), helpstring(“property Dots”)]
 HRESULT Dots([in] BOOL newVal);

To make the code more readable, use an enum of dispids. Adding the declaration of the enum to
the idl file will make it usable in both the idl and header file. Add these lines to the beginning of
DieRollControl.idl:

 typedef enum propertydispids
 {
 dispidNumber = 1,
 dispidDots = 2,
 }PROPERTYDISPIDS;

Now you can change the propget and propput lines:

[propget, id(dispidNumber), helpstring(“property Number”)]
 HRESULT Number([out, retval] short *pVal);
[propget, id(dispidDots), helpstring(“property Dots”)]
 HRESULT Dots([out, retval] BOOL *pVal);
[propput, id(dispidDots), helpstring(“property Dots”)]
 HRESULT Dots([in] BOOL newVal);

The next step is to code the get and set functions to use the member variables. Listing 21.4
shows the completed functions. (If you can’t see these in ClassView, expand the IDieRoll
under CDieRoll.)

Listing 21.4 Excerpt from DieRoll.cpp—get and set Functions

STDMETHODIMP CDieRoll::get_Number(short * pVal)
{
 *pVal = m_sNumber;
 return S_OK;
}

STDMETHODIMP CDieRoll::get_Dots(BOOL * pVal)
{
 *pVal = m_bDots;
 return S_OK;
}

STDMETHODIMP CDieRoll::put_Dots(BOOL newVal)
{
 if (FireOnRequestEdit(dispidDots) == S_FALSE)
 {
 return S_FALSE;
 }
 m_bDots = newVal;

Untitled-8 2/19/99, 8:08 AM502

503

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

 SetDirty(TRUE);
 FireOnChanged(dispidDots);
 FireViewChange();

 return S_OK;
}

The code in the two get functions is simple and straightforward. The put_dots() code is more
complex because it fires notifications. FireOnRequestEdit() notifies all the
IPropertyNotifySink interfaces that this property is going to change. Any one of these inter-
faces can deny the request, and if one does, this function will return S_FALSE to forbid the
change.

Assuming the change is allowed, the member variable is changed, and the control is marked as
modified (dirty) so that it will be saved. The call to FireOnChange() notifies the
IPropertyNotifySink interfaces that this property has changed, and the call to
FireViewChange() tells the container to redraw the control.

Initializing the Properties
Having added the code to get and set these properties, you should now change the CDieRoll
constructor to initialize all the stock and custom properties, as shown in Listing 21.5. A stub for
the constructor is in the header file for you to edit.

Listing 21.5 Excerpt from DieRoll.h—Constructor

 CDieRoll()
 {
 srand((unsigned)time(NULL));
 m_nReadyState = READYSTATE_COMPLETE;
 m_clrBackColor = 0x80000000 | COLOR_WINDOW;
 m_clrForeColor = 0x80000000 | COLOR_WINDOWTEXT;
 m_sNumber = Roll();
 m_bDots = TRUE;
 }

At the top of the header, add this line to bring in a declaration of the time() function:

#include “time.h”

Just as you did in the MFC version of this control, you initialize m_sNumber to a random number
between 1 and 6, returned by the Roll() function. Add this function to CDieRoll by right-
clicking on the classname in ClassView and choosing Add Member Function from the shortcut
menu. Roll() is protected takes no parameters and returns a short. The code for Roll() is in
Listing 21.6 and is explained in Chapter 17.

Adding Properties to the Control

Untitled-8 2/19/99, 8:09 AM503

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

504 Chapter 21 The Active Template Library

Listing 21.6 CDieRoll::Roll()

short CDieRoll::Roll()
{
 double number = rand();
 number /= RAND_MAX + 1;
 number *= 6;
 return (short)number + 1;
}

It’s a good idea to build the project at this point to be sure you haven’t made any typos or
missed any steps.

Adding the Asynchronous Property
Just as in Chapter 20, the Image property represents a bitmap to be loaded asynchronously and
used as a background image. Add the property to the interface just as Number and Dots were
added. Use BSTR for the type and Image for the name. Update the enum in the idl file so that
dispidImage is 3, and edit the propget and propput lines in the idl file to use the enum value:

[propget, id(dispidImage), helpstring(“property Image”)]
 HRESULT Image([out, retval] BSTR *pVal);
[propput, id(dispidImage), helpstring(“property Image”)]
 HRESULT Image([in] BSTR newVal);

Add a member variable, m_bstrImage, to the class after the five properties you have already
added:

CComBSTR m_bstrImage;

CComBSTR is an ATL wrapper class with useful member functions for manipulating a BSTR.

A number of other member variables must be added to handle the bitmap and the asynchro-
nous loading. Add these lines to DieRoll.h after the declaration of m_bstrImage:

HBITMAP hBitmap;
BITMAPINFOHEADER bmih;
char *lpvBits;
BITMAPINFO *lpbmi;
HGLOBAL hmem1;
HGLOBAL hmem2;
BOOL BitmapDataLoaded;
char *m_Data;
unsigned long m_DataLength;

The first six of these new variables are used to draw the bitmap and won’t be discussed. The
last three combine to achieve the same behavior as the data path property used in the MFC
version of this control.

Add these three lines to the constructor:

m_Data = NULL;
m_DataLength = 0;
BitmapDataLoaded = FALSE;

Untitled-8 2/19/99, 8:09 AM504

505

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Add a destructor to CDieRoll (in the header file) and add the code in Listing 21.7.

Listing 21.7 CDieRoll::~CDieRoll()

 ~CDieRoll()
 {
 if (BitmapDataLoaded)
 {
 GlobalUnlock(hmem1);
 GlobalFree(hmem1);
 GlobalUnlock(hmem2);
 GlobalFree(hmem2);
 BitmapDataLoaded = FALSE;
 }

 if (m_Data != NULL)
 {
 delete m_Data;
 }
 }

The Image property has get and put functions. Code them as in Listing 21.8.

Listing 21.8 DieRoll.cpp—get_Image() and put_Image()

STDMETHODIMP CDieRoll::get_Image(BSTR * pVal)
{
 *pVal = m_bstrImage.Copy();
 return S_OK;
}

STDMETHODIMP CDieRoll::put_Image(BSTR newVal)
{
 USES_CONVERSION;

 if (FireOnRequestEdit(dispidImage) == S_FALSE)
 {
 return S_FALSE;
 }

// if there was an old bitmap or data, delete it
 if (BitmapDataLoaded)
 {
 GlobalUnlock(hmem1);
 GlobalFree(hmem1);
 GlobalUnlock(hmem2);
 GlobalFree(hmem2);
 BitmapDataLoaded = FALSE;
 }

continues

Adding Properties to the Control

Untitled-8 2/19/99, 8:09 AM505

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

506 Chapter 21 The Active Template Library

 if (m_Data != NULL)
 {
 delete m_Data;
 }

 m_Data = NULL;
 m_DataLength = 0;

 m_bstrImage = newVal;
 LPSTR string = W2A(m_bstrImage);

 if (string != NULL && strlen(string) > 0)
 {
 // not a null string so try to load it
 BOOL relativeURL = FALSE;
 if (strchr(string, ‘:’) == NULL)
 {
 relativeURL = TRUE;
 }

 m_nReadyState = READYSTATE_LOADING;

 HRESULT ret = CBindStatusCallback<CDieRoll>::Download(this,
 OnData, m_bstrImage, m_spClientSite, relativeURL);
 }
 else
 {
 // was a null string so don’t try to load it
 m_nReadyState = READYSTATE_COMPLETE;
 FireViewChange();

 }

 SetDirty(TRUE);
 FireOnChanged(dispidImage);
 return S_OK;
}

As with Numbers and Dots, the get function is straightforward, and the put function is more
complicated. The beginning and end of the put function are like put_Dots(), firing notifications
to check whether the variable can be changed and then other notifications that it was changed.
In between is the code unique to an asynchronous property.

To start the download of the asynchronous property, this function will call
CBindStatusCallback<CDieRoll>::Download(), but first it needs to determine whether the
URL in m_bstrImage is a relative or absolute URL. Use the ATL macro W2A to convert the wide
BSTR to an ordinary C string so that the C function strchr() can be used to search for a :
character in the URL. An URL with no : in it is assumed to be a relative URL.

Listing 21.8 Continued

Untitled-8 2/19/99, 8:09 AM506

507

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

A BSTR is a wide (double-byte) character on all 32-bit Windows platforms. It is a narrow
(single-byte) string on a PowerMac. ■

In the MFC version of the DieRoll control with an asynchronous image property, whenever a
block of data came through, the OnDataAvailable() function was called. The call to Down-
load() arranges for a function called OnData() to be called when data arrives. You will write
the OnData() function. Add it to the class with the other public functions and add the imple-
mentation shown in Listing 21.9 to DieRoll.cpp.

Listing 21.9 DieRoll.cpp—CDieRoll::OnData()

void CDieRoll::OnData(CBindStatusCallback<CDieRoll>* pbsc,
 BYTE * pBytes, DWORD dwSize)
{

 char *newData = new char[m_DataLength + dwSize];

 memcpy(newData, m_Data, m_DataLength);
 memcpy(newData+m_DataLength, pBytes, dwSize);
 m_DataLength += dwSize;

 delete m_Data;
 m_Data = newData;

 if (ReadBitmap())
 {
 m_nReadyState = READYSTATE_COMPLETE;
 FireViewChange();
 }
}

Because there is no realloc() when using new, this function uses new to allocate enough
chars to hold the data that has already been read (m_DataLength) and the new data that is
coming in (dwSize); it then copies m_Data to this block, and the new data (pBytes) after m_Data.
Then it attempts to convert into a bitmap the data that has been received so far. If this suc-
ceeds, the download must be complete, so the ready state notifications are sent, and the call to
FireViewChange() sends a notification to the container to redraw the view. You can obtain the
ReadBitmap() function from the Web site and add it to your project. It’s much like the MFC
version, but it doesn’t use any MFC classes such as CFile. Add the function and its code to
CDieRoll.

Once again, build the control, just to be sure you haven’t missed any steps or made any typos.

N O T E

Adding Properties to the Control

Untitled-8 2/19/99, 8:10 AM507

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

508 Chapter 21 The Active Template Library

Drawing the Control
Now that all the properties have been added, you can code OnDraw(). Although the basic struc-
ture of this function is the same as in the MFC version of Chapter 20. A lot more work must be
done because you can’t rely on MFC to do some of it for you. A more detailed explanation of
the OnDraw() design is in Chapter 20.

The structure of OnDraw() is

HRESULT CDieRoll::OnDraw(ATL_DRAWINFO& di)
// if the bitmap is ready, draw it
// else draw a plan background using BackColor
// if !Dots draw a number in ForeColor
// else draw the dots

First, you need to test whether the bitmap is ready and to draw it, if possible. This code is in
Listing 21.10: Add it to dieroll.cpp and remove the OnDraw()code left in dieroll.h by AppWizard.
(Leave the declaration of OnDraw() in the header file.) Notice that if ReadyState is
READYSTATE_COMPLETE, but the call to CreateDIBitmap() doesn’t result in a valid bitmap handle,
the bitmap member variables are cleared away to make subsequent calls to this function give
up a little faster. This chapter doesn’t discuss how to draw bitmaps.

Listing 21.10 CDieRoll::OnDraw()—Use the Bitmap

HRESULT CDieRoll::OnDraw(ATL_DRAWINFO& di)
{
 int width = (di.prcBounds->right - di.prcBounds->left + 1);
 int height = (di.prcBounds->bottom - di.prcBounds->top + 1);

 BOOL drawn = FALSE;
 if (m_nReadyState == READYSTATE_COMPLETE)
 {
 if (BitmapDataLoaded)
 {
 hBitmap = ::CreateDIBitmap(di.hdcDraw, &bmih, CBM_INIT, lpvBits,
 lpbmi, DIB_RGB_COLORS);

 if (hBitmap)
 {
 HDC hmemdc;
 hmemdc = ::CreateCompatibleDC(di.hdcDraw);
 ::SelectObject(hmemdc, hBitmap);
 DIBSECTION ds;
 ::GetObject(hBitmap,sizeof(DIBSECTION),(LPSTR)&ds);
 ::StretchBlt(di.hdcDraw,
 di.prcBounds->left, // left
 di.prcBounds->top, // top
 width, // target width
 height, // target height
 hmemdc, // the image
 0, //offset into image -x
 0, //offset into image -y
 ds.dsBm.bmWidth, // width

Untitled-8 2/19/99, 8:10 AM508

509

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

 ds.dsBm.bmHeight, // height
 SRCCOPY); //copy it over

 drawn = TRUE;
 ::DeleteObject(hBitmap);
 hBitmap = NULL;
 ::DeleteDC(hmemdc);
 }
 else
 {
 GlobalUnlock(hmem1);
 GlobalFree(hmem1);
 GlobalUnlock(hmem2);
 GlobalFree(hmem2);
 BitmapDataLoaded = FALSE;
 }
 }
 }
return S_OK;
}

If the bitmap wasn’t drawn because ReadyState is not READYSTATE_COMPLETE yet or there was a
problem with the bitmap, OnDraw() draws a solid background by using the BackColor property,
as shown in Listing 21.11. Add this code at the end of OnDraw(), before the return statement.
The SDK calls are very similar to the MFC calls used in the MFC version of DieRoll—for
example, ::OleTranslateColor() corresponds to TranslateColor().

Listing 21.11 CDieRoll::OnDraw()—Draw a Solid Background

 if (!drawn)
 {
 COLORREF back;
 ::OleTranslateColor(m_clrBackColor, NULL, &back);
 HBRUSH backbrush = ::CreateSolidBrush(back);
 ::FillRect(di.hdcDraw, (RECT *)di.prcBounds, backbrush);
 ::DeleteObject(backbrush);
 }

With the background drawn, as a bitmap image or a solid color, OnDraw() must now tackle the
foreground. Getting the foreground color is simple. Add these two lines at the end of OnDraw()
before the return statement:

COLORREF fore;
::OleTranslateColor(m_clrForeColor, NULL, &fore);

The project should build successfully at this point if you want to be sure you’ve entered all this
code correctly.

If Dots is FALSE, the die should be drawn with a number on it. Add the code in Listing 21.12 to
OnDraw() before the return statement as usual. Again, the SDK functions do the same job as
the similarly named MFC functions used in the MFC version of DieRoll.

Drawing the Control

Untitled-8 2/19/99, 8:10 AM509

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

510 Chapter 21 The Active Template Library

Listing 21.12 CDieRoll::OnDraw()—Draw a Number

 if (!m_bDots)
 {
 _TCHAR val[20]; //character representation of the short value
 _itot(m_sNumber, val, 10);
 ::SetTextColor(di.hdcDraw, fore);
 ::ExtTextOut(di.hdcDraw, 0, 0, ETO_OPAQUE,
 (RECT *)di.prcBounds, val, _tcslen(val), NULL);
 }

The code that draws dots is in Listing 21.13. Add it to OnDraw() before the return statement to
complete the function. This code is long but is explained in Chapter 17. As in the rest of
OnDraw(), MFC function calls have been replaced with SDK calls.

Listing 21.13 CDieRoll::OnDraw()—Draw Dots

 else
 {
 //dots are 4 units wide and high, one unit from the edge
 int Xunit = width/16;
 int Yunit = height/16;
 int Xleft = width%16;
 int Yleft = height%16;

 // adjust top left by amount left over
 int Top = di.prcBounds->top + Yleft/2;
 int Left = di.prcBounds->left + Xleft/2;

 HBRUSH forebrush;
 forebrush = ::CreateSolidBrush(fore);

 HBRUSH savebrush = (HBRUSH)::SelectObject(di.hdcDraw, forebrush);

 switch(m_sNumber)
 {
 case 1:
 ::Ellipse(di.hdcDraw, Left+6*Xunit, Top+6*Yunit,
 Left+10*Xunit, Top + 10*Yunit); //center
 break;
 case 2:
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 3:
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 ::Ellipse(di.hdcDraw, Left+6*Xunit, Top+6*Yunit,
 Left+10*Xunit, Top + 10*Yunit); //center

Untitled-8 2/19/99, 8:11 AM510

511

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 4:
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 5:
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 ::Ellipse(di.hdcDraw, Left+6*Xunit, Top+6*Yunit,
 Left+10*Xunit, Top + 10*Yunit); //center
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 case 6:
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+Yunit,
 Left+5*Xunit, Top + 5*Yunit); //upper left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+Yunit,
 Left+15*Xunit, Top + 5*Yunit); //upper right
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+6*Yunit,
 Left+5*Xunit, Top + 10*Yunit); //center left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+6*Yunit,
 Left+15*Xunit, Top + 10*Yunit); //center right
 ::Ellipse(di.hdcDraw, Left+Xunit, Top+11*Yunit,
 Left+5*Xunit, Top + 15*Yunit); //lower left
 ::Ellipse(di.hdcDraw, Left+11*Xunit, Top+11*Yunit,
 Left+15*Xunit, Top + 15*Yunit); //lower right
 break;
 }

 ::SelectObject(di.hdcDraw, savebrush);
 ::DeleteObject(forebrush);
 }

Again, build the project to be sure you haven’t missed anything. If you look in your project
folder now, you should see a file called DieRoll.htm (it doesn’t show up in FileView). This
HTML is generated for you to test your control. Try loading it into Internet Explorer now, and
a die should display, as in Figure 21.11. It will not have an image background and it will not roll
when you click it.

Drawing the Control

Untitled-8 2/19/99, 8:11 AM511

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

512 Chapter 21 The Active Template Library

Persistence and a Property Page
The properties have been added to the control and used in the drawing of the control. Now all
that remains is to make the properties persistent and to add a property page.

Adding a Property Page
To add a property page to this control, follow these steps:

1. Choose Insert, New ATL Object from the menu bar to open the ATL Object Wizard.

2. Select Controls in the left pane and Property Page in the right pane; then click Next.

3. On the Names tab, enter DieRollPPG for the Short Name.

4. Click the Strings tab (the settings on the Attributes tab will not be changed). Enter
General for the Title and DieRoll Property Page for the Doc String. Blank out the
Helpfile Name.

5. Click OK to add the property page to the project.

Developer Studio will switch to ResourceView and open the dialog IDD_DIEROLLPPG. Add a
check box with the resource ID IDC_DOTS and the caption Display Dot Pattern and an edit box
with the resource ID IDC_IMAGE labelled Image URL, as shown in Figure 21.12.

At the top of DieRollPPG.h, add this line:

#include “DieRollControl.h”

You need to connect the controls on this property page to properties of the DieRoll control.
The first step is to add three lines to the message map in DieRollPPG.h so that it resembles
Listing 21.14.

FIG. 21.11
Your control can draw
itself in a browser.

Untitled-8 2/19/99, 8:11 AM512

513

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Listing 21.14 DieRollPPG.h—Message Map

BEGIN_MSG_MAP(CDieRollPPG)
 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
 COMMAND_HANDLER(IDC_DOTS, BN_CLICKED, OnDotsChanged)
 COMMAND_HANDLER(IDC_IMAGE, EN_CHANGE, OnImageChanged)
 CHAIN_MSG_MAP(IPropertyPageImpl<CDieRollPPG>)
END_MSG_MAP()

These new lines ensure that OnInitDialog() will be called when the dialog box is initialized
and that OnDotsChanged() or OnImageChanged() will be called whenever Dots or Image are
changed (the other properties don’t have put methods and so can’t be changed).

Add the code in Listing 21.15 to the header file to declare and implement OnInitDialog(). Put
it after the constructor, so it will be public as well.

Listing 21.15 DieRollPPG.h—CDieRollPPG::OnInitDialog()

 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam,
 BOOL & bHandled)
 {
 USES_CONVERSION;

 CComQIPtr<IDieRoll, &IID_IDieRoll> pDieRoll(m_ppUnk[0]);

 BOOL dots;
 pDieRoll->get_Dots(&dots);
 ::SendDlgItemMessage(m_hWnd, IDC_DOTS, BM_SETCHECK, dots, 0L);

FIG. 21.12
Add two controls to the
property page.

continues

Persistence and a Property Page

Untitled-8 2/19/99, 8:11 AM513

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

514 Chapter 21 The Active Template Library

 BSTR image;
 pDieRoll->get_Image(&image);
 LPTSTR image_URL = W2T(image);
 SetDlgItemText(IDC_IMAGE, image_URL);

 return TRUE;
 }

This code begins by declaring a pointer to an IDieRoll interface using the CComQIPtr template
class and initializing it to the first element of the m_ppUnk array in this class, CDieRollPPG. (A
property page can be associated with multiple controls.) The constructor for the CComQIPtr
template class uses the QueryInterface() method of the IUnknown pointer that was passed in
to the constructor to find a pointer to an IDieRoll interface. Now you can call member func-
tions of this interface to access the properties of the DieRoll control.

Finding the value of the Dots property of the CDieRoll object is simple enough: Call
get_Dots(). To use that value to initialize the check box on the property page, send a message
to the control using the SDK function ::SendDlgItemMessage(). The BM_SETCHECK parameter
indicates that you are setting whether the box is checked (selected). Passing dots as the
fourth parameter ensures that IDC_DOTS will be selected if dots is TRUE and deselected if dots
is FALSE. Similarly, obtain the URL for the image with get_Image(), convert it from wide char-
acters, and then use SetDlgItemText() to set the edit box contents to that URL.

OnDotsChanged() and OnImageChanged() are simple: Add the code for them both, as presented
in Listing 21.16, to the header file, after OnInitDialog().

Listing 21.16 DieRollPPG.h—The OnChanged Functions

 LRESULT OnDotsChanged(WORD wNotify, WORD wID, HWND hWnd, BOOL& bHandled)
 {
 SetDirty(TRUE);
 return FALSE;
 }

 LRESULT OnImageChanged(WORD wNotify, WORD wID, HWND hWnd, BOOL& bHandled)
 {
 SetDirty(TRUE);
 return FALSE;
 }

The calls to SetDirty() in these functions ensure that the Apply() function will be called when
the user clicks OK on the property page.

The ObjectWizard generated a simple Apply() function, but it doesn’t affect the Dots or Number
properties. Edit Apply() so that it resembles Listing 21.17.

Listing 21.15 Continued

Untitled-8 2/19/99, 8:12 AM514

515

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Listing 21.17 DieRollPPG.h—CDieRollPPG::Apply()

 STDMETHOD(Apply)(void)
 {
 USES_CONVERSION;
 BSTR image = NULL;
 GetDlgItemText(IDC_IMAGE, image);

 BOOL dots = (BOOL)::SendDlgItemMessage(m_hWnd, IDC_DOTS,
 BM_GETCHECK, 0, 0L);

 ATLTRACE(_T(“CDieRollPPG::Apply\n”));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IDieRoll, &IID_IDieRoll> pDieRoll(m_ppUnk[i]);

 if FAILED(pDieRoll->put_Dots(dots))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError), _T(“Error”), MB_ICONEXCLAMATION);
 return E_FAIL;
 }

 if FAILED(pDieRoll->put_Image(image))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError), _T(“Error”), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 m_bDirty = FALSE;
 return S_OK;
 }

Apply starts by getting dots and image from the dialog box. Notice in the call to
::SendDlgItemMessage() that the third parameter is BM_GETCHECK, so this call ascertains the
selected state (TRUE or FALSE) of the check box. Then a call to ATLTRACE prints a trace message
to aid debugging. Like the trace statements discussed in Chapter 24, “Improving Your
Application’s Performance,” this statement disappears in a release build.

The majority of Apply() is a for loop that is executed once for each control associated with
this property page. It obtains an IDieRoll interface pointer, just as in OnInitDialog(), and
tries calling the put_Dots() and put_Image() member functions of that interface. If either call
fails, a message box informs the user of the problem. After the loop, the m_bDirty member
variable can be set to FALSE.

Build the project at this point to be sure you have no errors.

Persistence and a Property Page

Untitled-8 2/19/99, 8:12 AM515

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

516 Chapter 21 The Active Template Library

Connecting the Property Page to CDieRoll
The changes to CDieRollPPG are complete. You need to make some changes to CDieRoll to
connect it to the property page class. Specifically, the property map needs some more entries.
Add the first two entries for Dots and Image so that it looks like Listing 21.18.

Listing 21.18 DieRoll.h—Property Map

BEGIN_PROP_MAP(CDieRoll)
 PROP_ENTRY(“Dots”, dispidDots, CLSID_DieRollPPG)
 PROP_ENTRY(“Image”, dispidImage, CLSID_DieRollPPG)
 PROP_DATA_ENTRY(“_cx”, m_sizeExtent.cx, VT_UI4)
 PROP_DATA_ENTRY(“_cy”, m_sizeExtent.cy, VT_UI4)
 PROP_ENTRY(“BackColor”, DISPID_BACKCOLOR, CLSID_StockColorPage)
 PROP_ENTRY(“ForeColor”, DISPID_FORECOLOR, CLSID_StockColorPage)
END_PROP_MAP()

Persistence in a Property Bag
In a number of different ways, Internet Explorer can get property values out of some HTML
and into a control wrapped in an <OBJECT> tag. With stream persistence, provided by default,
you use a DATA attribute in the <OBJECT> tag. If you would like to use <PARAM> tags, which are
far more readable, the control must support property bag persistence through the
IPersistPropertyBag interface.

Add another class to the list of base classes at the start of the CDieRoll class:

public IPersistPropertyBagImpl<CDieRoll>,

Add this line to the COM map:

COM_INTERFACE_ENTRY(IPersistPropertyBag)

Now you can use <PARAM> tags to set properties of the control.

Using the Control in Control Pad
You’ve added a lot of code to CDieRoll and CDieRollPPG, and it’s time to build the control. After
fixing any typos or minor errors, you can use the control.

You are going to build the HTML to display this control in Microsoft’s Control Pad. If you don’t
have Control Pad, it’s downloadable free from http://www.microsoft.com/workshop/
author/cpad/download.htm. If you have a copy of Control Pad from before January 1997,
find the latest one. If you use the old version, the init safe and script safe work you will do later
in this chapter will appear to malfunction.

Control Pad used to serve two purposes: It simplified building <OBJECT> tags for ActiveX
controls and helped developers use the HTML Layout control. Now that the functionality of

the Layout control is in Internet Explorer 4.0, it’s just a handy way to make <OBJECT> tags. ■

N O T E

Untitled-8 2/19/99, 8:12 AM516

517

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

When you start Control pad, it makes an empty HTML document. With the cursor between
<BODY> and </BODY>, choose Edit, Insert ActiveX Control. The Insert ActiveX Control dialog
appears: Choose DieRoll Class from the list (you might recall from Figure 21.5 that the type
name for this control is DieRoll Class) and click OK. The control and a Properties dialog ap-
pear. Click on the Image property and enter the full path to the image file you want to use in the
edit box at the top of the Properties dialog. (You can use any bmp file you have handy, includ-
ing one you make yourself in the Paint program that comes with Windows, or get beans.bmp
from the Web site.) Click Apply, and the control redraws with a background image, such as the
jelly beans shown in Figure 21.13. Close the Properties dialog and the Edit ActiveX Control
dialog, and you will see the HTML generated for you, including the <PARAM> tags that were
added because Control Pad could determine that DieRoll supports the IPersistPropertyBag
interface. Close Control Pad; you can save the HTML if you want.

The control doesn’t have its full functionality yet: It doesn’t roll itself when you click it. The
next section will add events.

Adding Events
Two events must be added: one when the user clicks on the control and one when the ready
state changes. The Click event is discussed in Chapter 17 and the ReadyStateChanged event is
discussed in Chapter 20.

Adding Methods to the Event Interface
In ClassView, right-click the _IDieRollEvents interface. Choose Add Method and fill in the
Return Type as void and the Method Name as Click; leave the parameters blank. Figure 21.14
shows the completed dialog. Click OK to add the method.

FIG. 21.13
Inserting the control
into Control Pad
displays it for you.

Adding Events

Untitled-8 2/19/99, 8:13 AM517

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

518 Chapter 21 The Active Template Library

In the same way, add ReadyStateChange(), returning void and taking no parameters, to the
event interface. The dispinterface section in the idl file should now look like this:

dispinterface _IDieRollEvents
{
 properties:
 methods:
 [id(DISPID_CLICK), helpstring(“method Click”)] void Click();
 [id(DISPID_READYSTATECHANGE),
➥helpstring(“method ReadyStateChange”)] void ReadyStateChange();
};

If the dispids appear as 1 and 2 rather than DISPID_CLICK and DISPID_READYSTATECHANGE, edit
them to match this code.

Implementing the IConnectionPoint Interface
To fire events, you implement the IConnectionPoint interface. The Connection Point Wizard
will get you started, but first, save the idl file and build the project so that the typelib associated
with the project is up-to-date.

In ClassView, right-click CDieRoll and choose Implement Connection Point. Select
_IDieRollEvents, as in Figure 21.15, and click OK to generate a proxy class for the connection
point. This class will have methods you can call to fire an event.

FIG. 21.14
Add the Click method
to the event interface.

FIG. 21.15
The Connection Point
Wizard makes short
work of adding events.

Untitled-8 2/19/99, 8:13 AM518

519

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Look for the new class, CProxy_IDieRollEvents, in ClassView. Expand it, and you will see it
has two functions, Fire_Click() and Fire_ReadyStateChange().

Firing the Click Event
When the user clicks the control, it should fire a Click event. Right-click CDieRoll in
ClassView and choose Add Windows Message Handler. Select WM_LBUTTONDOWN from the long
list on the left and click Add Handler; then click OK. You will see a new entry in the message
map:

MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)

Edit the member function OnLButtonDown() that has been added to CDieRoll, so that it looks
like Listing 21.19.

Listing 21.19 CDieRoll::OnLButtonDown()

LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL & bHandled)
{
 m_sNumber = Roll();
 FireOnChanged(dispidNumber);
 Fire_Click();
 FireViewChange();
 return 0;
}

This code rolls the die, fires a notification that Number has changed, fires a Click event, and
notifies the container that the control should be redrawn. Build the control again and load the
dieroll.htm page that was generated for you into Internet Explorer. Click the die a few times
and watch the displayed number change. Close Internet Explorer, or later you’ll have trouble
building the project because the DLL will be locked by Explorer.

Firing the ReadyStateChange Event
Now put_Image() and OnData() can fire events when the ready state changes. There are two
ways to tell containers that ReadyState has changed: Fire_ReadyStateChange() for older
containers and, for Internet Explorer 4.0 and above, a FireOnChanged() call exactly like the
ones you’ve already coded for dispidImage and dispidDots.

In ClassView, expand CDieRoll and then expand IDieRoll underneath it. Double-click
put_Image() to edit it, and look for a line like this:

m_nReadyState = READYSTATE_LOADING;

Add immediately after that line:

Fire_ReadyStateChange();
FireOnChanged(DISPID_READYSTATE);

Adding Events

Untitled-8 2/19/99, 8:14 AM519

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

520 Chapter 21 The Active Template Library

Then, later in put_Image() find this line:

m_nReadyState = READYSTATE_COMPLETE;

Add the same two lines after this line as well. In OnData(), find this line:

m_nReadyState = READYSTATE_COMPLETE;

Add the same two lines immediately after it.

Build the control again and insert it into a new page in Control Pad. Be sure to assign the Im-
age property so that you can see what happens while the image loads. Click the die in the Edit
ActiveX Control window, and it will roll a new number each time that you click. Save the
HTML, load it into Explorer, and see if you can roll the die while the image loads. Click Refresh
and you’ll see that the image redraws itself even if you don’t click anything. As another test,
open the ActiveX Control Test container (available from the Tools menu in Developer Studio)
and insert a DieRoll control; then use the event log to confirm that Click and
ReadyStateChange events are being fired.

Probably the easiest and most relevant way to test the control is in Internet Explorer 4. To do
this, you specify Explorer as the executable for debug. First, you must turn off the Active Desk-
top if you have it installed, because under the Active Desktop, Explorer is always running.

To remove the Active desktop, first close any applications you have open, because you’re going
to restart your system as part of the process. Choose Start, Settings, Control Panel and double-
click Add/Remove Programs. On the Install/Uninstall tab, choose Microsoft Internet Explorer
4.0 and click Add/Remove. Choose the last radio button, which says Remove the Windows
Desktop Update Component, But Keep the Internet Explorer 4.0 Web Browser. Click OK.
Setup will adjust the Registry and restart your system.

After the restart, open Developer Studio; load the DieRollControl project again; choose Project,
Settings; and click the Debug tab. If Internet Explorer 4 is your default browser, click the ar-
row next to Executable for Debug Session and choose Default Web Browser. If it’s not, enter
C:\Program Files\Internet Explorer\IEXPLORE.EXE (or the path to Explorer on your
system, if it’s different) in the edit box. Under Program Arguments, enter the path to the
HTML you developed with Control Pad to test the control. Click OK, and now whenever you
choose Build, Start Debug, Go, or click the Go button on the toolbar, Explorer will be
launched, and the page that holds the control will be loaded. Choose Debug, Stop Debugging,
and Explorer will close.

Exposing the DoRoll() Function
The next stage in the development of this control is to expose a function that will enable the
container to roll the die. One use for this is to arrange for the container to roll one die when-
ever the other is clicked. Right-click the IDieRoll interface in ClassView and choose Add
Method. Enter DoRoll for Method Name and leave the Parameters section blank. Click OK.

Functions have a dispid just as properties do. Add an entry to the enum of dispids in the idl file
so that dispidDoRoll is 4. This ensures that if you add another property later, you won’t collide

Untitled-8 2/19/99, 8:14 AM520

521

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

with the default dispid of 1 for DoRoll(). When you added the function to the interface, a line
was added to the .idl file after the get and put entries for the properties. Change it to use the
new dispid so that it looks like this:

[id(dispidDoRoll), helpstring(“method DoRoll”)] HRESULT DoRoll();

The code for DoRoll() is in Listing 21.20. Add it to the function stub that has been created in
DieRoll.cpp.

Listing 21.20 CDieRoll::DoRoll()

STDMETHODIMP CDieRoll::DoRoll()
{
 m_sNumber = Roll();
 FireOnChanged(dispidNumber);
 FireViewChange();
 return S_OK;
}

This code is just like OnLButtonDown but doesn’t fire a Click event. Build the control again.

One way to test this method is with the Test Container. Open it by choosing Tools, ActiveX
Control Test Container and choose Edit, Insert New Control. Find DieRoll Class in the list and
double-click it to insert a dieroll; then choose Control, Invoke Methods. From the drop-down
box at the top, choose DoRoll and then click Invoke a few times. Figure 21.16 shows the Invoke
Methods dialog. In the background, Test Container is reporting that the Number property has
changed.

FIG. 21.16
The Invoke Methods
dialog box.

Exposing the DoRoll() Function

Untitled-8 2/19/99, 8:14 AM521

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

522 Chapter 21 The Active Template Library

Registering as init Safe and script Safe
In Chapter 20 you added Registry entries to indicate that the control was safe to accept param-
eters in a Web page and to interact with a script. For an ATL control, you can achieve this by
supporting the IObjectSafety interface. A container will query this interface to see whether
the control is safe.

Add the following line to the inheritance list for CDieRoll:

 public IObjectSafetyImpl<CDieRoll,
INTERFACESAFE_FOR_UNTRUSTED_CALLER | INTERFACESAFE_FOR_UNTRUSTED_DATA>,
,

Add this line to the COM map in dieroll.h:

COM_INTERFACE_ENTRY(IObjectSafety)

This will automatically make the control script and init safe.

Preparing the Control for Use in Design Mode
When a developer is building a form or dialog box in an application such as Visual Basic or
Visual C++, a control palette makes it simple to identify the controls to be added. Building the
icon used on that palette is the next step in completing this control.

Switch to ResourceView, expand the resources, expand bitmaps, and double-click IDB_DIEROLL
to edit it. Change it to the much simpler icon shown in Figure 21.17.

FIG. 21.17
Draw an icon for the
control.

Untitled-8 2/19/99, 8:15 AM522

523

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

The Registry Script for this control refers to this icon by resource number. To discover what
number has been assigned to IDB_DIEROLL, choose View, Resource Symbols and note the
numeric value associated with IDB_DIEROLL. (On the machine where this sample was written,
it’s 202.) Open DieRoll.rgs (the script file) from FileView and look for this line:

ForceRemove ‘ToolboxBitmap32’ = s ‘%MODULE%, 101’

Change it to the following:

ForceRemove ‘ToolboxBitmap32’ = s ‘%MODULE%, 202’

Be sure to use your value rather than 202. Build the control again. To see the fruits of your
labors, run the Control Pad again and choose File, New HTML Layout. Select the Additional
tab on the Toolbox palette and then right-click on the page. From the shortcut menu that ap-
pears, choose Additional Controls. Find DieRoll Class on the list and select it; then click OK.
The new icon appears on the Additional tab, as shown in Figure 21.18.

Minimizing Executable Size
Until now, you have been building debug versions of the control. Dieroll.dll is more than
420KB. Although that’s much smaller than the 600KB of CAB file for the MFC DLLs that the
MFC version of DieRoll might require, it’s a lot larger than the 30KB or so that the release
version of dieroll.ocx takes up. With development complete, it’s time to build a release version.

Choose Build, Set Active Configuration to open the Set Active Project Configuration dialog
shown in Figure 21.19. You will notice that there are twice as many release versions in an ATL
project as in an MFC project. In addition to choosing whether you support Unicode, you must
choose MinSize or MinDependency.

FIG. 21.18
Add the DieRoll class to
the HTML Layout
toolbox.

Minimizing Executable Size

Untitled-8 2/19/99, 8:15 AM523

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

524 Chapter 21 The Active Template Library

The minimum size release version makes the control as small as possible by linking dynami-
cally to an ATL DLL and the ATL Registrar. The minimum dependencies version links to these
statically, which makes the control larger but self-contained. If you choose minimum size, you
will need to set up cab files for the control and the DLLs, as discussed in Chapter 20 for the
MFC DLLs. At this early stage of ATL acceptance, it’s probably better to choose minimum
dependencies.

If you choose minimum dependency and build, you will receive these error messages from the
linker:

Linking...
 Creating library ReleaseMinDependency/DieRollControl.lib and
 ➥object ReleaseMinDependency/DieRollControl.exp
LIBCMT.lib(crt0.obj) : error LNK2001: unresolved external symbol _main
ReleaseMinDependency/DieRollControl.dll :
 ➥fatal error LNK1120: 1 unresolved externals
Error executing link.exe.

DieRollControl.dll - 2 error(s), 0 warning(s)

This error isn’t due to any mistake on your part. By default, ATL release builds use a tiny ver-
sion of the C runtime library (CRT) so that they will build as small a DLL as possible. This
minimal CRT doesn’t include the time(), rand(), and srand() functions used to roll the die.
The linker finds these functions in the full-size CRT, but that library expects a main() function
in your control. Because there isn’t one, the link fails.

This behavior is controlled with a linker setting. Choose Project, Settings. From the drop-down
box at the upper left, choose Win32 Release MinDependency. Click the C/C++ tab on the right.
Select Preprocessor from the Category drop-down box, click in the Preprocessor definitions
box, and press the END key to move to the end of the box. Remove the _ATL_MIN_CRT flag,
highlighted in Figure 21.20, and the comma immediately before it. Click OK, build the project
again, and the linker errors disappear.

If you comment out the calls to rand(), srand(), and time() so that the control no longer
works, it will link with _ATL_MIN_CRT into a 57KB DLL. With _ATL_MIN_CRT removed, it is
86KB—a significant increase but still substantially smaller than the MFC control and its DLLs.
A minimum size release build with _ATL_MIN_CRT removed is 75KB: The saving is hardly worth
the trouble to package up the ATL DLLs. With rand(), srand(), and time() commented out, a
minimum size release build with _ATL_MIN_CRT left in is only 46KB.

FIG. 21.19
Choose a build type
from the Set Active
Project Configuration
dialog box.

Untitled-8 2/19/99, 8:15 AM524

525

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

21

V
Part

Ch

Removing the _ATL_MIN_CRT flag increases the control’s size by almost 30KB. Although there’s
no way to rewrite this control so that it doesn’t need the rand(), srand(), and time() functions,
you could write your own versions of them and include them in the project so that the control
would still link with the _ATL_MIN_CRT flag. You can find algorithms for random number genera-
tors and their seed functions in books of algorithms. The SDK GetSystemTime() function can
substitute for time(). If you were writing a control that would be used for the first time by
many users in a time-sensitive application, this extra work might be worth it. Remember that
the second time a user comes to a Web page with an ActiveX control, the control doesn’t need
to be downloaded again.

Using the Control in a Web Page
This control has a slightly different name and different CLSID than the MFC version built in
Chapter 20. You can use them together in a single Web page to compare them. Listing 21.21
presents some HTML that puts the two controls in a table. (Use your own CLSID values when
you create this page—you might want to use Control Pad as described earlier.) Figure 21.21
shows this page in Explorer.

Listing 21.21 dieroll.htm

</HEAD>
<BODY>
<TABLE CELLSPACING=15>
<TR>
<TD>
Here’s the MFC die:

<OBJECT ID=”MFCDie”
 CLASSID=”CLSID:46646B43-EA16-11CF-870C-00201801DDD6"
 WIDTH=”200" HEIGHT=”200">
 <PARAM NAME=”ForeColor” VALUE=”0">
 <PARAM NAME=”BackColor” VALUE=”16777215">
 <PARAM NAME=”Image” VALUE=”beans.bmp”>

FIG. 21.20
Turn off the flag that
links in only a tiny
version of the C runtime
library.

continues

Using the Control in a Web Page

Untitled-8 2/19/99, 8:15 AM525

B3A3/swg#4 UsingVisual C++6 1539-2 7.21.98 ayanna chapter21 LP#3

526 Chapter 21 The Active Template Library

If you see this text, your browser doesn’t support the OBJECT tag.
</OBJECT>
</TD>
<TD>
Here’s the ATL die:

<OBJECT ID=”ATLDie” WIDTH=200 HEIGHT=200
 CLASSID=”CLSID:2DE15F35-8A71-11D0-9B10-0080C81A397C”>
 <PARAM NAME=”Dots” VALUE=”1">
 <PARAM NAME=”Image” VALUE=”beans.bmp”>
 <PARAM NAME=”Fore Color” VALUE=”2147483656">
 <PARAM NAME=”Back Color” VALUE=”2147483653">
</OBJECT>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Listing 21.21 Continued

You can edit HTML files in Developer Studio as easily as source files, and with syntax coloring, too!
Simply choose File, New and then select HTML Page from the list on the File tab. When you have typed
in the HTML, right-click in the editor area and choose Preview to launch Explorer and load the page.

FIG. 21.21
The ATL control can be
used wherever the MFC
control was used.

T I P

Untitled-8 2/19/99, 8:16 AM526

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptVI LP#3

VIP A R T

Advanced Programming Techniques

22 Database Access 529

23 SQL and the Enterprise Edition 559

24 Improving Your Application’s Performance 585

25 Achieving Reuse with the Gallery and Your Own
AppWizards 597

26 Exceptions and Templates 607

27 Multitasking with Windows Threads 631

28 Future Explorations 655

Untitled-9 2/19/99, 8:17 AM527

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptVI LP#3

Untitled-9 2/19/99, 8:17 AM528

529

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

C H A P T E R

Database Access

22

In this chapter

Understanding Database Concepts 530

Creating an ODBC Database Program 533

Choosing Between ODBC and DAO 556

OLE DB 558

Untitled-10 2/19/99, 8:18 AM529

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

530 Chapter 22 Database Access

Without a doubt, databases are one of the most popular computer applications. Virtually every
business uses databases to keep track of everything from its customer list to the company
payroll. Unfortunately, there are many different types of database applications, each of which
defines its own file layouts and rules. In the past, programming database applications was a
nightmare because it was up to the programmer to figure out all the intricacies of accessing the
different types of database files. As a Visual C++ developer, you have a somewhat simpler task
because MFC includes classes built on the ODBC (Open Database Connectivity) and DAO
(Data Access Objects) systems. Other Microsoft database technologies are gaining MFC sup-
port as well.

Believe it or not, by using AppWizard, you can create a simple database program without writ-
ing even a single line of C++ code. More complex tasks do require some programming, but not
as much as you might think.

This chapter gives you an introduction to programming with Visual C++’s ODBC classes. You
will also learn about the similarities and differences between ODBC and DAO. Along the way,
you will create a database application that can not only display records in a database but also
update, add, delete, sort, and filter records.

Understanding Database Concepts
Before you can write database applications, you have to know a little about how databases
work. Databases have come a long way since their invention, so there’s much you can learn
about them. This section provides a quick introduction to basic database concepts, including
the two main types of databases: flat and relational.

Using the Flat Database Model
Simply put, a database is a collection of records. Each record in the database is composed of
fields, and each field contains information related to that specific record. For example, suppose
you have an address database. In this database, you have one record for each person. Each
record contains six fields: the person’s name, street address, city, state, zip code, and phone
number. A single record in your database might look like this:

NAME: Ronald Wilson
STREET: 16 Tolland Dr.
CITY: Hartford
STATE: CT
ZIP: 06084
PHONE: 860-555-3542

Your entire database will contain many records like this one, with each record containing infor-
mation about a different person. To find a person’s address or phone number, you search for
the name. When you find the name, you also find all the information that’s included in the
record with the name.

Untitled-10 2/19/99, 8:18 AM530

531

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

This type of database system uses the flat database model. For home use or for small busi-
nesses, the simple flat database model can be a powerful tool. However, for large databases
that must track dozens, or even hundreds, of fields of data, a flat database can lead to repetition
and wasted space. Suppose you run a large department store and want to track some informa-
tion about your employees, including their name, department, manager’s name, and so on. If
you have 10 people in Sporting Goods, the name of the Sporting Goods manager is repeated in
each of those 10 records. When Sporting Goods hires a new manager, all 10 records have to be
updated. It would be much simpler if each employee record could be related to another data-
base of departments and manager names.

Using the Relational Database Model
A relational database is like several flat databases linked together. Using a relational database,
you can not only search for individual records, as you can with a flat database but also relate
one set of records to another. This enables you to store data much more efficiently. Each set of
records in a relational database is called a table. The links are accomplished through keys,
values that define a record. (For example, the employee ID might be the key to an employee
table.)

The sample relational database that you use in this chapter was created using Microsoft Ac-
cess. The database is a simple system for tracking employees, managers, and the departments
for which they work. Figures 22.1, 22.2, and 22.3 show the tables: The Employees table con-
tains information about each store employee, the Managers table contains information about
each store department’s manager, and the Departments table contains information about the
departments themselves. (This database is very simple and probably not usable in the real
world.)

FIG. 22.1
The Employees table
contains data fields for
each store employee.

Understanding Database Concepts

Untitled-10 2/19/99, 8:19 AM531

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

532 Chapter 22 Database Access

Accessing a Database
Relational databases are accessed by using some sort of database scripting language. The most
commonly used database language is the Structured Query Language (SQL), which is used to
manage not only databases on desktop computers but also huge databases used by banks,
schools, corporations, and other institutions with sophisticated database needs. By using a
language such as SQL, you can compare information in the various tables of a relational data-
base and extract results made up of data fields from one or more tables combined.

Most developers pronounce SQL as Sequel.

Learning SQL, though, is a large task, one that is beyond the scope of this book (let alone this
chapter). In fact, entire college-level courses are taught on the design, implementation, and
manipulation of databases. Because there isn’t space in this chapter to cover relational data-
bases in any useful way, you will use the Employee table (refer to Figure 22.1) of the Depart-
ment Store database in the sample database program you will soon develop. When you finish
creating the application, you will have learned one way to update the tables of a relational data-
base without knowing even a word of SQL. (Those of you who live and breathe SQL will enjoy
Chapter 23, “SQL and the Enterprise Edition.”)

FIG. 22.2
The Managers table
contains information
about each store
department’s manager.

FIG. 22.3
The Departments table
contains data about
each store department.

T I P

Untitled-10 2/19/99, 8:19 AM532

533

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

The Visual C++ ODBC Classes
When you create a database program with Visual C++’s AppWizard, you end up with an applica-
tion that draws extensively on the various ODBC classes that have been incorporated into
MFC. The most important of these classes are CDatabase, CRecordset, and CRecordView.

AppWizard automatically generates the code needed to create an object of the CDatabase class.
This object represents the connection between your application and the data source that you
will be accessing. In most cases, using the CDatabase class in an AppWizard-generated pro-
gram is transparent to you, the programmer. All the details are handled by the framework.

AppWizard also generates the code needed to create a CRecordset object for the application.
The CRecordset object represents the actual data currently selected from the data source, and
its member functions manipulate the data from the database.

Finally, the CRecordView object in your database program takes the place of the normal view
window you’re accustomed to using in AppWizard-generated applications. A CRecordView
window is like a dialog box that’s being used as the application’s display. This dialog box–type
of window retains a connection to the application’s CRecordset object, hustling data back and
forth between the program, the window’s controls, and the recordset. When you first create a
new database application with AppWizard, it’s up to you to add edit controls to the CRecordView
window. These edit controls must be bound to the database fields they represent so that the
application framework knows where to display the data you want to view.

In the next section, you will see how these various database classes fit together as you build
the Employee application step by step.

Creating an ODBC Database Program
Although creating a simple ODBC database program is easy with Visual C++, there are a num-
ber of steps you must complete:

1. Register the database with the system.

2. Use AppWizard to create the basic database application.

3. Add code to the basic application to implement features not automatically supported by
AppWizard.

In the following sections, you will see how to perform these steps as you create the Employee
application, which enables you to add, delete, update, sort, and view records in the Employees
table of the sample Department Store database.

Registering the Database
Before you can create a database application, you must register the database that you want to
access as a data source that you can access through the ODBC driver. Follow these steps to
accomplish this important task:

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:19 AM533

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

534 Chapter 22 Database Access

1. Create a folder called Database on your hard disk and copy the file named
DeptStore.mdb from this book’s Web site to the new Database folder. If you don’t have
Web access, you can type the three tables into Microsoft Access. If you don’t have
Access, you can use a different database program, but you will have to connect to the
data source for that program.

The DeptStore.mdb file is a database created with Microsoft Access. You will use this
database as the data source for the Employee application.

2. From the Windows Start menu, click Settings and then Control Panel. When the Control
Panel dialog appears, double-click the 32-Bit ODBC icon. The ODBC Data Source
Administrator dialog box appears, as shown in Figure 22.4.

FIG. 22.4
Connecting a data
source to your
application starts with
the ODBC Data Source
Administrator.

3. Click the Add button. The Create New Data Source dialog box appears. Select the
Microsoft Access Driver from the list of drivers, as shown in Figure 22.5, and click
Finish.

The Microsoft Access Driver is now the ODBC driver that will be associated with the
data source you create for the Employee application.

FIG. 22.5
Creating a new data
source is as simple as
choosing Access from a
list of drivers.

Untitled-10 2/19/99, 8:19 AM534

535

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

4. When the ODBC Microsoft Access 97 Setup dialog box appears, enter Department
Store in the Data Source Name text box and Department Store Sample in the
Description text box, as shown in Figure 22.6.

The Data Source Name is a way of identifying the specific data source you’re creating.
The Description field enables you to include more specific information about the data
source.

5. Click the Select button. The Select Database file selector appears. Use the selector to
locate and select the DeptStore.mdb file (see Figure 22.7).

FIG. 22.6
Name your data source
whatever you like.

6. Click OK to finalize the database selection and then, in the ODBC Microsoft Access 97
Setup dialog box, click OK to finalize the data-source creation process. Finally, click OK
in the ODBC Data Source Administrator dialog box and close the Control Panel.

Your system is now set up to access the DeptStore.mdb database file with the Microsoft Access
ODBC driver.

Creating the Basic Employee Application
Now that you have created and registered your data source, it’s time to create the basic Em-
ployee application. The steps that follow lead you through this process. After you complete
these steps, you will have an application that can access and view the Employees table of the
Department Store database:

FIG. 22.7
Browse your way to the
.mdb file that holds
your data.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:19 AM535

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

536 Chapter 22 Database Access

1. Select File, New from Developer Studio’s menu bar. Click the Projects tab.

2. Select MFC AppWizard (exe) and type Employee in the Project Name box, as shown in
Figure 22.8. Click OK. The Step 1 dialog box appears.

FIG. 22.8
Create an ordinary MFC
application with
AppWizard.

3. Select Single Document, as shown in Figure 22.9, to ensure that the Employee applica-
tion doesn’t allow more than one window to be open at a time. Click Next.

FIG. 22.9
Create a single-
document application.

4. Select the Database View Without File Support option, as shown in Figure 22.10, so that
AppWizard will generate the classes you need in order to view the contents of a data-
base. This application will not use any supplemental files besides the database, so it
doesn’t need file (serializing) support. Click the Data Source button to connect the
application to the data source you set up earlier.

Untitled-10 2/19/99, 8:20 AM536

537

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

5. In the Database Options dialog box, drop down the ODBC list and select the Department
Store data source, as shown in Figure 22.11. Click OK.

FIG. 22.10
Arrange for a database
view but no other file
support.

FIG. 22.11
Choose the Department
Store data source.

6. In the Select Database Tables dialog box, select the Employees table, as shown in Figure
22.12, and click OK. The Step 2 dialog box reappears, filled in as shown in Figure 22.13.

You’ve now associated the Employees table of the Department Store data source with the
Employee application. Click Next to move to Step 3.

FIG. 22.12
Select which tables
from the data source
you want to use in this
application.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:20 AM537

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

538 Chapter 22 Database Access

7. Accept the default (None) no compound document support and click Next.

8. In the Step 4 dialog box, turn off the Printing and Print Preview option so that the dialog
box resembles Figure 22.14. Click Next.

FIG. 22.13
After selecting the data
source, the Step 2
dialog box looks like
this.

FIG. 22.14
Turn off print support.

9. Accept the defaults for Step 5 by clicking Next. In Step 6, click Finish to finalize your
selections for the Employee application. Figure 22.15 shows the New Project Information
dialog box that appears.

10. Click OK, and AppWizard creates the basic Employee application.

At this point, you can compile the application by clicking the Build button on Developer
Studio’s toolbar, by selecting the Build, Build command from the menu bar, or by pressing F7
on your keyboard. After the program has compiled, select the Build, Execute command from
the menu bar or press Ctrl+F5 to run the program. When you do, you see the window shown in
Figure 22.16. You can use the database controls in the application’s toolbar to navigate from
one record in the Employee table to another. However, nothing appears in the window because
you’ve yet to associate controls with the fields in the table that you want to view. You will do
that in the following section.

Untitled-10 2/19/99, 8:20 AM538

539

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

Creating the Database Display
The next step in creating the Employee database application is to modify the form that displays
data in the application’s window. Because this form is just a special type of dialog box, it’s easy
to modify with Developer Studio’s resource editor, as you will discover while completing the
following steps:

1. In the workspace window, select the Resource View tab to display the application’s
resources.

2. Open the resource tree by clicking + next to the Employee resources folder. Then, open
the Dialog resource folder the same way. Double-click the IDD_EMPLOYEE_FORM dialog
box ID to open the dialog box into the resource editor, as shown in Figure 22.17.

FIG. 22.15
The application
summary mentions the
data source as well as
the usual information.

FIG. 22.16
The basic Employee
application looks nice
but doesn’t do much.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:20 AM539

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

540 Chapter 22 Database Access

3. Click the static string in the center of the dialog box to select it, and then press the
Delete key to remove the string from the dialog box.

4. Use the dialog box editor’s tools to create the dialog box, shown in Figure 22.18, by
adding edit boxes and static labels. (Editing dialog boxes is introduced in Chapter 2,
“Dialogs and Controls.”) Give the edit boxes the following IDs: IDC_EMPLOYEE_ID,
IDC_EMPLOYEE_NAME, IDC_EMPLOYEE_RATE, and IDC_EMPLOYEE_DEPT. Set the Read-Only
style (found on the Styles page of the Edit Properties property sheet) of the
IDC_EMPLOYEE_ID edit box.

Each of these edit boxes will represent a field of data in the database. The first edit box is
read-only because it will hold the database’s primary key, which should never be
modified.

FIG. 22.17
Open the dialog box in
the resource editor.

FIG. 22.18
Create a dialog box to
be used in your
database form.

Untitled-10 2/19/99, 8:21 AM540

541

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

5. Choose View, ClassWizard to open ClassWizard, and click the Member Variables tab.

6. With the IDC_EMPLOYEE_DEPT resource ID selected, click the Add Variable button. The
Add Member Variable dialog box appears.

7. Click the arrow next to the Member Variable Name drop-down list and select
m_pSet->m_DeptID, as shown in Figure 22.19. Leave the type as CString and click OK to
add the variable.

8. Associate other member variables (m_pSet->EmployeeID, m_pSet->EmployeeName, and
m_pSet->EmployeeRate) with the edit controls in the same way. When you’re finished,
the Member Variables page of the MFC ClassWizard property sheet will look like Figure
22.20.

By selecting member variables of the application’s CEmployeeSet class (derived from
MFC’s CRecordset class) as member variables for the controls in Database view, you’re
establishing a connection through which data can flow between the controls and the data
source.

FIG. 22.19
Connect the
IDC_EMPLOYEE_DEPT
control with the
m_DeptID member
variable of the
recordset.

FIG. 22.20
All four controls are
connected to member
variables.

9. Click the OK button in the MFC ClassWizard property sheet to finalize your changes.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:21 AM541

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

542 Chapter 22 Database Access

You’ve now created a data display form for the Employee application. Build and execute the
program again, and you will see the window shown in Figure 22.21. Now the application dis-
plays the contents of records in the Employee database table. Use the database controls in the
application’s toolbar to navigate from one record in the Employee table to another.

FIG. 22.21
The Employee applica-
tion now displays data
in its window.

After you’ve examined the database, try updating a record. To do this, simply change one of
the record’s fields (except the employee ID, which is the table’s primary key and can’t be ed-
ited). When you move to another record, the application automatically updates the modified
record. The commands in the application’s Record menu also enable you to navigate through
the records in the same manner as the toolbar buttons.

Notice that you’ve created a sophisticated database-access program without writing a single
line of C++ code—an amazing feat. Still, the Employee application is limited. For example, it
can’t add or delete records. As you may have guessed, that’s the next piece of the database
puzzle, which you will add.

Adding and Deleting Records
When you can add and delete records from a database table, you will have a full-featured pro-
gram for manipulating a flat (that is, not a relational) database. In this case, the flat database is
the Employees table of the Department Store relational database. Adding and deleting records
in a database table is an easier process than you might believe, thanks to Visual C++’s

Untitled-10 2/19/99, 8:21 AM542

543

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

CRecordView and CRecordSet classes, which provide all the member functions you need in
order to accomplish these common database tasks. You will need to add some menu items to
the application, as first discussed in Chapter 8, “Building a Complete Application: ShowString.”
Follow these steps to include add and delete commands in the Employee application:

1. Select the ResourceView tab, open the Menu folder, and double-click the IDR_MAINFRAME
menu ID. The menu editor appears, as shown in Figure 22.22.

2. Click the Record menu item to open it, and click the blank menu item at the bottom of
the menu. Choose View, Properties and pin the Menu Item Properties dialog box in
place.

3. In the ID edit box, enter ID_RECORD_ADD and in the Caption box, enter &Add Record, as
shown in Figure 22.23. This adds a new command to the Record menu.

4. In the next blank menu item, add a delete command with the ID ID_RECORD_DELETE and
the caption &Delete Record.

FIG. 22.22
Developer Studio’s
menu editor is in the
pane on the right.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:21 AM543

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

544 Chapter 22 Database Access

Next, you will connect these commands to toolbar buttons, as first discussed in Chapter 9,
“Status Bars and Toolbars.” Follow these steps:

1. In the ResourceView pane, open the Toolbar folder and then double-click the
IDR_MAINFRAME ID. The application’s toolbar appears in the resource editor.

2. Click the blank toolbar button to select it, and then use the editor’s tools to draw a red
plus on the button.

3. Double-click the new button in the toolbar. The Toolbar Button Properties property
sheet appears. Select ID_RECORD_ADD in the ID box to connect this button to the menu, as
shown in Figure 22.24.

4. Select the blank button again and draw a red minus sign, giving the button the
ID_RECORD_DELETE ID, as you can see in Figure 22.25. Drag and drop the Add and Delete
buttons to the left of the Help (question mark) button.

Now that you have added the menu items and the toolbar buttons, you need to arrange for
code to catch the command message sent when the user clicks the button or chooses the menu
item. Background information on this process is in Chapter 3, “Messages and Commands,” and
in Chapter 8 and Chapter 9. Because it is the view that is connected to the database, the view
will catch these messages. Follow these steps:

1. Open ClassWizard and select the Message Maps tab.

FIG. 22.23
Add a menu item that
adds a record to the
Employee table.

Untitled-10 2/19/99, 8:22 AM544

545

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

FIG. 22.24
Add a button and
connect it to the menu
item.

FIG. 22.25
The minus-sign button
will control the
Delete() function.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:22 AM545

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

546 Chapter 22 Database Access

2. Set the Class Name box to CEmployeeView, click the ID_RECORD_ADD ID in the Object IDs
box, and then double-click COMMAND in the Messages box. The Add Member Function
dialog box appears, as shown in Figure 22.26.

FIG. 22.26
Add a function to catch
the message.

3. Click the OK button to accept the default name for the new function. The function
appears in the Member Functions box at the bottom of the ClassWizard dialog box.

4. Add a member function for the ID_RECORD_DELETE command in the same way. The list of
functions should resemble Figure 22.27. Click OK to close ClassWizard.

FIG. 22.27
The new functions
appear in the Member
Functions box.

5. Open the EmployeeView.h file by double-clicking CEmployeeView in the ClassView pane.
In the Attributes section of the class’s declaration, add the following lines:
protected:
 BOOL m_bAdding;

Untitled-10 2/19/99, 8:22 AM546

547

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

6. Double-click the CEmployeeView constructor in ClassView to edit it, and add this line at
the bottom of the function:
 m_bAdding = FALSE;

7. Double-click the OnRecordAdd() function and edit it so that it looks like Listing 22.1. This
code is explained in the next section.

Listing 22.1 CEmployeeView::OnRecordAdd()

void CEmployeeView::OnRecordAdd()
{
 m_pSet->AddNew();
 m_bAdding = TRUE;
 CEdit* pCtrl = (CEdit*)GetDlgItem(IDC_EMPLOYEE_ID);
 int result = pCtrl->SetReadOnly(FALSE);
 UpdateData(FALSE);
}

8. Right-click CEmployeeView in ClassView and choose Add Virtual Function. Select OnMove
from the list on the left, as shown in Figure 22.28, and then click the Add and Edit button
to add the function and to edit the skeleton code immediately.

FIG. 22.28
Override the OnMove()
function.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:22 AM547

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

548 Chapter 22 Database Access

9. Edit the OnMove() function so that it has the code in Listing 22.2. This code is explained
in the next section.

Listing 22.2 CEmployeeView::OnMove()

BOOL CEmployeeView::OnMove(UINT nIDMoveCommand)
{
 if (m_bAdding)
 {
 m_bAdding = FALSE;
 UpdateData(TRUE);
 if (m_pSet->CanUpdate())
 m_pSet->Update();
 m_pSet->Requery();
 UpdateData(FALSE);
 CEdit* pCtrl = (CEdit*)GetDlgItem(IDC_EMPLOYEE_ID);
 pCtrl->SetReadOnly(TRUE);
 return TRUE;
 }
 else
 return CRecordView::OnMove(nIDMoveCommand);
}

10. Double-click the OnRecordDelete() function and edit it so that it looks like Listing 22.3.
This code is explained in the next section.

Listing 22.3 CEmployeeView::OnRecordDelete()

void CEmployeeView::OnRecordDelete()
{
 m_pSet->Delete();
 m_pSet->MoveNext();

 if (m_pSet->IsEOF())
 m_pSet->MoveLast();
 if (m_pSet->IsBOF())
 m_pSet->SetFieldNull(NULL);

 UpdateData(FALSE);
}

You’ve now modified the Employee application so that it can add and delete, as well as update,
records. After compiling the application, run it by selecting the Build, Execute command from
Developer Studio’s menu bar or by pressing Ctrl+F5. When you do, you see the Employee

Untitled-10 2/19/99, 8:22 AM548

549

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

application’s main window, which doesn’t look any different than it did in the preceding section.
Now, however, you can add new records by clicking the Add button on the toolbar (or by se-
lecting the Record, Add Record command on the menu bar) and delete records by clicking the
Delete button (or by clicking the Record, Delete Record command).

When you click the Add button, the application displays a blank record. Fill in the fields for the
record; then when you move to another record, the application automatically updates the data-
base with the new record. To delete a record, just click the Delete button. The current record
(the one on the screen) vanishes and is replaced by the next record in the database.

Examining the OnRecordAdd() Function
You might be wondering how the C++ code you added to the application works. OnRecordAdd()
starts with a call to the AddNew() member function of CEmployeeSet, the class derived from
CRecordSet. This sets up a blank record for the user to fill in, but the new blank record doesn’t
appear on the screen until the view window’s UpdateData() function is called. Before that
happens, you have a few other things to tackle.

After the user has created a new record, the database will need to be updated. By setting a flag
in this routine, the move routine will be able to determine whether the user is moving away
from an ordinary database record or a newly added one. That’s why m_bAdding is set to TRUE
here.

Now, because the user is entering a new record, it should be possible to change the contents of
the Employee ID field, which is currently set to read-only. To change the read-only status of the
control, the program first obtains a pointer to the control with GetDlgItem() and then calls the
control’s SetReadOnly() member function to set the read-only attribute to FALSE.

Finally, the call to UpdateData() will display the new blank record.

Examining the OnMove() Function
Now that the user has a blank record on the screen, it’s a simple matter to fill in the edit con-
trols with the necessary data. To add the new record to the database, the user must move to a
new record, an action that forces a call to the view window’s OnMove() member function. Nor-
mally, OnMove() does nothing more than display the next record. Your override will save new
records as well.

When OnMove() is called, the first thing the program does is check the Boolean variable
m_bAdding to see whether the user is in the process of adding a new record. If m_bAdding is
FALSE, the body of the if statement is skipped and the else clause is executed. In the else
clause, the program calls the base class (CRecordView) version of OnMove(), which simply
moves to the next record.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:23 AM549

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

550 Chapter 22 Database Access

If m_bAdding is TRUE, the body of the if statement is executed. There, the program first resets
the m_bAdding flag and then calls UpdateData() to transfer data out of the view window’s con-
trols and into the recordset class. A call to the recordset’s CanUpdate() method determines
whether it’s okay to update the data source, after which a call to the recordset’s Update() mem-
ber function adds the new record to the data source.

To rebuild the recordset, the program must call the recordset’s Requery() member function,
and then a call to the view window’s UpdateData() member function transfers new data to the
window’s controls. Finally, the program sets the Employee ID field back to read-only, with
another call to GetDlgItem() and SetReadOnly().

Examining the OnRecordDelete() Function
Deleting a record is simple. OnRecordDelete() just calls the recordset’s Delete() function.
When the record is deleted, a call to the recordset’s MoveNext() arranges for the record that
follows to be displayed.

A problem might arise, though, when the deleted record was in the last position or when the
deleted record was the only record in the recordset. A call to the recordset’s IsEOF() function
will determine whether the recordset was at the end. If the call to IsEOF() returns TRUE, the
recordset needs to be repositioned on the last record. The recordset’s MoveLast() function
takes care of this task.

When all records have been deleted from the recordset, the record pointer will be at the begin-
ning of the set. The program can test for this situation by calling the recordset’s IsBOF() func-
tion. If this function returns TRUE, the program sets the current record’s fields to NULL.

Finally, the last task is to update the view window’s display with another call to UpdateData().

Sorting and Filtering
In many cases when you’re accessing a database, you want to change the order in which the
records are presented, or you may even want to search for records that fit certain criteria.
MFC’s ODBC database classes feature member functions that enable you to sort a set of
records on any field. You can also call member functions to limit the records displayed to those
whose fields contain given information, such as a specific name or ID. This latter operation is
called filtering. In this section, you will add sorting and filtering to the Employee application.
Just follow these steps:

1. Add a Sort menu to the application’s menu bar, as shown in Figure 22.29. Let Developer
Studio set the command IDs.

2. Use ClassWizard to arrange for CEmployeeView to catch the four new sorting commands,
using the function names suggested by ClassWizard. Figure 22.30 shows the resultant
ClassWizard property sheet.

Untitled-10 2/19/99, 8:23 AM550

551

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

3. Add a Filter menu to the application’s menu bar, as shown in Figure 22.31. Let Developer
Studio set the command IDs.

4. Use ClassWizard to arrange for CEmployeeView to catch the four new filtering com-
mands, using the function names suggested by ClassWizard.

5. Create a new dialog box by choosing Insert, Resource and double-clicking Dialog; then
edit the dialog so that it resembles the dialog box shown in Figure 22.32. Give the edit
control the ID IDC_FILTERVALUE. Give the entire dialog the ID IDD_FILTER.

FIG. 22.29
The Sort menu has four
commands for sorting
the database.

FIG. 22.30
After you add the four
new functions,
ClassWizard looks
like this.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:24 AM551

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

552 Chapter 22 Database Access

6. Start ClassWizard while the new dialog box is on the screen. The Adding a Class dialog
box appears. Select the Create a New Class option and click OK.

7. The New Class dialog box appears. In the Name box, type CFilterDlg, as shown in
Figure 22.33. Click OK to add the class.

FIG. 22.31
The Filter menu has four
commands.

FIG. 22.32
Create a filter
dialog box.

Untitled-10 2/19/99, 8:24 AM552

553

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

8. Click ClassWizard’s Member Variables tab. Connect the IDC_FILTERVALUE control to a
member variable called m_filterValue. Click the OK button to dismiss ClassWizard.

Now that the menus and dialogs have been created and connected to skeleton functions, it’s
time to add some code to those functions. Double-click OnSortDepartment() in ClassView and
edit it to look like Listing 22.4.

Listing 22.4 CEmployeeView::OnSortDepartment()

void CEmployeeView::OnSortDepartment()
{
 m_pSet->Close();
 m_pSet->m_strSort = “DeptID”;
 m_pSet->Open();
 UpdateData(FALSE);
}

Double-click OnSortID() in ClassView and edit it to look like Listing 22.5. Double-click
OnSortName() in ClassView and edit it to look like Listing 22.6. Double-click OnSortRate() in
ClassView and edit it to look like Listing 22.7.

Listing 22.5 CEmployeeView::OnSortId()

void CEmployeeView::OnSortId()
{
 m_pSet->Close();
 m_pSet->m_strSort = “EmployeeID”;
 m_pSet->Open();
 UpdateData(FALSE);
}

FIG. 22.33
Create a dialog class
for the Filter dialog box.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:24 AM553

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

554 Chapter 22 Database Access

Listing 22.6 CEmployeeView::OnSortName()

void CEmployeeView::OnSortName()
{
 m_pSet->Close();
 m_pSet->m_strSort = “EmployeeName”;
 m_pSet->Open();
 UpdateData(FALSE);
}

Listing 22.7 LST14_07.TXT: Code for the OnSortRate() Function

void CEmployeeView::OnSortRate()
{
 m_pSet->Close();
 m_pSet->m_strSort = “EmployeeRate”;
 m_pSet->Open();
 UpdateData(FALSE);
}

At the top of EmployeeView.cpp, add the following line after the other #include directives:

#include “FilterDlg.h”

Edit OnFilterDepartment(), OnFilterID(), OnFilterName(), and OnFilterRate(), using
Listing 22.8.

Listing 22.8 The Four Filtering Functions

void CEmployeeView::OnFilterDepartment()
{
 DoFilter(“DeptID”);
}

void CEmployeeView::OnFilterId()
{
 DoFilter(“EmployeeID”);
}

void CEmployeeView::OnFilterName()
{
 DoFilter(“EmployeeName”);
}

void CEmployeeView::OnFilterRate()
{
 DoFilter(“EmployeeRate”);
}

Untitled-10 2/19/99, 8:24 AM554

555

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

All four functions call DoFilter(). You will write this function to filter the database records
represented by the recordset class. Right-click CEmployeeView in ClassView and choose Add
Member Function. The Function Type is void, and the declaration is DoFilter(CString col).
It’s a protected member function because it’s called only from other member functions of
CEmployeeView. Click OK to close the Add Member Function dialog box. Add the code from
Listing 22.9.

Listing 22.9 CEmployeeView::DoFilter()

void CEmployeeView::DoFilter(CString col)
{
 CFilterDlg dlg;
 int result = dlg.DoModal();

 if (result == IDOK)
 {
 CString str = col + “ = ‘“ + dlg.m_filterValue + “‘“;
 m_pSet->Close();
 m_pSet->m_strFilter = str;
 m_pSet->Open();
 int recCount = m_pSet->GetRecordCount();

 if (recCount == 0)
 {
 MessageBox(“No matching records.”);
 m_pSet->Close();
 m_pSet->m_strFilter = “”;
 m_pSet->Open();
 }

 UpdateData(FALSE);
 }

}

You’ve now added the capability to sort and filter records in the employee database. Build the
application and run it. When you do, the application’s main window appears, looking the same
as before. Now, however, you can sort the records on any field, by selecting a field from the
Sort menu. You can also filter the records by selecting a field from the Filter menu and then
typing the filter string into the Filter dialog box that appears. You can tell how the records are
sorted or filtered by moving through them one at a time. Try sorting by department or rate, for
example. Then try filtering on one of the departments you saw scroll by.

Examining the OnSortDept() Function
All the sorting functions have the same structure. They close the recordset, set its m_strSort
member variable, open it again, and then call UpdateData() to refresh the view with the values
from the newly sorted recordset. You don’t see any calls to a member function with Sort in its
name. Then when does the sort happen? When the recordset is reopened.

Creating an ODBC Database Program

Untitled-10 2/19/99, 8:25 AM555

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

556 Chapter 22 Database Access

A CRecordset object (or any object of a class derived from CRecordset, such as this program’s
CEmployeeSet object) uses a special string, called m_strSort, to determine how the records
should be sorted. When the recordset is being created, the object checks this string and sorts
the records accordingly.

Examining the DoFilter() Function
Whenever the user selects a command from the Filter menu, the framework calls the appropri-
ate member function, either OnFilterDept(), OnFilterID(), OnFilterName(), or
OnFilterRate(). Each of these functions does nothing more than call the local member func-
tion DoFilter() with a string representing the field on which to filter.

DoFilter() displays the same dialog box, no matter which filter menu item was chosen, by
creating an instance of the dialog box class and calling its DoModal() function.

If result doesn’t equal IDOK, the user must have clicked Cancel: The entire if statement is
skipped, and the DoFilter() function does nothing but return.

Inside the if statement, the function first creates the string that will be used to filter the data-
base. Just as you set a string to sort the database, so, too, do you set a string to filter the data-
base. In this case, the string is called m_strFilter. The string you use to filter the database
must be in a form like this:

ColumnID = ‘ColumnValue’

The column ID was provided to DoFilter() as a CString parameter, and the value was pro-
vided by the user. If, for example, the user chooses to filter by department and types hardware
in the filter value box, DoFilter() would set str to DeptID = ‘hardware’.

With the string constructed, the program is ready to filter the database. As with sorting, the
recordset must first be closed; then DoFilter() sets the recordset’s filter string and reopens
the recordset.

What happens when the given filter results in no records being selected? Good question. The
DoFilter() function handles this by obtaining the number of records in the new recordset and
comparing them to zero. If the recordset is empty, the program displays a message box telling
the user of the problem. Then the program closes the recordset, resets the filter string to an
empty string, and reopens the recordset. This restores the recordset to include all the records
in the Employees table.

Finally, whether the filter resulted in a subset of records or the recordset had to be restored,
the program must redisplay the data—by calling UpdateData(), as always.

Choosing Between ODBC and DAO
In the preceding section, you read an introduction to Visual C++’s ODBC classes and how
they’re used in an AppWizard-generated application. Visual C++ also features a complete set of
DAO classes that you can use to create database applications. DAO is, in many ways, almost a
superset of the ODBC classes, containing most of the functionality of the ODBC classes and

Untitled-10 2/19/99, 8:25 AM556

557

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

22

VI
Part

Ch

adding a great deal of its own. Unfortunately, although DAO can read ODBC data sources for
which ODBC drivers are available, it’s not particularly efficient at the task. For this reason, the
DAO classes are best suited for programming applications that manipulate Microsoft’s .mdb
database files, which are created by Microsoft Access. Other file formats that DAO can read
directly are those created by Fox Pro and Excel. If you are writing an application that uses an
Access database and always will, you might want to use DAO for its extra functionality. If, as is
more likely, your application uses another database format now or will move to another format
in the future, use ODBC instead.

The DAO classes, which use the Microsoft Jet Database Engine, are so much like the ODBC
classes that you can often convert an ODBC program to DAO simply by changing the
classnames in the program: CDatabase becomes CDaoDatabase, CRecordset becomes
CDaoRecordset, and CRecordView becomes CDaoRecordView. One big difference between
ODBC and DAO, however, is the way in which the system implements the libraries. ODBC is
implemented as a set of DLLs, whereas DAO is implemented as COM objects. Using COM
objects makes DAO a bit more up to date, at least as far as architecture goes, than ODBC.

Although DAO is implemented as COM objects, you don’t have to worry about directly dealing
with those objects. The MFC DAO classes handle all the details for you, providing data and
function members that interact with the COM objects. The CDaoWorkspace class provides more
direct access to the DAO database-engine object through static member functions. Although
MFC handles the workspace for you, you can access its member functions and data members
to explicitly initialize the database connection.

Another difference is that the DAO classes feature a more powerful set of methods that you
can use to manipulate a database. These more powerful member functions enable you to per-
form sophisticated database manipulations without having to write a lot of complicated C++
code or SQL statements.

In summary, ODBC and DAO similarities are the following:

■ ODBC and DAO both can manipulate ODBC data sources. However, DAO is less
efficient at this task because it’s best used with .mdb database files.

■ AppWizard can create a basic database application based on either the ODBC or DAO
classes. Which type of application you want to create depends, at least in some part, on
the type of databases with which you will be working.

■ ODBC and DAO both use objects of an MFC database class to provide a connection to
the database being accessed. In ODBC, this database class is called CDatabase, whereas
in DAO, the class is called CDaoDatabase. Although these classes have different names,
the DAO database class contains some members similar to those found in the ODBC
class.

■ ODBC and DAO both use objects of a recordset class to hold the currently selected
records from the database. In ODBC, this recordset class is called CRecordset, whereas
in DAO, the class is called CDaoRecordset. Although these classes have different names,
the DAO recordset class contains not only almost the same members as the ODBC class
but also a large set of additional member functions.

Choosing Between ODBC and DAO

Untitled-10 2/19/99, 8:25 AM557

Brands 3swg4 SE Using Visual C++6 1539-2 7.20.98 Ayanna chapter22 LP#3

558 Chapter 22 Database Access

■ ODBC and DAO use similar procedures for viewing the contents of a data source. That
is, in both cases, the application must create a database object, create a recordset object,
and then call member functions of the appropriate classes to manipulate the database.

Some differences between ODBC and DAO include the following:

■ Although both ODBC and DAO MFC classes are much alike (very much, in some
cases), some similar methods have different names. In addition, the DAO classes feature
many member functions not included in the ODBC classes.

■ ODBC uses macros and enumerations to define options that can be used when opening
recordsets. DAO, on the other hand, defines constants for this purpose.

■ Under ODBC, snapshot recordsets are the default, whereas under DAO, dynamic
recordsets are the default.

■ The many available ODBC drivers make ODBC useful for many different database file
formats, whereas DAO is best suited to applications that need to access only .mdb files.

■ ODBC is implemented as a set of DLLs, whereas DAO is implemented as COM objects.

■ Under ODBC, an object of the CDatabase class transacts directly with the data source.
Under DAO, a CDaoWorkspace object sits between the CDaoRecordset and CDaoDatabase
objects, thus enabling the workspace to transact with multiple database objects.

OLE DB
OLE DB is a collection of OLE (COM) interfaces that simplify access to data stored in
nondatabase applications such as email mailboxes or flat files. An application using OLE DB
can integrate information from DBMS systems such as Oracle, SQL Server, or Access with
information from nondatabase systems, using the power of OLE (COM).

OLE DB applications are either consumers or providers. A provider knows the format for a
specific kind of file (such as an ODBC data source or a proprietary format) and provides access
to those files or data sources to other applications. A consumer wants to access a database. For
example, you might choose to rewrite the Employees example of this chapter as an OLE DB
consumer application.

You will receive some help from AppWizard if you choose to go this route. On Step 2, when you
select your data source, one of the choices is an OLE DB data source. Your application will be a
little more complex to write than the ODBC example presented here, but you will be able to
manipulate the data in a way very similar to the methods just covered. For example, the MFC
class COleDBRecordView is the OLE DB equivalent of CRecordView.

A full treatment of OLE DB is outside the scope of this chapter. You need to be comfortable
with OLE interfaces and with templates in order to use this powerful tool. An OLE DB
Programmer’s Reference is in the Visual C++ online documentation. When you are familiar
with OLE and ActiveX concepts and have used templates, that’s a great place to start. ●

Untitled-10 2/19/99, 8:26 AM558

559

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

C H A P T E R

SQL and the Enterprise Edition

What’s in the Enterprise Edition? 560

Understanding SQL 560

Working with SQL Databases from C++ 561

Exploring the Publishing Application 562

Working with Your Database 579

Understanding Microsoft Transaction Server 582

Using Visual SourceSafe 583

23

In this chapter

Untitled-11 2/19/99, 8:28 AM559

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

560 Chapter 23 SQL and the Enterprise Edition

What’s in the Enterprise Edition?
The Enterprise Edition of Visual C++ was developed for those of you who are integrating SQL
databases and C++ programs, especially if you use stored procedures. It’s sold as a separate
edition of the product: You can buy a copy of the Enterprise Edition instead of the Professional
Edition. If you already own a Professional or Subscription Edition, you can upgrade to the
Enterprise Edition for a reduced price.

The Enterprise Edition of Visual C++ includes several extra features within Visual Studio:

■ SQL debugging

■ Extended Stored Procedure Wizard

■ OLE DB support for AS 400 access

Also, a number of separate development tools are included:

■ Visual SourceSafe

■ SQL Server 6.5 (Developer Edition, SP 3)

■ Visual Modeler

■ Microsoft Transaction Server

■ Internet Information Server 4.0

If you do database programming, if you develop large projects and produce object model dia-
grams, and if you work in teams and need to prevent revision collision, you need the features of
the Enterprise Edition.

Understanding SQL
Structured Query Language (SQL) is a way to access databases, interactively or in a program,
that is designed to read as though it were English. Most SQL statements are queries—requests
for information from one or more databases—but it’s also possible to use SQL to add, delete,
and change information. As mentioned in Chapter 22, “Database Access,” SQL is an enormous
topic. This section reviews the most important SQL commands so that even if you haven’t used
it before, you can understand these examples and see how powerful these tools can be.

SQL is used to access a relational database, which contains several tables. A table is made up of
rows, and a row is made up of columns. Table 23.1 lists some names used in database research
or in some other kinds of databases for tables, rows, and columns.

Table 23.1 Database Terminology

SQL Also Known As

Table Entity

Row Record, Tuple

Column Field, Attribute

Untitled-11 2/19/99, 8:28 AM560

561

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Here’s a sample SQL statement:

SELECT au_fname, au_lname FROM authors

It produces a list of authors’ first and last names from a table called authors. (This table is
included in the sample pubs database that comes with SQL Server, which you will be using in
this chapter.) Here’s a far more complicated SQL statement:

SELECT item, SUM(amount) total, AVG(amount) average FROM ledger
 WHERE action = ‘PAID’
 GROUP BY item
having AVG(amount) > (SELECT avg(amount) FROM ledger
 WHERE action = ‘PAID’)

A SQL statement is put together from keywords, table names, and column names. The key-
words include the following:

■ SELECT returns the specific column of the database. Secondary keywords including FROM,
WHERE, LIKE, NULL, and ORDER BY restrict the search to certain records within each table.

■ DELETE removes records. The secondary keyword WHERE specifies which records to
delete.

■ UPDATE changes the value of columns (specified with SET) in records specified with
WHERE. It can be combined with a SELECT statement.

■ INSERT inserts a new record into the database.

■ COMMIT saves any changes you have made to the database.

■ ROLLBACK undoes all your changes back to the most recent COMMIT.

■ EXEC calls a stored procedure.

Like C++, SQL supports two kinds of comments:

/* This comment has begin and end symbols */
— This is a from-here-to-end-of-line comment

Working with SQL Databases from C++
As you saw in Chapter 22, “Database Access,” an ODBC program using CDatabase and
CRecordset can already access a SQL Server database or any database that supports SQL
queries. What’s more, with the ExecuteSQL function of CDatabase, you can execute any line of
SQL from within your program. Most of the time, the line of SQL that you execute is a stored
procedure—a collection of SQL statements stored with the database and designed to be ex-
ecuted on-the-fly by the database server.

There are lots of reasons not to hard-code your SQL into your C++ program. The three most
compelling are

■ Reuse

■ Skill separation

■ Maintainability

Working with SQL Databases from C++

Untitled-11 2/19/99, 8:29 AM561

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

562 Chapter 23 SQL and the Enterprise Edition

Many programmers accessing a SQL database from a C++ application are building on the work
of other developers who have been building the database and its stored procedures for years.
Copying those procedures into your code would be foolish indeed. Calling them from within
your code lets you build slick user interfaces, simplify Internet access, or take advantage of the
speed of C++, while retaining all the power of the stored procedures previously written.

Highly skilled professionals are always in demand, and sometimes the demand exceeds the
supply. Many companies find it hard to recruit solid C++ programmers and equally as hard to
recruit experienced database administrators who can learn the structure of a database and
write in SQL. Imagine how difficult it would be to find a single individual who can do both—
almost as difficult as having two developers work on the parts of the program that called SQL
from C++. A much better approach is to have the C++ programmer call well-documented SQL
stored procedures and the SQL developer build those stored procedures and keep the data-
base running smoothly.

Separating the C++ and SQL parts of your application has another benefit: Changes to one
might not affect the other. For example, a minor C++ change that doesn’t involve the SQL will
compile and link more quickly because the C++ part of the application is a little smaller without
the SQL statements in it. Also, changes to the SQL stored procedure, if they don’t involve the
parameters to the function or the values it returns, will take effect without compiling and link-
ing the C++ program.

There is a downside, however. It can be very difficult to track down problems when you are
unsure whether they are in the C++ or the SQL part of your program. When one developer is
doing both parts, learning two different tools and switching between them makes the job
harder than it would be in a single tool. Also, the tools available for working with SQL lack
many features that Visual C++ has offered C++ programmers.

Now, with the Enterprise Edition of Visual C++, you can have the best of both worlds. You can
separate your C++ and SQL for reuse and maintenance but use the editor, syntax coloring, and
even the debugger from Visual C++ to work on your SQL stored procedures.

Exploring the Publishing Application
One sample database that comes with SQL Server is called pubs. It tracks the sales of books
and the royalties paid to their authors. In this chapter you will write a new stored procedure
and display the records returned by it in a simple record view dialog box. SQL Server should
be up and running before you start to build the application.

Setting Up the Data Source
Before you create the project, you need to create a data source to which it will connect. On
your real projects, this data source might already exist.

Choose Start, Settings, Control Panel and then double-click ODBC. Select the User DSN tab,
as in Figure 23.1, and click the Add button to add a new data source name (DSN).

Untitled-11 2/19/99, 8:29 AM562

563

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

On the next dialog box, choose SQL Server, as in Figure 23.2, and click Finish. You’re several
steps away from finishing, no matter what the button says.

FIG. 23.1
Add a user data source
name.

FIG. 23.2
Connect to a SQL
Server.

On the next dialog box, fill in a name and description for the data source. Then drop down the
Server box; choose your server or type its name. Figure 23.3 shows the completed dialog box
for a test system with only the sample databases installed. Click Next.

FIG. 23.3
Specify the server.

Exploring the Publishing Application

Untitled-11 2/19/99, 8:29 AM563

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

564 Chapter 23 SQL and the Enterprise Edition

You can choose to connect to the server by using NT authentication or SQL Server authentica-
tion. If you’re not sure, talk to your system administrator. Because this sample was developed
on a test machine, SQL Server authentication—with the default account of sa and no
password—is acceptable. Figure 23.4 shows the completed dialog box. Click Next.

FIG. 23.4
Security can be lax on
test machines but not in
the real world.

At this point, you can choose whether to connect this data source name to a single database on
the server or to the server as a whole. If you want to associate this DSN with only one data-
base, select the top check box and choose your database. If not, leave the top check box dese-
lected. In either case, leave the rest of the dialog at the defaults, shown in Figure 23.5. Click
Next.

FIG. 23.5
This DSN is connected
to the entire server, not
just one database.

Accept the default on the next dialog box, shown in Figure 23.6, and click Next.

Leave both check boxes deselected on the last dialog, shown in Figure 23.7. Click Finish, and
the process really is over.

Figure 23.8 shows the summary of settings from this connection process. It’s a very good idea
to test your connection before moving on.

Untitled-11 2/19/99, 8:29 AM564

565

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Click Test Data Source, and you should see something like Figure 23.9. If you don’t, click
Cancel to return to the final step of the process and click Back until you are back to the step
you need to adjust. Then come forward again with Next.

FIG. 23.6
Character translations
and regional settings
need no special
treatment in this
example.

FIG. 23.7
There’s no need to log
slow queries or driver
statistics in this
example.

FIG. 23.8
Confirm your choices
for the ODBC SQL
connection.

Exploring the Publishing Application

Untitled-11 2/19/99, 8:30 AM565

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

566 Chapter 23 SQL and the Enterprise Edition

When you have tested the connection successfully, click OK on the summary dialog and then
OK on the ODBC Data Source Administrator. Close Control Panel.

Building the Application Shell
Open Developer Studio and choose File, New and then click the Projects tab. Select MFC
AppWizard (exe) and name the project Publishing, as shown in Figure 23.10. Click OK to start
the AppWizard process.

FIG. 23.9
Make sure your DSN
connects properly.

FIG. 23.10
Start AppWizard in the
usual way.

In Step 1 of AppWizard, choose an SDI application. Click Next to move to Step 2 of AppWizard.
As shown in Figure 23.11, select the Database View Without File Support option. Click Data
Source to connect a data source to your application.

Select the ODBC option and from the drop-down box next to it, select the DSN you just cre-
ated, as shown in Figure 23.12. Leave the Recordset Type as Snapshot and click OK to specify
the exact data source.

Untitled-11 2/19/99, 8:30 AM566

567

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

The SQL Server login dialog appears. Click the Options button to show the enlarged dialog of
Figure 23.13. Choose pubs from the Database drop-down box and enter your login ID and
password at the top of the dialog. Click OK.

FIG. 23.11
This application needs
database support but
will not have a
document.

FIG. 23.12
Your data source is an
ODBC data source
name.

FIG. 23.13
Connect to the sample
pubs database.

The Select Database Tables dialog, shown in Figure 23.14, appears. Click on dbo.authors,
dbo.titleauthor, and dbo.titles. Click OK.

Exploring the Publishing Application

Untitled-11 2/19/99, 8:30 AM567

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

568 Chapter 23 SQL and the Enterprise Edition

You are back to Step 2 of AppWizard. Click Next to move to Step 3. Choose No Support for
Compound Documents or ActiveX Controls and click Next to move to Step 4. Click Next to
accept the Step 4 defaults and then Next again to accept the Step 5 defaults. On Step 6, click
Finish. The New Project Information summary, shown in Figure 23.15, appears. Click OK to
create the project.

FIG. 23.14
Choose the authors,
titles, and
authortitle tables.

FIG. 23.15
Confirm that your
choices are correct
before clicking OK.

You have now completed a shell of an application that displays database values in a record view,
much like the one discussed in Chapter 22. Nothing you have done so far has been specific to
the Enterprise Edition. That is about to change.

Making a Data Connection
The database tables you specified are connected to your record set, but they aren’t available for
use with the SQL features of the Enterprise Edition. You need to make a data connection to
connect the database to your application. Follow these steps to make the connection:

1. Choose Project, Add to Project, New.

2. Click the Projects tab.

3. As shown in Figure 23.16, select a Database Project, name it PubDB, and select the Add
to Current Workspace radio button. Click OK.

Untitled-11 2/19/99, 8:30 AM568

569

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

4. The Select Data Source dialog appears. Click the Machine Data Source tab, choose the
DSN you created (shown in Figure 23.17), and click OK.

FIG. 23.16
Create a subproject
within this project.

FIG. 23.17
Connect to the local
server.

5. The SQL Server Login dialog appears. As before, specify your login ID and password
and make sure the pubs database is selected. Click OK to complete the data connection.

In the Workspace pane on the left of the screen, a new tab has appeared. Figure 23.18 shows
the new DataView. Expand the Tables section and expand authors to show the columns within
the table. Double-click the authors table, and you can see your data on the right in Figure
23.18.

Also featured in Figure 23.18 is the Query toolbar, with the following buttons:

■ Show Diagram Pane toggles the Query Designer diagram pane (discussed in the next
section).

■ Show Grid Pane toggles the Query Designer grid pane (discussed in the next section).

■ Show SQL Pane toggles the Query Designer SQL pane (discussed in the next section).

Exploring the Publishing Application

Untitled-11 2/19/99, 8:30 AM569

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

570 Chapter 23 SQL and the Enterprise Edition

■ Show Results Pane toggles the Query Designer results pane (discussed in the next
section).

■ Change Type creates a SELECT, INSERT, UPDATE, or DELETE query in the four panes of
Query Designer.

■ Run executes your SQL.

■ Verify SQL Syntax checks the syntax of the SQL you have written.

■ Sort Ascending displays records from the low value of a selected column to high.

■ Sort Descending displays records from the high value of a selected column to low.

■ Remove Filter shows all the records instead of only those that meet the filter specifica-
tions.

■ Group By adds a GROUP BY condition to the query being built.

■ Properties displays information about a column or table.

Working with Query Designer
When you double-click a table name, such as authors, in the DataView to display all the col-
umns and all the records, you are actually executing a simple SQL query, as follows:

SELECT authors.* FROM authors

FIG. 23.18
The DataView shows you
the database structure
and can display your
data in the working
area.

Untitled-11 2/19/99, 8:31 AM570

571

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

The results of this query appear in the results pane, which is the only one of the four Query
Designer panes to be displayed, by default. This query was built for you by Query Designer
and means show all the columns and records of the authors table. Figure 23.19 shows the four
panes of Query Designer as they appear when you first make the data connection. To see all
four panes, use the toolbar buttons to toggle them on. You can adjust the vertical size of each
pane but not the horizontal.

To change your query, deselect * (All Columns) in the diagram pane (at the top of Figure
23.19) and then select au_lname, au_fname, and phone. The values in the results pane become
gray to remind you that these aren’t the results of the query you are now building. As you
make these selections in the diagram pane, the other panes update automatically, as shown in
Figure 23.20.

FIG. 23.19
The DataView shows
you the database
structure and can
display your data in the
working area.

Highlight phone in the diagram pane and click the Sort Ascending button on the Query toolbar.
This will sort the results by phone number. Click the Run button on the Query toolbar to ex-
ecute the SQL that has been built for you. Figure 23.21 shows what you should see, including
the new values in the results pane.

Stored Procedures
The capability to create simple SQL queries quickly, even if your SQL skills aren’t strong, is an
amazing aspect of the Enterprise Edition. However, using stored procedures is where the real
payoff of this software becomes apparent.

Exploring the Publishing Application

Untitled-11 2/19/99, 8:31 AM571

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

572 Chapter 23 SQL and the Enterprise Edition

FIG. 23.21
Running your SQL
queries is a matter of a
single click.

FIG. 23.20
You can build simple
queries even if you don’t
know any SQL.

Untitled-11 2/19/99, 8:31 AM572

573

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Collapse the tables section in the DataView and expand the Stored Procedures section. This
shows all the stored procedures that are kept in the database and are available for you to use.
Double-click reptq2 to display the procedure. One thing you probably notice immediately is
the syntax coloring in the editor window. The colors used are

■ Blue for keywords such as PRINT and SELECT

■ Green for both styles of comment

■ Black for other kinds of text

To run a stored procedure, choose Tools, Run; or right-click the stored procedure name in
DataView and choose Run; or right-click in the editor and choose Run. The results appear in
the Results pane of the Output window—don’t confuse this with the Results pane of Query
Designer. Figure 23.22 shows the Output window stretched very large to show some results of
reptq2.

FIG. 23.22
You can see the results
of any stored procedure
from within Developer
Studio.

Some stored procedures take parameters. For example, double-click reptq3; its code looks like
this:

CREATE PROCEDURE reptq3 @lolimit money, @hilimit money,
@type char(12)
AS
select pub_id, type, title_id, price
from titles
where price >@lolimit AND price <@hilimit AND type = @type
 OR type LIKE ‘%cook%’
order by pub_id, type
COMPUTE count(title_id) BY pub_id, type

Exploring the Publishing Application

Untitled-11 2/19/99, 8:32 AM573

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

574 Chapter 23 SQL and the Enterprise Edition

This stored procedure takes three parameters: lolimit, hilimit, and type. If you run it, the
dialog box shown in Figure 23.23 appears: Enter parameter values and click OK to run the
procedure. See the results in the Output window.

FIG. 23.23
Providing parameters to
stored procedures is
simple.

It might be nice if the type parameter were a drop-down box, enabling you to see all the type
values in the table before submitting the query rather than having to type business yourself.
That sort of capability is exactly what you can build into a C++ program that uses SQL stored
procedures. To see how, in the next section you will write a new stored procedure and call it
from your C++ program.

Writing a New Stored Procedure
To create a new stored procedure, right-click Stored Procedures in DataView and choose New
Stored Procedure. This code appears in the editor:

Create Procedure /*Procedure_Name*/
As
 return (0)

Edit this code so that it looks like Listing 23.1. Save the stored procedure by choosing File,
Save—there’s no need to specify the name because it’s in the first line. After the procedure has
been saved, its name appears in the DataView.

Listing 23.1 author_ytd, the New Stored Procedure

CREATE PROCEDURE author_ytd @sales int
AS
SELECT authors.au_lname, authors.au_fname, titles.title, ytd_sales
 FROM authors, titles, titleauthor
 WHERE ytd_sales > @sales
 AND authors.au_id = titleauthor.au_id
 AND titleauthor.title_id = titles.title_id
ORDER BY ytd_sales DESC

This SQL code gathers information from three tables, using the au_id and title_id columns
to connect authors to titles. It takes one parameter, sales, which is an integer value. Run the
procedure to see the results immediately. Listing 23.2 shows the results, using 4000 as the
value for sales.

Untitled-11 2/19/99, 8:32 AM574

575

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Listing 23.2 author_ytd results (@sales = 4000)

Running Stored Procedure dbo.author_ytd (@sales = 4000).
au_lname au_fname title ytd_sales
-------------- -------- -- ------
DeFrance Michel The Gourmet Microwave 22246
Ringer Anne The Gourmet Microwave 22246
Green Marjorie You Can Combat Computer Stress! 18722
Blotchet-Halls Reginald Fifty Years in Buckingham Palace Kitchens 15096
Carson Cheryl But Is It User Friendly? 8780
Green Marjorie The Busy Executive’s Database Guide 4095
Bennet Abraham The Busy Executive’s Database Guide 4095
Straight Dean Straight Talk About Computers 4095
Dull Ann Secrets of Silicon Valley 4095
Hunter Sheryl Secrets of Silicon Valley 4095
O’Leary Michael Sushi, Anyone? 4095
Gringlesby Burt Sushi, Anyone? 4095
Yokomoto Akiko Sushi, Anyone? 4095
White Johnson Prolonged Data Deprivation: Four Case Studies 4072
 (14 row(s) affected)
Finished running dbo.author_ytd.
RETURN_VALUE = 0

Connecting the Stored Procedure to C++ Code
At the moment, you have an empty C++ application that uses a recordset and would display
members of that recordset in a record view if you added fields to the dialog to do so. The
recordset contains all the columns from the three tables (authors, titleauthor, and titles)
that you specified during the AppWizard process. That’s arranged by a function called
CPublishingSet::GetDefaultSQL() that AppWizard wrote for you, shown in Listing 23.3.

Listing 23.3 CPublishingSet::GetDefaultSQL() from AppWizard

CString CPublishingSet::GetDefaultSQL()
{
 return _T(“[dbo].[authors],[dbo].[titleauthor],[dbo].[titles]”);
}

You’re going to change this default SQL so that it calls your stored procedure, which is now
part of the pubs database. First, choose Project, Set Active Project and select Publishing.
Switch to ClassView in the Workspace pane, expand CPublishingSet, and double-click
GetDefaultSQL() to edit it. Replace the code with that in Listing 23.4.

Listing 23.4 CPublishingSet::GetDefaultSQL() to Call Your Stored Procedure

CString CPublishingSet::GetDefaultSQL()
{
 return _T(“{CALL author_ytd(4000)}”);
}

Exploring the Publishing Application

Untitled-11 2/19/99, 8:32 AM575

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

576 Chapter 23 SQL and the Enterprise Edition

Normally you would not hard-code the parameter value like this. Adding member variables
to the class to hold parameters and passing them to the SQL is a topic you can explore in

the online help when you are more familiar with the Enterprise Edition. ■

The records returned from this query will go into your recordset. The query returns four
columns (au_lname, au_fname, title, and ytd_sales), but the recordset is expecting far more
than that. You can use ClassWizard to edit your recordset definition. Follow these steps:

1. Open ClassWizard by choosing View, ClassWizard.

2. Click the Member Variables tab. You should see something like Figure 23.24, showing all
the member variables of the recordset connected to table columns.

FIG. 23.24
ClassWizard manages
your recordset
definition.

3. Highlight [address] and click Delete Variable.

4. In the same way, delete all the variables except au_lname, au_fname, title, and
ytd_sales.

5. Click OK to close ClassWizard.

Your application can compile and run now, but until you edit the Record View dialog box, you
won’t be able to see the records and columns that are returned by another query. Editing the
dialog box is covered in Chapter 22 and uses skills first demonstrated in Chapter 2, “Dialogs
and Controls,” so the description here will be brief.

Click the ResourceView tab, expand the resources, expand Dialogs, and double-click
IDD_PUBLISHING_FORM. This dialog box was created for you by AppWizard but has no controls
on it yet. Delete the static text reminding you to add controls, and add four edit boxes and their
labels so that the dialog resembles Figure 23.25. Use sensible resource IDs for the edit boxes,
not the defaults provided by Developer Studio. Name them IDC_QUERY_LNAME,
IDC_QUERY_FNAME, IDC_QUERY_TITLE, and IDC_QUERY_YTDSALES.

N O T E

Untitled-11 2/19/99, 8:33 AM576

577

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

There is one task left: Connect these fields to member variables. Here’s how to make that
connection:

1. Open ClassWizard while this dialog box has focus.

2. Click the Member Variables tab.

3. Select IDC_QUERY_FNAME and click Add Variable to open the Add Member Variable dialog
box.

4. From the drop-down box labeled Member Variable Name, choose m_pSet->m_au_fname
and click OK.

5. In the same way, connect IDC_QUERY_LNAME to m_pSet->m_au_lname, IDC_QUERY_TITLE to
m_pSet->m_title, and IDC_QUERY_YTDSALES to m_pSet->m_ytd_sales.

6. Figure 23.26 shows the ClassWizard dialog box when all four controls have been
connected. Click OK to close ClassWizard.

In ClassView, double-click the function DoFieldExchange() under CPublishingSet and look at
the code that was generated for you. The order in which the variables appear in this code is
important: It must match the order in which the fields are coming back from your stored proce-
dure. Figure 23.27 shows DoFieldExchange() and the stored procedure together. Adjust the
order of the fields in the SELECT statement, if required.

Build your project and run it. You should see a record view like Figure 23.28 (you might have
to go through the SQL login procedure again first), and if you scroll through the record view
with the arrow buttons, you should see every author from the report in Listing 23.2.

FIG.23.25
Edit your Record View
dialog box.

Exploring the Publishing Application

Untitled-11 2/19/99, 8:33 AM577

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

578 Chapter 23 SQL and the Enterprise Edition

FIG. 23.26
Connect the record view
controls to member
variables of the
recordset.

FIG. 23.27
Make sure that the
fields are in the
same order in
DoFieldExchange()
as in your stored
procedure.

FIG. 23.28
Your application
displays the results of
the stored procedure’s
query.

Untitled-11 2/19/99, 8:33 AM578

579

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Make sure you have saved the SQL stored procedure before you build. Because the stored procedures
are in a subproject of Publishing, building Publishing will not trigger any saves in the subproject.

This application doesn’t do much at the moment: It calls a stored procedure and neatly pre-
sents the results. With a little imagination, you can probably see how your SQL-based C++
programs can wrap stored procedures in user-friendly interfaces and how easy it is to develop
and maintain these stored procedures by using Developer Studio. You can even debug your
SQL by using the Developer Studio debugger.

Working with Your Database
The DataView gives you full control over not only the contents of your SQL database but also
its design. A raft of graphical tools makes it easy to see how the database works or to change
any aspect of it.

Database Designer
Return to the DataView, right-click the authors table, and choose Design. With the Database
Designer, shown in Figure 23.29, you can change the key column, adjust the width, apply con-
straints on valid values, and more.

T I P

FIG. 23.29
The Database Designer
lets you change any
aspect of your
database’s design.

For example, to open the property sheet shown in Figure 23.30, click the Properties button at
the far right of the Table toolbar while au_id is selected. The constraint shown here means that
au_id must be a 9-digit number. Clicking the Relationship tab, shown in Figure 23.31, shows
that au_id is used to connect the authors table to the titleauthor table.

Working with Your Database

Untitled-11 2/19/99, 8:33 AM579

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

580 Chapter 23 SQL and the Enterprise Edition

Database Diagrams
One of the easiest ways to quickly present information to people is with a diagram. Figure
23.32 shows a diagram that explains the relationships between the three tables used through-
out this chapter. To create the same diagram yourself, follow these steps:

1. Right-click Database Diagrams in DataView and choose New Diagram.

2. Click authors and drag it into the working area.

3. Click titleauthor and drag it into the working area. Wait a moment for a link between
authors and titleauthor to appear.

4. Click titles and drag it into the working area. Wait for the link to appear.

5. Rearrange the tables so that their keys are aligned as in Figure 23.32.

FIG. 23.30
It’s simple to specify
column constraints.

FIG. 23.31
The Relationships tab
makes it simple to see
how tables are related.

Untitled-11 2/19/99, 8:34 AM580

581

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

6. Drag the links up or down until they run from one key to another, as they do in Figure
23.32.

FIG. 23.32
A picture is worth a
thousand words when
it’s time to explain your
database design.

If you want, you can save this diagram in the database. Just click the Save button on the stan-
dard toolbar and provide a name. The diagrams will be available to any other developers who
use the Enterprise Edition to access this database.

If you’re a database developer, you probably can’t wait to open your own database in the Data-
base Designer and set to work. Be sure to take advantage of the many features on the Database
Diagram toolbar. For example, you can add a note or explanation with the New Text Annotation
button; this note can be moved wherever you want. Four buttons grouped together control how
much detail is shown for each table. The first, Column Properties, shows all the details that
were in the table view. The second, Column Names, is the default in the diagram view. Keys
shows only those columns that are keys, and Name Only shrinks the grid to a tiny column
showing only the table’s name. This is useful for diagrams representing the relationships of
many tables or of tables from other projects.

To change any design decision about these tables, open the shortcut menu and choose Column
Properties; then edit these properties as you did in the Database Designer. How’s that for an
easy way to design and administer a SQL database?

Working with Your Database

Untitled-11 2/19/99, 8:34 AM581

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

582 Chapter 23 SQL and the Enterprise Edition

Understanding Microsoft Transaction Server
Microsoft Transaction Server is a completely separate product that comes with the Enterprise
Edition of Visual C++ but is not integrated with it. MTS enables you to use a collection of COM
objects called components to securely execute distributed transactions within enterprise-scale
database applications. Applications that use MTS can be written in any language that produces
ActiveX applications, including Visual C++, Visual J++, and Visual Basic.

To work with MTS, you must be comfortable doing under-the-hood ActiveX and COM pro-
gramming, working directly with interfaces. If you’ve always relied on MFC to hide interfaces
from you, you should probably read Chapter 21, “The Active Template Library,” to gain an
introduction to the way that interfaces are used.

Like ODBC, you can use MTS with almost any kind of database, including ordinary file sys-
tems. Certainly SQL databases work with MTS, but so do a huge variety of other resource
managers. This enables you access to the power of MTS without having to change your data-
base system at all.

An MTS component is a COM object. It can do any specific task within your system, and often
several components are involved in a given transaction. Components are gathered together into
packages, which are installed as a unit onto your system.

A transaction is a unit of work that should succeed or fail as a whole. For example, if a cus-
tomer is transferring money from one bank account to another, the money should be with-
drawn from one account and deposited to the other. It doesn’t make sense for one step in this
process to fail and the other to proceed to completion. This would either unfairly take money
away from customers or unfairly give money to customers. Database programmers have long
realized this and have developed ways of rolling back transactions that are partially completed
when a step fails or of checking conditions to ensure that all the steps will succeed before
starting. However, these techniques are much more difficult to implement in a large, distrib-
uted system—too difficult to implement by hand.

For example, imagine that two systems are about to take money (say, $100) from a customer’s
bank account. The first checks the balance, and there is enough money. Both systems are
connected through a network to the system that keeps the balance for that account. The first
system asks for the balance and receives the reply: $150. Moments later, the second asks and is
also told $150. The first confidently sends the request for $100 and succeeds; only a fraction of
a second later, the second asks for $100 and fails. Any portions of a transaction involving this
customer that were already completed by the second system will now have to be rolled back. A
transactional system such as MTS makes this process much simpler for developers by provid-
ing system services to support these tasks.

Sound good? Then install the product and get going in the online help. Two good sample
systems are included: a simple banking application and a game. You can also check out
Microsoft’s Transaction Server Web site at http://www.microsoft.com/transaction.

Untitled-11 2/19/99, 8:34 AM582

583

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

23

VI
Part

Ch

Using Visual SourceSafe
If you work as part of a team of developers, a revision control system isn’t a nicety—it’s a ne-
cessity. For too many teams, the revision control system consists of sticking your head into the
hall and telling your fellow programmers that you will be working on fooble.h and fooble.cpp
for a while and to leave these alone. Perhaps it’s more about demanding to know who saved his
changes to fooble.h over your changes because you both had the file open at once, and some-
body saved after you did. There is a better way.

Revision control systems are not a new idea. They all implement these concepts:

■ Check out a file—By bringing a copy of a file to your desktop from a central library or
repository, you mark the file as unavailable to others who might want to change it.
(Some systems allow changes to source files by several developers at once and can later
merge the changes.)

■ Check in a file—When your changes are complete, you return the file to the library. You
provide a brief description of what you’ve done, and the RCS automatically adds your
name, the date, and other files affected by this change.

■ Merge changes—Some RCS systems can accept check-ins by different developers on the
same file and will make sure that both sets of changes appear in the central file.

■ Change tracking—Some RCS systems can reconstruct earlier versions of a file by
working backwards through a change log.

■ History—The information added at check-in can form a nice summary of what was done
to each file, when, and why.

Microsoft’s Visual SourceSafe is a good revision control system that many developers use to
keep their code in order. What sets Visual SourceSafe apart from other RCS systems? It’s
project oriented, it hooks into Visual C++ (through the new SCCI interface, some other RCS
systems can also hook in), and it comes with the Enterprise Edition of Visual C++.

When you install Visual SourceSafe, choose a custom installation and select Enable SourceSafe
Integration. Doing this adds a cascading menu to Developer Studio’s Project menu, shown in
Figure 23.33. To enable the items on the menu, you must add your project to source control by
choosing Add to Source Control and logging into Visual SourceSafe.

FIG. 23.33
Installing Visual
SourceSafe adds a
cascading menu to the
Project menu.

Using Visual SourceSafe

Untitled-11 2/19/99, 8:34 AM583

b3/a3/swg#4 SE UsingVis C++6 #1539-2 7.20.98 Ayanna CH23 LP#3

584 Chapter 23 SQL and the Enterprise Edition

The items on the menu are as follows:

■ Get Latest Version—For selected files, replace your copies with newer copies from the
library.

■ Check Out—Start to work on a file.

■ Check In—Finish working on a file and make your changed versions available to
everyone.

■ Undo Check Out—Give back a file without making any changes or an entry in the history.

■ Add to Source Control—Enable source control for this project.

■ Remove from Source Control—Disable source control for this project.

■ Show History—Display the changes made to selected files.

■ Show Differences—Display the differences between old and new files.

■ SourceSafe Properties—See information that SourceSafe keeps about your files.

■ Share from SourceSafe—Allow other developers to work on selected files.

■ Refresh Status—Update your display with status changes made by other developers.

■ SourceSafe—Run Visual SourceSafe to see reports and summaries.

You must have an account and password set up in Visual SourceSafe before you can put a
project under source control and use these features. Run Visual SourceSafe from this menu to
perform any administrative tasks that haven’t already been taken care of for you.

Unless you are the only developer who will work on your project, you simply must use a revi-
sion control system. Visual SourceSafe is good: It works from within Developer Studio, and if
you have the Enterprise Edition of Visual C++, it’s free. What more could you want? Install it,
learn it, use it. You won’t regret it.

Revision control systems work on Web pages, database contents, documentation, bug lists, and
spreadsheets as well as they do on code and program files. After you get in the habit and see the
benefits, you won’t stop.

T I P

Untitled-11 2/19/99, 8:35 AM584

585

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

C H A P T E R

Improving Your Application’s Performance

24

In this chapter

Finding Errors with ASSERT and TRACE 586

Adding Debug-Only Features 588

Sealing Memory Leaks 590

Using Optimization to Make Efficient Code 594

Finding Bottlenecks by Profiling 595

Untitled-12 2/19/99, 8:36 AM585

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

586 Chapter 24 Improving Your Application’s Performance

When developing a new application, there are various challenges developers must meet. You
need your application to compile, to run without blowing up, and you must be sure that it does
what you want it to do. On some projects, there is time to determine whether your application
can run faster and use less memory or whether you can have a smaller executable file. The
performance improvement techniques discussed in this chapter can prevent your program
from blowing up and eliminate the kind of thinkos that result in a program calculating or re-
porting the wrong numbers. These improvements are not merely final tweaks and touch-ups
on a finished product.

You should form the habit of adding an ounce of prevention to your code as you write and the
habit of using the debugging capabilities that Developer Studio provides you to confirm what’s
going on in your program. If you save all your testing to the end, both the testing and the bug-
fixing will be much harder than if you had been testing all along. Also, of course, any bug you
manage to prevent will never have to be fixed at all!

Preventing Errors with ASSERT and TRACE
The developers of Visual C++ did not invent the concepts of asserting and tracing. Other lan-
guages support these ideas, and they are taught in many computer science courses. What is
exciting about the Visual C++ implementation of these concepts is the clear way in which
your results are presented and the ease with which you can suppress assertions and TRACE
statements in release versions of your application.

ASSERT: Detecting Logic Errors
The ASSERT macro enables you to check a condition that you logically believe should always be
TRUE. For example, imagine you are about to access an array like this:

array[i] = 5;

You want to be sure that the index, i, isn’t less than zero and larger than the number of ele-
ments allocated for the array. Presumably you have already written code to calculate i, and if
that code has been written properly, i must be between 0 and the array size. An ASSERT state-
ment will verify that:

ASSERT(i > 0 && i < ARRAYSIZE)

There is no semicolon (;) at the end of the line because ASSERT is a macro, not a
function. Older C programs may call a function named assert(), but you should replace

these calls with the ASSERT macro because ASSERT disappears during a release build, as discussed
later in this section. ■

You can check your own logic with ASSERT statements. They should never be used to check
for user input errors or bad data in a file. Whenever the condition inside an ASSERT statement
is FALSE, program execution halts with a message telling you which assertion failed. At this
point, you know you have a logic error, or a developer error, that you need to correct.

N O T E

Untitled-12 2/19/99, 8:36 AM586

587

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

Here’s another example:

// Calling code must pass a non-null pointer
void ProcessObject(Foo * fooObject)
{
 ASSERT(fooObject)
 // process object
}

This code can dereference the pointer in confidence, knowing execution will be halted if the
pointer is NULL.

You probably already know that Developer Studio makes it simple to build debug and release
versions of your programs. The debug version #defines a constant, _DEBUG, and macros and
other pre-processor code can check this constant to determine the build type. When _DEBUG
isn’t defined, the ASSERT macro does nothing. This means there is no speed constraint in the
final code, as there would be if you added if statements yourself to test for logic errors. There
is no need for you to go through your code, removing ASSERT statements when you release
your application, and, in fact, it’s better to leave them there to help the developers who work on
version 2. They document your assumptions, and they’ll be there when the debugging work
starts again. In addition, ASSERT can’t help you if there is a problem with the release version of
your code because it is used to find logic and design errors before you release version 1.0 of
your product.

TRACE: Isolating Problem Areas in Your Program
As discussed in Appendix D, “Debugging,” the power of the Developer Studio debugger is
considerable. You can step through your code one line at a time or run to a breakpoint, and you
can see any of your variables’ values in watch windows as you move through the code. This can
be slow, however, and many developers use TRACE statements as a way of speeding up this
process and zeroing in on the problem area. Then they turn to more traditional step-by-step
debugging to isolate the bad code.

In the old days, isolating bad code meant adding lots of print statements to your program,
which is problematic in a Windows application. Before you start to think up workarounds, such
as printing to a file, relax. The TRACE macro does everything you want, and like ASSERT, it magi-
cally goes away in release builds.

There are several TRACE macros: TRACE, TRACE0, TRACE1, TRACE2, and TRACE3. The number-
suffix indicates the number of parametric arguments beyond a simple string, working much
like printf. The different versions of TRACE were implemented to save data segment space.

When you generate an application with AppWizard, many ASSERT and TRACE statements are
added for you. Here’s a TRACE example:

if (!m_wndToolBar.Create(this)
 || !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
 TRACE0(“Failed to create toolbar\n”);
 return -1; // fail to create
}

Preventing Errors with ASSERT and TRACE

Untitled-12 2/19/99, 8:37 AM587

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

588 Chapter 24 Improving Your Application’s Performance

If the creation of the toolbar fails, this routine will return -1, which signals to the calling pro-
gram that something is wrong. This will happen in both debug and release builds. In debug
builds, though, a trace output will be sent to help the programmer understand what went
wrong.

All the TRACE macros write to afxDump, which is usually the debug window, but can be set to
stderr for console applications. The number-suffix indicates the parametric argument count,
and you use the parametric values within the string to indicate the passed data type—for ex-
ample, to send a TRACE statement that includes the value of an integer variable:

TRACE1(“Error Number: %d\n”, -1);

or to pass two arguments, maybe a string and an integer:

TRACE2(“File Error %s, error number: %d\n”, __FILE__, -1);

The most difficult part of tracing is making it a habit. Sprinkle TRACE statements anywhere you
return error values: before ASSERT statements and in areas where you are unsure that you
constructed your code correctly. When confronted with unexpected behavior, add TRACE state-
ments first so that you better understand what is going on before you start debugging.

Adding Debug-Only Features
If the idea of code that isn’t included in a release build appeals to you, you may want to arrange
for some of your own code to be included in debug builds but not in release builds. It’s easy.
Just wrap the code in a test of the _DEBUG constant, like this:

#ifdef _DEBUG
 // debug code here
#endif

In release builds, this code will not be compiled at all.

All the settings and configurations of the compiler and linker are kept separately for debug and
release builds and can be changed independently. For example, many developers use different
compiler warning levels. To bump your warning level to 4 for debug builds only, follow these
steps:

1. Choose Project, Settings, which opens the Project Settings dialog box, shown in Figure
24.1.

2. Choose Debug or Release from the drop-down list box at the upper left. If you choose All
Configurations, you’ll change debug and release settings simultaneously.

3. Click the C/C++ tab and set the Warning Level to Level 4, as shown in Figure 24.2. The
default is Level 3, which you will use for the release version (see Figure 24.3).

Warning level 4 will generate a lot more errors than level 3. Some of those errors will probably
come from code you didn’t even write, such as MFC functions. You’ll just have to ignore those
warnings.

Untitled-12 2/19/99, 8:37 AM588

589

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

FIG. 24.1
The Project Settings
dialog box enables you
to set configuration
items for different
phases of development.

FIG. 24.2
Warning levels can be
set higher during
development.

FIG. 24.3
Warning levels are
usually lower in a
production release.

Adding Debug-Only Features

Untitled-12 2/19/99, 8:37 AM589

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

590 Chapter 24 Improving Your Application’s Performance

Sealing Memory Leaks
A memory leak can be the most pernicious of errors. Small leaks may not cause any execution
errors in your program until it is run for an exceptionally long time or with a larger-than-usual
data file. Because most programmers test with tiny data files or run the program for only a few
minutes when they are experimenting with parts of it, memory leaks may not reveal them-
selves in everyday testing. Alas, memory leaks may well reveal themselves to your users when
the program crashes or otherwise misbehaves.

Common Causes of Memory Leaks
What does it mean when your program has a memory leak? It means that your program allo-
cated memory and never released it. One very simple cause is calling new to allocate an object
or an array of objects on the heap and never calling delete. Another cause is changing the
pointer kept in a variable without deleting the memory the pointer was pointing to. More subtle
memory leaks arise when a class with a pointer as a member variable calls new to assign the
pointer but doesn’t have a copy constructor, assignment operator, or destructor. Listing 24.1
illustrates some ways that memory leaks are caused.

Listing 24.1 Causing Memory Leaks

// simple pointer leaving scope
{
 int * one = new int;
 *one = 1;
} // one is out of scope now, and wasn’t deleted

// mismatched new and delete: new uses delete and new[] uses delete[]
{
float * f = new float[10];
// use array
delete f; // Oops! Deleted f[0] correct version is delete [] f;
}

// pointer of new memory goes out of scope before delete
{
 const char * DeleteP = “Don’t forget P”;
 char * p = new char[strlen(DeleteP) + 1];
 strcpy(p, DeleteP);
} // scope ended before delete[]

class A
{
 public:
 int * pi;
}

A::A()
{
 pi = new int();
 *pi = 3;

Untitled-12 2/19/99, 8:37 AM590

591

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

}

// ..later on, some code using this class..

A firsta; //allocates an int for first.pi to point to
B seconda; //allocates another int for seconda.pi

seconda=firsta;

// will perform a bitwise (shallow) copy. Both objects
// have a pi that points to the first int allocated.
// The pointer to the second int allocated is gone
// forever.

The code fragments all represent ways in which memory can be allocated and the pointer to
that memory lost before deallocation. After the pointer goes out of scope, you can’t reclaim the
memory, and no one else can use it either. It’s even worse when you consider exceptions, dis-
cussed in Chapter 26, “Exceptions and Templates,” because if an exception is thrown, your flow
of execution may leave a function before reaching the delete at the bottom of the code. Be-
cause destructors are called for objects that are going out of scope as the stack unwinds, you
can prevent some of these problems by putting delete calls in destructors. This, too, is dis-
cussed in more detail in Chapter 26, in the “Placing the catch Block” section.

Like all bugs, the secret to dealing with memory leaks is to prevent them—or to detect them as
soon as possible when they occur. You can develop some good habits to help you:

■ If a class contains a pointer and allocates that pointer with new, be sure to code a destruc-
tor that deletes the memory. Also, code a copy constructor and an operator (=).

■ If a function will allocate memory and return something to let the calling program access
that memory, it must return a pointer instead of a reference. You can’t delete a reference.

■ If a function will allocate memory and then delete it later in the same function, allocate
the memory on the stack, if at all possible, so that you don’t forget to delete it.

■ Never change a pointer’s value unless you have first deleted the object or array it was
pointing to. Never increment a pointer that was returned by new.

Debug new and delete
MFC has a lot to offer the programmer who is looking for memory leaks. In debug builds,
whenever you use new and delete, you are actually using special debug versions that track the
filename and line number on which each allocation occurred and match up deletes with their
news. If memory is left over as the program ends, you get a warning message in the output
section, as shown in Figure 24.4.

Sealing Memory Leaks

Untitled-12 2/19/99, 8:38 AM591

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

592 Chapter 24 Improving Your Application’s Performance

To see this for yourself, create an AppWizard MDI application called Leak, accepting all the
defaults. In the InitInstance() function of the application class (CLeakApp in this example),
add this line:

int* pi = new int[20];

Build a debug version of the application and run it by choosing Build, Start Debug, and Go, or
click the Go button on the Build minibar. You will see output like Figure 24.4. Notice that the
filename (Leak.cpp) and line number where the memory was allocated are provided in the
error message. Double-click that line in the output window, and the editor window displays
Leak.cpp with the cursor on line 54. (The coordinates in the lower-right corner always remind
you what line number you are on.) If you were writing a real application, you would now know
what the problem is. Now you must determine where to fix it (more specifically, where to put
the delete).

Automatic Pointers
When a program is executing within a particular scope, like a function, all variables allocated in
that function are allocated on the stack. The stack is a temporary storage space that shrinks
and grows, like an accordion. The stack is used to store the current execution address before a
function call, the arguments passed to the function, and the local function objects and variables.

When the function returns, the stack pointer is reset to that location where the prior execution
point was stored. This makes the stack space after the reset location available to whatever else
needs it, which means those elements allocated on the stack in the function are gone. This
process is referred to as stack unwinding.

FIG. 24.4
Memory leaks are
detected automatically
in debug builds.

Untitled-12 2/19/99, 8:38 AM592

593

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

Objects or variables defined with the keyword static are not allocated on the stack. ■

Stack unwinding also happens when an exception occurs. To reliably restore the program to its
state before an exception occurred in the function, the stack is unwound. Stack-wise variables
are gone, and the destructors for stack-wise objects are called. Unfortunately, the same is not
true for dynamic objects. The handles (for example, pointers) are unwound, but the unwinding
process doesn’t call delete. This causes a memory leak.

In some cases, the solution is to add delete statements to the destructors of objects that you
know will be destructed as part of the unwinding, so they can use these pointers before they go
out of scope. A more general approach is to replace simple pointers with a C++ class that can be
used just like a pointer but contains a destructor that deletes any memory at the location where
it points. Don’t worry, you don’t have to write such a class: One is included in the Standard
Template Library, which comes with Visual C++. Listing 24.2 is a heavily edited version of the
auto_ptr class definition, presented to demonstrate the key concepts.

If you haven’t seen template code before, it’s explained in Chapter 26.

Listing 24.2 A Scaled-Down Version of the auto_ptr Class

 // This class is not complete. Use the complete definition in
 //the Standard Template Library.
 template <class T>
 class auto_ptr
 {
 public:
 auto_ptr(T *p = 0) : rep(p) {}
 // store pointer in the class
 ~auto_ptr(){ delete rep; } // delete internal rep
 // include pointer conversion members
 inline T* operator->() const { return rep; }
 inline T& operator*() const { return *rep; }
 private:
 T * rep;
 };

The class has one member variable, a pointer to whatever type that you want a pointer to. It has
a one-argument constructor to build an auto_ptr from an int* or a Truck* or any other pointer
type. The destructor deletes the memory pointed to by the internal member variable. Finally,
the class overrides -> and *, the dereferencing operators, so that dereferencing an auto_ptr
feels just like dereferencing an ordinary pointer.

If there is some class C to which you want to make an automatic pointer called p, all you do is
this:

auto_ptr<C> p(new C());

N O T E

T I P

Sealing Memory Leaks

Untitled-12 2/19/99, 8:38 AM593

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

594 Chapter 24 Improving Your Application’s Performance

Now you can use p as though it were a C*—for example:

p->Method(); // calls C::Method()

You never have to delete the C object that p points to, even in the event of an exception, be-
cause p was allocated on the stack. When it goes out of scope, its destructor is called, and the
destructor calls delete on the C object that was allocated in the new statement.

You can read more about managed pointers and exceptions in Chapter 26.

Using Optimization to Make Efficient Code
There was a time when programmers were expected to optimize their code themselves. Many
a night was spent arguing about the order in which to test conditions or about which variables
should be register instead of automatic storage. These days, compilers come with optimizers
that can speed execution or shrink program size far beyond what a typical programmer can
accomplish by hand.

Here’s a simple example of how optimizers work. Imagine you have written a piece of code like
this:

for (i=0;i<10;i++)
{
 y=2;
 x[i]=5;
}
for (i=0; i<10; i++)
{
 total += x[i];
}

Your code will run faster, with no effect on the final results, if you move the y=2 in front of the
first loop. In addition, you can easily combine the two loops into a single loop. If you do that, it’s
faster to add 5 to total each time than it is to calculate the address of x[i] to retrieve the value
just stored in it. Really bright optimizers may even realize that total can be calculated outside
the loop as well. The revised code might look like this:

y=2;
for (i=0;i<10;i++)
{
 x[i]=5;
}
 total += 50;

Optimizers do far more than this, of course, but this example gives you an idea of what’s going
on behind the scenes. It’s up to you whether the optimizer focuses on speed, occasionally at the
expense of memory usage, or tries to minimize memory usage, perhaps at a slighter lower
speed.

Untitled-12 2/19/99, 8:39 AM594

595

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

24

VI
Part

Ch

To set the optimization options for your project, select the Project, Settings command from
Developer Studio’s menu bar. The Project Settings property sheet, first shown in Figure 24.1,
appears. Click the C/C++ tab and make sure you are looking at the Release settings; then se-
lect Optimizations in the Category box. Keep optimization turned off for debug builds because
the code in your source files and the code being executed won’t match line for line, which will
confuse you and the debugger. You should turn on some kind of optimization for release
builds. Choose from the drop-down list box, as shown in Figure 24.5.

If you select the Customize option in the Optimizations box, you can select from the list of
individual optimizations, including Assume No Aliasing, Global Optimizations, Favor Fast
Code, Generate Intrinsic Functions, Frame-Pointer Omission, and more. However, as you can
tell from these names, you really have to know what you’re doing before you set up a custom
optimization scheme. For now, accept one of the schemes that have been laid out for you.

Finding Bottlenecks by Profiling
Profiling an application lets you discover bottlenecks, pieces of code that are slowing your
application’s execution and deserve special attention. It’s pointless to hand-optimize a routine
unless you know that the routine is called often enough for its speed to matter.

Another use of a profiler is to see whether the test cases you have put together result in every
one of your functions being called or in each line of your code being executed. You may think
you have selected test inputs that guarantee this; however, the profiler can confirm it for you.

Visual C++ includes a profiler integrated with the IDE: All you need to do is use it. First, adjust
your project settings to include profiler information. Bring up the Project Settings property
sheet as you did in the preceding section and click the Link tab. Check the Enable Profiling
check box. Click OK and rebuild your project. Links will be slower now because you can’t do
an incremental link when you are planning to profile, but you can go back to your old settings
after you’ve learned a little about the way your program runs. Choose Build, Profile and the
Profile dialog box, shown in Figure 24.6, appears.

FIG. 24.5
Select the type of
optimization you want.

Finding Bottlenecks by Profiling

Untitled-12 2/19/99, 8:39 AM595

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.2198 Ayanna CH24 LP#3

596 Chapter 24 Improving Your Application’s Performance

If you aren’t sure what any of the radio buttons on this dialog box mean, click the question
mark in the upper-right corner and then click the radio button. You’ll receive a short explana-
tion of the option. (If you would like to add this kind of context-sensitive Help to your own
applications, be sure to read Chapter 11, “Help.”)

You don’t profile as a method to catch bugs, but it can help to validate your testing or show you
the parts of your application that need work, which makes it a vital part of the developer’s
toolbox. Get in the habit of profiling all your applications at least once in the development
cycle. ●

FIG. 24.6
A profiler can gather
many kinds of
information.

Untitled-12 2/19/99, 8:39 AM596

597

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

25

VI
Part

Ch

C H A P T E R

Achieving Reuse with the Gallery
and Your Own AppWizards

25

In this chapter

Reviewing the Benefits of Writing Reusable
Code 598

Using Component Gallery 598

Introducing Custom AppWizards 601

Untitled-13 2/19/99, 8:40 AM597

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

598 Chapter 25 Achieving Reuse with the Gallery and Your Own AppWizards

In these days of complex programs, reusability has become more than a buzzword. It’s become
a survival technique for programmers who find themselves with the awesome task of creating
hundreds of thousands of lines of working source code in a minimum amount of time. Visual
C++ is packed with ways to let you reuse the work of programmers who have gone before you,
such as AppWizard, ClassWizard, and of course the Microsoft Foundation Classes. The tools
discussed in this chapter enable you to contribute code to the future, ready to be reused
quickly and easily by some future coworker—or better yet, by you.

Reviewing the Benefits of Writing Reusable Code
If you have a job to do, it’s easy to see how reusing someone else’s code, dialog boxes, or de-
sign simplifies your work and lets you finish faster. As long as you can trust the provider of the
material you reuse, the more you can reuse, the better. As a result, there’s a market for reus-
able bits and pieces of programs.

In fact, there are two markets: one formal one, with vendors selling project parts such as con-
trols or templates, and another informal one within many large companies, with departments
developing reusable parts for brownie points or bragging rights, or other intangibles. Some
companies even have a reuse budget to which you can charge the time you spend making parts
of your project reusable, or they award reuse credits if someone else in the company reuses
one of your parts. If yours doesn’t, maybe it should: Reuse can save as much as 60% of your
software budget, but only if someone is noble or charitable enough to develop with reuse in
mind or if company policy inspires everyone to develop with reuse in mind.

Most newcomers to reuse think only of reusing code, but there are other parts of a project
that can save you far more time than you can save with code reuse only. These include the
following:

■ Design. The Document/View paradigm, first discussed in Chapter 4, “Documents and
Views,” is a classic example of a design decision that is reused in project after project.

■ Interface Resources. You can reuse controls, icons, menus, toolbars, or entire dialog
boxes and reduce training time for your users as well as development time for your
programmers.

■ Project Settings. Whether it’s an obscure linker setting or the perfect arrangement of
toolbars, your working environment must be right for you, and getting it right is faster
on every project you do because you reuse the decisions you made the last time.

■ Documentation. As you read in Chapter 11, “Help,” help text for standard commands like
File, Open is generated for you by AppWizard. You can reuse your own help text from
project to project and save even more time.

Using Component Gallery
Component Gallery is one way that Developer Studio helps support reuse. Component Gallery
gives you instant access to everything from reusable classes and OLE controls to wizards.

Untitled-13 2/19/99, 8:41 AM598

599

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

25

VI
Part

Ch

You can even create your own components and add them to Component Gallery. In fact, in its
default installation, Developer Studio automatically adds a category to Component Gallery for
new AppWizard applications that you create.

Adding a Component to the Gallery
Suppose you have a dialog box that you use frequently in projects. You can create this dialog
box once, add it to Component Gallery, and then merge it into new projects whenever you need
it. To see how this works, follow these steps:

1. Start a new Custom AppWizard project workspace called App1. (Click Finish on Step 1 to
use all the default AppWizard settings; then click OK to create the project.)

2. Add a new dialog box to the project by choosing Insert, Resource and double-clicking
Dialog.

3. Using the techniques first presented in Chapter 2, “Dialogs and Controls,” build the
dialog-box resource shown in Figure 25.1, giving the dialog box the resource ID
IDD_NAMEDLG.

4. While the dialog box has focus, bring up ClassWizard and agree to create a new class.
Call the new class CNameDlg.

5. Close ClassWizard.

6. Right-click CNameDlg in ClassView and choose Add To Gallery from the shortcut menu.

FIG. 25.1
Build a dialog box to
add to Component
Gallery.

Using Component Gallery

Untitled-13 2/19/99, 8:41 AM599

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

600 Chapter 25 Achieving Reuse with the Gallery and Your Own AppWizards

Although nothing appears to happen, the class CNameDlg and the associated resource have
been added to the Gallery. Minimize Developer Studio and browse your hard drive, starting
at My Computer, until you display C:\Program Files\Microsoft VisualStudio\Common\
MSDev98\Gallery (if you installed Visual C++ in another directory, look in that directory for
the MSDev98 folder and continue down from there). As you can see in Figure 25.2, there is
now an App1 folder in the Gallery.

FIG. 25.2
The Gallery uses your
project name as the
folder name when you
add a class.

Double-click the App1 folder and you’ll see it contains one file, Name Dlg.ogx, as shown in
Figure 25.3. The .ogx extension signifies a Gallery component.

FIG. 25.3
The filename for your
Gallery component is
based on the
classname.

Using Gallery Components in Your Projects
Now that you’ve added the resource and associated class to the Gallery, a logical next step is to
make another project that will use them. Create a MFC AppWizard (exe) application, called
App2, with AppWizard. Again, click Finish on Step 1 to accept all the defaults and then OK to
create the project.

Click the ClassView tab and expand the App2 classes. There are six: CAboutDlg, CApp2App,
CApp2Doc, CApp2View, CChildFrame, and CMainFrame.

Untitled-13 2/19/99, 8:41 AM600

601

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

25

VI
Part

Ch

Choose Project, Add To Project, and Components and Controls. The Gallery dialog box, shown
in Figure 25.4, appears.

FIG. 25.4
Gallery components are
arranged in folders.

Double-click App1 and you’ll see Name Dlg.ogx again. Double-click it. When prompted, con-
firm that you want to insert this component in your project. Click Close to close the Gallery.

Look at ClassView again. CNameDlg has been added. Check FileView and you’ll see that
NameDlg.cpp and NameDlg.h have been added to the project. Switch to ResourceView to
confirm that the dialog box IDD_NAMEDLG has been added. You can use this resource in App2 in
just the way you used it in App1.

Exploring the Gallery
You can use Component Gallery to manage many other component types, including those that
you might get from a friend or buy from a third-party supplier. Component Gallery can add,
delete, import, and edit components in a variety of ways, depending on the type of component
with which you’re working. Take some time to experiment with Component Gallery, and you’ll
soon see how easy it is to use.

Figure 25.5 shows the contents of the Registered ActiveX Controls folder, reached by choosing
Project, Add to Project, Components and Controls. Both the ATL and MFC versions of the
Dieroll control are here: DieRoll Class was built in Chapter 21, “The Active Template Library,”
and Dieroll Control was built in Chapter 17, “Building an ActiveX Control.” Before this
shot was taken, DBGrid Control was highlighted and the More Info button was clicked.
Components can be bundled with a Help file that is reached from the More Info button.

Introducing Custom AppWizards
AppWizard is a sensational tool for starting projects effortlessly. However, because of its gen-
eral nature, AppWizard makes many assumptions about the way you want a new project cre-
ated. Sometimes you may need a special type of AppWizard project that isn’t supported by the

Introducing Custom AppWizards

Untitled-13 2/19/99, 8:41 AM601

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

602 Chapter 25 Achieving Reuse with the Gallery and Your Own AppWizards

default AppWizard. If this special project is a one-time deal, you’ll probably just create the
project by hand. However, if you need to use this custom project type again and again, you
might want to consider creating a custom AppWizard.

FIG. 25.5
All ActiveX controls are
available through the
Gallery.

You can create a custom AppWizard in three ways: using the existing AppWizard steps as a
starting point, using an existing project as a starting point, or starting completely from scratch.
However, no matter what method you choose, creating a custom AppWizard can be a compli-
cated task, requiring that you understand and be able to write script files by using the macros
and commands that Visual C++ provides for this purpose.

The following tackles the very simplest case first, creating an AppWizard to reproduce an
existing project with a different name. Follow these steps:

1. Create a project in the usual way. Call it Original and click Finish on Step 1 to accept all
the AppWizard defaults.

2. Edit the About box to resemble Figure 25.6.

FIG. 25.6
Customize your
About box.

3. Choose File, New and click the Projects tab. Select Custom AppWizard and enter
OrigWiz, as shown in Figure 25.7. Click OK.

4. The first of two custom AppWizard dialog boxes appears, as shown in Figure 25.8. Select
An Existing Project to base your wizard on the project you created in steps 1 and 2. Do
not edit the wizard’s name. Click Next.

Untitled-13 2/19/99, 8:41 AM602

603

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

25

VI
Part

Ch

5. The second custom AppWizard dialog box appears. Browse to the project file for the
Original project, Original.dsp. Click Finish.

6. The New Project Information dialog box, shown in Figure 25.9, confirms your choices.
Click OK.

You are now working on the OrigWiz project, and in many cases you would add code at this
point. Because this is an example, just build the project immediately.

To use your custom AppWizard, choose File, New again and click the Projects tab. As shown in
Figure 25.10, OrigWizard has been added to the list of choices on the left. Select it and enter
App3 for the name of the project. Click OK.

When you compile the custom AppWizard, Developer Studio creates the final files and
stores them in your C:\Program Files\Microsoft Visual Studio\Common\MSDev98\

Template directory. The next time you choose to start a new project workspace, your custom AppWizard
will be listed in the project types. To remove the custom AppWizard, delete the wizard’s .awx and .pdb
files from your C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Template directory. ■

FIG. 25.7
Create a custom
AppWizard.

FIG. 25.8
Base your wizard on an
existing project.

N O T E

Introducing Custom AppWizards

Untitled-13 2/19/99, 8:42 AM603

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

604 Chapter 25 Achieving Reuse with the Gallery and Your Own AppWizards

Figure 25.11 shows one of the tasks that you normally complete before you build the
AppWizard: generating the text for the New Project Information dialog box. Click OK.

Look at the classnames and the code—App3 looks like any of the projects created in this chap-
ter that accept all the AppWizard defaults, but you didn’t have to go through any dialog steps.
Switch to ResourceView and edit IDD_ABOUTBOX. As Figure 25.12 shows, it contains the extra
text (based on Original 1.0) that you added, but the application name on the top line of the box
has been correctly changed to App3. This is one smart wizard.

When you build a wizard from an existing project, all the classes, resources, and code that you
added will be incorporated in the new projects you generate with the wizard. It’s a great time-
saver.

FIG. 25.9
Your custom AppWizard
creates copies of the
Original project with
different names.

FIG. 25.10
Your custom AppWizard
has been added to the
list of AppWizards.

Untitled-13 2/19/99, 8:42 AM604

605

Brands 3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.16.98 Ayanna CH25 LP#2

25

VI
Part

ChYou can also build custom AppWizards that present dialog boxes for you to fill out. Before you
do that, you should be comfortable writing wizards that are not AppWizards, like the ones
discussed in Chapter 12, “Property Pages and Sheets.” You should also have generated lots of
different types of applications so that you have a feel for the sort of work AppWizard does.
When you’re ready, check the section in the online help titled “Creating Custom AppWizards.”

This whole book demonstrates the value of using other people’s designs, classes, code, con-
trols, dialog boxes, and other project parts. This chapter shows two simple ways to arrange for
other people (or you, in the future) to reuse your code, which benefits your customers or em-
ployer by saving significant development time. Your job will be more enjoyable when repetitive
tasks, such as building a dialog box and associating it with a class, are taken care of, freeing
you to do the fun stuff. ●

FIG. 25.11
You have to write the
text for the New Project
Information dialog box.

FIG. 25.12
AppWizard copied your
custom About box to
the new project.

Introducing Custom AppWizards

Untitled-13 2/19/99, 8:42 AM605

Untitled-13 2/19/99, 8:42 AM606

607

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

C H A P T E R

Exceptions and Templates

26

In this chapter

Understanding Exceptions 608

Exploring Templates 617

The Standard Template Library 625

Understanding Namespaces 627

Untitled-15 2/19/99, 8:52 AM607

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

608 Chapter 26 Exceptions and Templates

C++ is an evolving language and frequently undergoes review and improvement. Two impor-
tant features that were added to C++ after many developers had already learned the language
are exceptions and templates. Although most programmers delay learning these concepts until
they have six months to a year of Visual C++ programming experience, you should consider
learning them now. These concepts are not much more difficult than the ones covered earlier
in this book and can add extra power to your programs.

Understanding Exceptions
When writing applications using Visual C++, sooner or later you’re going to run into error-
handling situations that don’t seem to have a solution. Perhaps you are writing a function that
returns a numeric value and need a way to send back an error response. Sometimes you can
come up with one special return value, perhaps 0 or -1, that indicates a problem. Other times
there doesn’t seem to be a way to signal trouble. Perhaps you use special return values but find
yourself writing code that starts out like this:

while (somefunction(x))
{
 for (int i=0; i<limit; i++)
 {
 y = someotherfunction(i);
 }
}

After writing that, perhaps you realize that if someotherfunction() returns -1, you should not
move on to the next i, and you should leave the while loop. Your code becomes the following:

int timetostop = 0;
while (somefunction(x) && !timetostop)
{
 for (int i=0; i<limit && !timetostop; i++)
 {
 if ((y = someotherfunction(i)) == -1)
 timetostop = 1;
 }
}

This isn’t bad, but it is hard to read. If there are two or three things that could go wrong, your
code becomes unmanageably complex.

Exceptions are designed to handle these sorts of problems. The exception mechanism allows
programs to signal each other about serious and unexpected problems. Three places in your
code participate in most exceptions:

■ The try block marks the code you believe might run into difficulty.

■ The catch block immediately follows the try block and holds the code that deals with the
problem.

■ The throw statement is how the code with a problem notifies the calling code.

Untitled-15 2/19/99, 8:52 AM608

609

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

Simple Exception Handling
The mechanism used by exception-handling code is simple. Place the source code that you
want guarded against errors inside a try block. Then construct a catch program block that
acts as the error handler. If the code in the try block (or any code called from the try block)
throws an exception, the try block immediately ceases execution, and the program continues
inside the catch block.

For example, memory allocation is one place in a program where you might expect to run into
trouble. Listing 26.1 shows a nonsensical little program that allocates some memory and then
immediately deletes it. Because memory allocation could fail, the code that allocates the
memory is enclosed in a try program block. If the pointer returned from the memory alloca-
tion is NULL, the try block throws an exception. In this case, the exception object is a string.

The sample applications in this chapter are console applications, which can run from a
DOS prompt and don’t have a graphical interface. This keeps them small enough to be

shown in their entirety in the listings. To try them, create a console application as discussed in Chapter
28, “Future Explorations,” add a file to the project, and add the code shown here. ■

Listing 26.1 EXCEPTION1.CPP—Simple Exception Handling

#include <iostream.h>

int main()
{
 int* buffer;

 try
 {
 buffer = new int[256];

 if (buffer == NULL)
 throw “Memory allocation failed!”;
 else
 delete buffer;
 }
 catch(char* exception)
 {
 cout << exception << endl;
 }

 return 0;
}

When the program throws the exception, program execution jumps to the first line of the catch
program block. (The remainder of the code inside the try block is not executed.) In the case of
Listing 26.1, this line prints out a message, after which the function’s return line is executed
and the program ends.

N O T E

Understanding Exceptions

Untitled-15 2/19/99, 8:52 AM609

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

610 Chapter 26 Exceptions and Templates

If the memory allocation is successful, the program executes the entire try block, deleting the
buffer. Then program execution skips over the catch block completely, in this case going di-
rectly to the return statement.

The catch program block does more than direct program execution. It actually catches the
exception object thrown by the program. For example, in Listing 26.1, you can see the

exception object being caught inside the parentheses following the catch keyword. This is very similar
to a parameter being received by a method. In this case, the type of the “parameter” is char* and the
name of the parameter is exception. ■

Exception Objects
The beauty of C++ exceptions is that the exception object thrown can be just about any kind of
data structure you like. For example, you might want to create an exception class for certain
kinds of exceptions that occur in your programs. Listing 26.2 shows a program that defines a
general-purpose exception class called MyException. In the case of a memory-allocation failure,
the main program creates an object of the class and throws it. The catch block catches the
MyException object, calls the object’s GetError() member function to get the object’s error
string, and then displays the string on the screen.

Listing 26.2 EXCEPTION2.CPP—Creating an Exception Class

#include <iostream.h>

class MyException
{
protected:
 char* m_msg;

public:
 MyException(char *msg) { m_msg = msg; }

 ~MyException(){}

 char* GetError() {return m_msg; };
};

int main()
{
 int* buffer;

 try
 {
 buffer = new int[256];

 if (buffer == NULL)
 {
 MyException* exception =
 new MyException(“Memory allocation failed!”);
 throw exception;

N O T E

Untitled-15 2/19/99, 8:52 AM610

611

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

 }
 else
 delete buffer;
 }
 catch(MyException* exception)
 {
 char* msg = exception->GetError();
 cout << msg << endl;
 }

 return 0;
}

An exception object can be as simple as an integer error code or as complex as a fully devel-
oped class. MFC provides a number of exception classes, including CException and several
classes derived from it. The abstract class CException has a constructor and three member
functions: Delete(), which deletes the exception, GetErrorMessage(), which returns a string
describing the exception, and ReportError(), which reports the error in a message box.

Placing the catch Block
The catch program block doesn’t have to be in the same function as the one in which the ex-
ception is thrown. When an exception is thrown, the system starts “unwinding the stack,”
looking for the nearest catch block. If the catch block is not found in the function that threw
the exception, the system looks in the function that called the throwing function. This search
continues up the function-call stack. If the exception is never caught, the program halts.

Listing 26.3 is a short program that demonstrates this concept. The program throws the excep-
tion from the AllocateBuffer() function but catches the exception in main(), which is the
function from which AllocateBuffer() is called.

Listing 26.3 EXCEPTION3.CPP—Catching Exceptions Outside the
Throwing Function

#include <iostream.h>

class MyException
{
protected:
 char* m_msg;

public:
 MyException(char *msg) { m_msg = msg;}
 ~MyException(){}
 char* GetError() {return m_msg;}
};

continues

Understanding Exceptions

Untitled-15 2/19/99, 8:53 AM611

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

612 Chapter 26 Exceptions and Templates

class BigObject
{
private:
 int* intarray;
public:
 BigObject() {intarray = new int[1000];}
 ~BigObject() {delete intarray;}
};

int* AllocateBuffer();

int main()
{
 int* buffer;

 try
 {
 buffer = AllocateBuffer();
 delete buffer;
 }
 catch (MyException* exception)
 {
 char* msg = exception->GetError();
 cout << msg << endl;
 }

 return 0;
}

int* AllocateBuffer()
{
 BigObject bigarray;
 float* floatarray = new float[1000];
 int* buffer = new int[256];

 if (buffer == NULL)
 {
 MyException* exception =
 new MyException(“Memory allocation failed!”);
 throw exception;
 }

 delete floatarray;
 return buffer;
}

When the exception is thrown in AllocateBuffer(), the remainder of the function is not ex-
ecuted. The dynamically allocated floatarray will not be deleted. The BigObject that was allo-
cated on the stack will go out of scope, and its destructor will be executed, deleting the intarray
member variable that was allocated with new in the constructor. This is an important concept to
grasp: Objects created on the stack will be destructed as the stack unwinds. Objects created on

Listing 26.3 Continued

Untitled-15 2/19/99, 8:53 AM612

613

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

the heap will not. Your code must take care of these. For example, AllocateBuffer() should
include code to delete floatarray before throwing the exception, like this:

if (buffer == NULL)
 {
 MyException* exception =
 new MyException(“Memory allocation failed!”);
 delete floatarray;
 throw exception;
 }

In many cases, using an object with a carefully written destructor can save significant code
duplication when you are using exceptions. If you are using objects allocated on the heap, you
may need to catch and rethrow exceptions so that you can delete them. Consider the code in
Listing 26.4, in which the exception is thrown right past an intermediate function up to the
catching function.

Listing 26.4 EXCEPTION4.CPP—Unwinding the Stack

#include <iostream.h>

class MyException
{
protected:
 char* m_msg;

public:
 MyException(char *msg) { m_msg = msg;}
 ~MyException(){}
 char* GetError() {return m_msg;}
};

class BigObject
{
private:
 int* intarray;
public:
 BigObject() {intarray = new int[1000];}
 ~BigObject() {delete intarray;}
};

int* AllocateBuffer();
int* Intermediate();

int main()
{
 int* buffer;

 try
 {
 buffer = Intermediate();
 delete buffer;

continues

Understanding Exceptions

Untitled-15 2/19/99, 8:53 AM613

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

614 Chapter 26 Exceptions and Templates

 }
 catch (MyException* exception)
 {
 char* msg = exception->GetError();
 cout << msg << endl;
 }

 return 0;
}

int* Intermediate()
{
 BigObject bigarray;
 float* floatarray = new float[1000];
 int* retval = AllocateBuffer();
 delete floatarray;
 return retval;
}

int* AllocateBuffer()
{
 int* buffer = new int[256];

 if (buffer == NULL)
 {
 MyException* exception =
 new MyException(“Memory allocation failed!”);
 throw exception;
 }

 return buffer;
}

If the exception is thrown, execution of AllocateBuffer() is abandoned immediately. The
stack unwinds. Because there is no catch block in Intermediate(), execution of that function
will be abandoned after the call to AllocateBuffer(). The delete for floatarray will not
happen, but the destructor for bigarray will be executed. Listing 26.5 shows a way around this
problem.

Listing 26.5 Rethrowing Exceptions

int* Intermediate()
{
 BigObject bigarray;
 float* floatarray = new float[1000];
 int* retval = NULL;
 try
 {
 retval = AllocateBuffer();
 }
 catch (MyException e)

Listing 26.4 Continued

Untitled-15 2/19/99, 8:53 AM614

615

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

 {
 delete floatarray;
 throw;
 }
 delete floatarray;
 return retval;
}

This revised version of Intermediate() catches the exception so that it can delete floatarray
and throw it farther up to the calling function. (Notice that the name of the exception is not in
this throw statement; it can throw only the exception it just caught.) There are a few things you
should notice about this revised code:

■ The line that deletes floatarray has been duplicated.

■ The declaration of retval has had to move out of the try block so that it will still be in
scope after the try block.

■ retval has been initialized to a default value.

This is really starting to get ugly. Through this entire process, the BigObject called bigarray
has been quietly handled properly and easily, with an automatic call to the destructor no matter
which function allocated it or where the exception was called. When you write code that uses
exceptions, wrapping all your heap-allocated objects in classes such as BigObject makes your
life easier. BigObject uses a managed pointer : When a BigObject object such as bigarray goes
out of scope, the memory it pointed to is deleted. A very flexible approach to managed pointers
is described at the end of the section on templates in this chapter.

Handling Multiple Types of Exceptions
Often, a block of code generates more than one type of exception, so you may want to use
multiple catch blocks with a try block. You might, for example, need to be on the lookout for
both CException and char* exceptions. Because a catch block must receive a specific type of
exception object, you need two different catch blocks to watch for both CException and char*
exception objects. You can also set up a catch block to catch whatever type of exception hasn’t
been caught yet, by placing ellipses (…) in the parentheses, rather than a specific argument.
The problem with this sort of multipurpose catch block is that you have no access to the ex-
ception object received and so must handle the exception in a general way.

Listing 26.6 is a program that generates three different types of exceptions based on a user’s
input. (In a real program, you shouldn’t use exceptions to deal with user errors. It’s a slow
mechanism, and checking what the user typed can usually be handled more efficiently in an-
other way.)

Running the program, you’re instructed to enter a value between 4 and 8, except for 6. If you
enter a value less than 4, the program throws a MyException exception; if you enter a value
greater than 8, the program throws a char* exception; and, finally, if you happen to enter 6, the
program throws the entered value as an exception.

Understanding Exceptions

Untitled-15 2/19/99, 8:54 AM615

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

616 Chapter 26 Exceptions and Templates

Although the program throws the exceptions in the GetValue() function, the program catches
them all in main(). The try block in main() is associated with three catch blocks. The first
catches the MyException object, the second catches the char* object, and the third catches any
other exception that happens to come down the pike.

Similar to if...else statements, the order in which you place catch program blocks
can have a profound effect on program execution. You should always place the most

specific catch blocks first. For example, in Listing 26.6, if the catch(...) block were first, none of
the other catch blocks would ever be called. This is because the catch(...) is as general as you
can get, catching every single exception that the program throws. In this case (as in most cases), you
want to use catch(...) to receive only the leftover exceptions. ■

Listing 26.6 EXCEPTION6.CPP—Using Multiple catch Blocks

#include <iostream.h>

class MyException
{
protected:
 char* m_msg;

public:
 MyException(char *msg) { m_msg = msg;}
 ~MyException(){}
 char* GetError() {return m_msg;}
};

int GetValue();

int main()
{
 try
 {
 int value = GetValue();
 cout << “The value you entered is okay.” << endl;
 }
 catch(MyException* exception)
 {
 char* msg = exception->GetError();
 cout << msg << endl;
 }
 catch(char* msg)
 {
 cout << msg << endl;
 }
 catch(...)
 {
 cout << “Caught unknown exception!” << endl;
 }

N O T E

Untitled-15 2/19/99, 8:54 AM616

617

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

 return 0;
}

int GetValue(){
 int value;

 cout << “Type a number from 4 to 8 (except 6):” << endl;
 cin >> value;

 if (value < 4)
 {
 MyException* exception =
 new MyException(“Value less than 4!”);
 throw exception;
 }
 else if (value > 8)
 {
 throw “Value greater than 8!”;
 }
 else if (value == 6)
 {
 throw value;
 }
 return value;
}

The Old Exception Mechanism
Before try, catch, and throw were added to Visual C++, there was a rudimentary form of ex-
ception handling available to both C and C++ programmers through macros called TRY, CATCH,
and THROW. These macros are a little slower than the standard exception mechanisms and can
throw only exceptions that are objects of a class derived from CException. Don’t use these in
your programs. If you have an existing program that uses them, you may want to convert to the
new mechanism. There’s a helpful article on this topic in the Visual C++ documentation: search
for TRY and you’ll find it.

Exploring Templates
It’s a good guess that, at one time or another, you wished you could develop a single function
or class that could handle any kind of data. Sure, you can use function overloading to write
several versions of a function, or you can use inheritance to derive several different classes
from a base class. But, in these cases, you still end up writing many different functions or
classes. If only there were a way to make functions and classes a little smarter so that you
could write just one function that handled any kind of data you wanted to throw at it. There is a
way to accomplish this seemingly impossible task. You need to use something called templates,
the focus of this section.

Exploring Templates

Untitled-15 2/19/99, 8:54 AM617

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

618 Chapter 26 Exceptions and Templates

Introducing Templates
A template is a kind of blueprint for a function or class. You write the template in a general way,
supplying placeholders, called parameters, for the data objects that the final function or class
will manipulate. A template always begins with the keyword template followed by a list of
parameters between angle brackets, like this:

template<class Type>

You can have as many parameters as you need, and you can name them whatever you like, but
each must begin with the class keyword and must be separated by commas, like this:

template<class Type1, class Type2, class Type3>

As you may have guessed from previous discussion, there are two types of templates: function
and class. The following sections describe how to create and use both types of templates.

Creating Function Templates
A function template starts with the template line you just learned about, followed by the
function’s declaration, as shown in Listing 26.7. The template line specifies the types of argu-
ments that will be used when calling the function, whereas the function’s declaration specifies
how those arguments are to be received as parameters by the function. Every parameter speci-
fied in the template line must be used by the function declaration. Notice the Type1 immedi-
ately before the function name. Type1 is a placeholder for the function’s return type, which will
vary, depending on how the template is used.

Listing 26.7 The Basic Form of a Function Template

template<class Type1, class Type2>
Type1 MyFunction(Type1 data1, Type1 data2, Type2 data3)
{
 // Place the body of the function here.
}

An actual working example will help you understand how function templates become functions.
A common example is a Min() function that can accept any type of arguments. Listing 26.8 is a
short program that defines a template for a Min() function and then uses that function in
main(). When you run the program, the program displays the smallest value of whatever data
is sent as arguments to Min(). This is possible because the compiler takes the template and
creates functions for each of the data types that are compared in the program.

Listing 26.8 TEMPLATE1.CPP—Using a Typical Function Template

#include <iostream.h>

template<class Type>
Type Min(Type arg1, Type arg2)
{

Untitled-15 2/19/99, 8:55 AM618

619

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

 Type min;

 if (arg1 < arg2)
 min = arg1;
 else
 min = arg2;

 return min;
}

int main()
{
 cout << Min(15, 25) << endl;
 cout << Min(254.78, 12.983) << endl;
 cout << Min(‘A’, ‘Z’) << endl;

 return 0;
}

Notice how, in Listing 26.8, the Min() template uses the data type Type not only in its
parameter list and function argument list but also in the body of the function in order to

declare a local variable. This illustrates how you can use the parameter types just as you would use any
specific data type such as int or char. ■

Because function templates are so flexible, they often lead to trouble. For example, in the
Min() template, you have to be sure that the data types you supply as parameters can be com-
pared. If you tried to compare two classes, your program would not compile unless the classes
overloaded the < and > operators.

Another way you can run into trouble is when the arguments you supply to the template are
not used as you think. For example, what about adding the following line to main() in Listing
26.6?

cout << Min(“APPLE”, “ORANGE”) << endl;

If you don’t think about what you’re doing in the previous line, you may jump to the conclusion
that the returned result will be APPLE. The truth is that the preceding line may or may not give
you the result you expect. Why? Because the “APPLE” and “ORANGE” string constants result in
pointers to char. This means that the program will compile smoothly, with the compiler creat-
ing a version of Min() that compares char pointers. But there’s a big difference between com-
paring two pointers and comparing the data to which the pointers point. If “ORANGE” happens to
be stored at a lower address than “APPLE”, the preceding call to Min() results in “ORANGE”.

A way to avoid this problem is to provide a specific replacement function for Min() that defines
exactly how you want the two string constants compared. When you provide a specific function,
the compiler uses that function rather than create one from the template. Listing 26.9 is a short
program that demonstrates this important technique. When the program needs to compare the
two strings, it doesn’t call a function created from the template but instead uses the specific
replacement function.

N O T E

Exploring Templates

Untitled-15 2/19/99, 8:55 AM619

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

620 Chapter 26 Exceptions and Templates

Listing 26.9 TEMPLATE2.CPP—Using a Specific Replacement Function

#include <iostream.h>
#include <string.h>

template<class Type>
Type Min(Type arg1, Type arg2)
{
 Type min;

 if (arg1 < arg2)
 min = arg1;
 else
 min = arg2;

 return min;
}

char* Min(char* arg1, char* arg2)
{
 char* min;

 int result = strcmp(arg1, arg2);

 if (result < 0)
 min = arg1;
 else
 min = arg2;

 return min;
}

int main()
{
 cout << Min(15, 25) << endl;
 cout << Min(254.78, 12.983) << endl;
 cout << Min(‘A’, ‘Z’) << endl;
 cout << Min(“APPLE”, “ORANGE”) << endl;

 return 0;
}

Creating Class Templates
Just as you can create abstract functions with function templates, so too can you create abstract
classes with class templates. A class template represents a class, which in turn represents an
object. When you define a class template, the compiler takes the template and creates a class.
You then declare (instantiate) objects of the class. As you can see, class templates add another
layer of abstraction to the concept of classes.

You define a class template much as you define a function template—by supplying the
template line followed by the class’s declaration, as shown in Listing 26.10. Notice that, just as

Untitled-15 2/19/99, 8:55 AM620

621

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

with a function template, you use the abstract data types given as parameters in the template
line in the class’s body. They might be the types for member variables, return types, and other
data objects.

Listing 26.10 Defining a Class Template

template<class Type>
class CMyClass
{
protected:
 Type data;

public:
 CMyClass(Type arg) { data = arg; }
 ~CMyClass() {};
};

When ready to instantiate objects from the template class, you must supply the data type that
will replace the template parameters. For example, to create an object of the CMyClass class,
you might use a line like this:

CMyClass<int> myClass(15);

The preceding line creates a CMyClass object that uses integers in place of the abstract data
type. If you wanted the class to deal with floating-point values, you’d create an object of the
class something like this:

CMyClass<float> myClass(15.75);

For a more complete example, suppose you want to create a class that stores two values and
has member functions that compare those values. Listing 26.11 is a program that does just that.
First, the listing defines a class template called CCompare. This class stores two values that are
supplied to the constructor. The class also includes the usual constructor and destructor, as
well as member functions for determining the larger or smaller of the values, or whether the
values are equal.

Listing 26.11 TEMPLATE3.CPP—Using a Class Template

#include <iostream.h>

template<class Type>
class CCompare
{
protected:
 Type arg1;
 Type arg2;

public:
 CCompare(Type arg1, Type arg2)
 {

continues

Exploring Templates

Untitled-15 2/19/99, 8:55 AM621

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

622 Chapter 26 Exceptions and Templates

 CCompare::arg1 = arg1;
 CCompare::arg2 = arg2;
 }

 ~CCompare() {}

 Type GetMin()
 {
 Type min;

 if (arg1 < arg2)
 min = arg1;
 else
 min = arg2;

 return min;
 }

 Type GetMax()
 {
 Type max;

 if (arg1 > arg2)
 max = arg1;
 else
 max = arg2;

 return max;
 }

 int Equal()
 {
 int equal;

 if (arg1 == arg2)
 equal = 1;
 else
 equal = 0;

 return equal;
 }
};

int main()
{
 CCompare<int> compare1(15, 25);
 CCompare<double> compare2(254.78, 12.983);
 CCompare<char> compare3(‘A’, ‘Z’);

 cout << “THE COMPARE1 OBJECT” << endl;
 cout << “Lowest: “ << compare1.GetMin() << endl;
 cout << “Highest: “ << compare1.GetMax() << endl;
 cout << “Equal: “ << compare1.Equal() << endl;
 cout << endl;

Listing 26.11 Continued

Untitled-15 2/19/99, 8:55 AM622

623

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

 cout << “THE COMPARE2 OBJECT” << endl;
 cout << “Lowest: “ << compare2.GetMin() << endl;
 cout << “Highest: “ << compare2.GetMax() << endl;
 cout << “Equal: “ << compare2.Equal() << endl;
 cout << endl;

 cout << “THE COMPARE2 OBJECT” << endl;
 cout << “Lowest: “ << compare3.GetMin() << endl;
 cout << “Highest: “ << compare3.GetMax() << endl;
 cout << “Equal: “ << compare3.Equal() << endl;
 cout << endl;

 return 0;
}

The main program instantiates three objects from the class template: one that deals with inte-
gers, one that uses floating-point values, and one that stores and compares character values.
After creating the three CCompare objects, main() calls the objects’ member functions in order
to display information about the data stored in each object. Figure 26.1 shows the program’s
output.

You can pass as many parameters as you like to a class template, just like a function template.
Listing 26.12 shows a class template that uses two different types of data.

Listing 26.12 Using Multiple Parameters with a Class Template

template<class Type1, class Type2>
class CMyClass
{
protected:
 Type1 data1;
 Type2 data2;

FIG. 26.1
The template3 program
creates three different
objects from a class
template.

continues

Exploring Templates

Untitled-15 2/19/99, 8:56 AM623

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

624 Chapter 26 Exceptions and Templates

public:
 CMyClass(Type1 arg1, Type2 arg2)
 {
 data1 = arg1;
 data2 = arg2;
 }

 ~CMyClass() {}
};

To instantiate an object of the CMyClass class, you might use a line like this:

CMyClass<int, char> myClass(15, ‘A’);

Finally, you can use specific data types, as well as the placeholder data types, as parameters in
a class template. Just add the specific data type to the parameter list, as you add any other
parameter. Listing 26.13 is a short program that creates an object from a class template, using
two abstract parameters and one specific data type.

Listing 26.13 Using Specific Data Types as Parameters in a Class Template

#include <iostream.h>

template<class Type1, class Type2, int num>
class CMyClass
{
protected:
 Type1 data1;
 Type2 data2;
 int data3;

public:
 CMyClass(Type1 arg1, Type2 arg2, int num)
 {

data1 = arg1;
 data2 = arg2;
 data3 = num;
 }

 ~CMyClass() {}
};

int main()
{
 CMyClass<int, char, 0> myClass(15, ‘A’, 10);

 return 0;
}

Listing 26.12 Continued

Untitled-15 2/19/99, 8:56 AM624

625

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

The Standard Template Library
Before running off to write templates that implement linked lists, binary trees, sorting, and
other common tasks, you might like to know that somebody else already has. Visual C++ incor-
porates the Standard Template Library (STL), which includes hundreds of function and class
templates to tackle common tasks. Would you like a stack of ints or a stack of floats? Don’t
write lots of different stack classes. Don’t even write one stack class template. Simply use the
stack template included in the STL. This applies to almost every common data structure.

Managed Pointer Templates: auto_ptr
Earlier in this chapter you saw applications that use exceptions and allocate memory on the
heap (dynamic allocation with new) can run into trouble when exceptions are thrown. If the
delete statement for that memory gets bypassed, the memory will leak. If there were an object
on the stack whose destructor called delete for the memory, you would prevent this problem.
STL implements a managed pointer called auto_ptr. Here’s the declaration:

template<class T>
 class auto_ptr {
public:
 typedef T element_type;
 explicit auto_ptr(T *p = 0) ;
 auto_ptr(const auto_ptr<T>& rhs) ;
 auto_ptr<T>& operator=(auto_ptr<T>& rhs);
 ~auto_ptr();
 T& operator*() const ;
 T *operator->() const;
 T *get() const ;
 T *release() const;
 };

After you create a pointer to an int, float, Employee, or any other type of object, you can make
an auto_ptr and use that like a pointer. For example, imagine a code fragment like this:

// ...
 Employee* emp = new Employee(stuff);
 emp->ProcessEmployee;
 delete emp;
// ...

When you realize that ProcessEmployee() might throw an EmployeeException, you can
change this code to read like this:

// ...
 Employee* emp = new Employee(stuff);
 try
 {
 emp->ProcessEmployee;
 }
 catch (EmployeeException e)
 {

The Standard Template Library

Untitled-15 2/19/99, 8:56 AM625

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

626 Chapter 26 Exceptions and Templates

 delete emp;
 throw;
 }
 delete emp;
// ...

But you think this is ugly and hard to maintain, so you go with an auto_ptr instead:

#include <memory>
// ...
 auto_ptr<Employee> emp (new Employee(stuff));
 emp->ProcessEmployee;
// ...

This looks like the first example, but it works like the second: Whether you leave this code
snippet normally or because of an exception, emp will go out of scope, and when it does, the
Employee object that was allocated on the heap will be deleted for you automatically. No extra
try or catch blocks, and as an extra bonus you don’t even have to remember to delete the
memory in the routine—it’s done for you.

Look again at the functions declared in the template: a constructor, a copy constructor, an
address-of (&) operator, a destructor, a contents of (*) operator, a dereferencing (->) operator,
and functions called get() and release(). These work together to ensure that you can treat
your pointer exactly as though it were an ordinary pointer.

Other Useful STL Templates
STL is especially useful to ATL programmers, who may not be using MFC. Why drag in all of
MFC because you want to do a little string manipulation or manage a lookup table or linked
list? Use the STL versions of these common data structures instead. The full details are in the
online documentation, but be sure to look for these classes or functions:

■ deque

■ list

■ map

■ multimap

■ set

■ multiset

■ vector

■ basic_string

■ stack

■ swap

■ min, max

There are many more, but these will give you an idea of the amount of work you can save with
templates, especially with templates you don’t have to write.

Untitled-15 2/19/99, 8:56 AM626

627

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

Understanding Namespaces
A namespace defines a scope in which duplicate identifiers cannot be used. For example, you
already know that you can have a global variable named value and then also define a function
with a local variable called value. Because the two variables are in different namespaces, your
program knows that it should use the local value when inside the function and the global
value everywhere else.

Namespaces, however, do not extend far enough to cover some very thorny problems. One
example is duplicate names in external classes or libraries. This issue crops up when a pro-
grammer is using several external files within a single project. None of the external variables
and functions can have the same name as other external variables or functions. To avoid this
type of problem, third-party vendors frequently add prefixes or suffixes to variable and function
names in order to reduce the likeliness of some other vendor using the same name.

Obviously, the C++ gurus have come up with a solution to such scope-resolution problems. The
solution is user-defined namespaces.

Defining a Namespace
In its simplest form, a namespace is not unlike a structure or a class. You start the namespace
definition with the namespace keyword, followed by the namespace’s name and the declaration
of the identifiers that will be valid within the scope of that namespace.

Listing 26.16 shows a namespace definition. The namespace is called A and includes two identi-
fiers, i and j, and a function, Func(). Notice that the Func() function is completely defined
within the namespace definition. You can also choose to define the function outside the
namespace definition. In that case, you must preface the function definition’s name with the
namespace’s name, much as you would preface a class’s member-function definition with the
class’s name. Listing 26.17 shows this form of namespace function definition.

Listing 26.16 Defining a Namespace

namespace A
{
 int i;
 int j;

 int Func()
 {
 return 1;
 }
}

Understanding Namespaces

Untitled-15 2/19/99, 8:57 AM627

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

628 Chapter 26 Exceptions and Templates

Listing 26.17 Defining a Function Outside the Namespace Definition

namespace A
{
 int i;
 int j;

 int Func();
}

int A::Func()
{
 return 1;
}

Namespaces must be defined at the file level of scope or within another namespace
definition. They cannot be defined, for example, inside a function. ■

Namespace Scope Resolution
Namespaces add a new layer of scope to your programs, but this means that you need some
way of identifying that scope. The identification is, of course, the namespace’s name, which you
must use in your programs to resolve references to identifiers. For example, to refer to the
variable i in namespace A, you’d write something like this:

A::i = 0;

You can nest one namespace definition within another, as shown in Listing 26.18. In that case,
however, you have to use more complicated scope resolutions in order to differentiate between
the i variable declared in A and B, like this:

A::i = 0;
A::B::i = 0;

Listing 26.18 Nesting Namespace Definitions

namespace A
{
 int i;
 int j;

 int Func()
 {
 return 1;
 }

 namespace B
 {
 int i;
 }
}

N O T E

Untitled-15 2/19/99, 8:57 AM628

629

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

26

VI
Part

Ch

If you’re going to frequently reference variables and functions within namespace A, you can
avoid using the A:: resolution by preceding the program statements with a using line, as
shown in Listing 26.19. This is very common in programs that use STL templates, most of
which are in the std namespace.

Listing 26.19 Resolving Scope with the using Keyword

using namespace A;
i = 0;
j = 0;
int num1 = Func();

Unnamed Namespaces
To thoroughly confuse you, Visual C++ allows you to have unnamed namespaces. You define an
unnamed namespace exactly as you would any other namespace, without attaching a name.
Listing 26.20 shows the definition of an unnamed namespace. It lets you arrange variables
whose names are valid only within one namespace and cannot be accessed from elsewhere
because no other code can know the name of the unnamed namespace.

Listing 26.20 Defining an Unnamed Namespace

namespace
{
 int i;
 int j;

 int Func()
 {
 return 1;
 }
}

Refer to the identifiers in the unnamed namespace without any sort of extra scope resolution,
like this:

i = 0;
j = 0;
int num1 = Func();

Namespace Aliases
Often you run into namespaces that have long names. In these cases, having to use the long
name over and over in your program in order to access the identifiers defined in the
namespace can be a major chore. To solve this problem, Visual C++ enables you to create
namespace aliases, which are just replacement names for a namespace. You create an alias like
this:

namespace A = LongName;

Understanding Namespaces

Untitled-15 2/19/99, 8:57 AM629

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.20.98 Ayanna CH26 LP#3

630 Chapter 26 Exceptions and Templates

LongName is the original name of the namespace, and A is the alias. After the preceding line
executes, you can access the LongName namespace, using either A or LongName. You can think of
an alias as a nickname or short form. Listing 26.21 is a short program that demonstrates
namespace aliases.

Listing 26.21 Using a Namespace Alias

namespace ThisIsANamespaceName
{
 int i;
 int j;

 int Func()
 {
 return 2;
 }
}

int main()
{
 namespace ns = ThisIsANamespaceName;

 ns::i = 0;
 ns::j = 0;
 int num1 = ns::Func();

 return 0;
}

Untitled-15 2/19/99, 8:57 AM630

631

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

C H A P T E R

Multitasking with Windows Threads

Understanding Simple Threads 632

Understanding Thread Communication 636

Using Thread Synchronization 643

27

In this chapter

Untitled-1 2/19/99, 9:29 AM631

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

632 Chapter 27 Multitasking with Windows Threads

When using Windows 95 (and other modern operating systems), you know that you can run
several programs simultaneously. This capability is called multitasking. What you may not
know is that many of today’s operating systems also enable threads, which are separate pro-
cesses that are not complete applications. A thread is a lot like a subprogram. An application
can create several threads—several different flows of execution—and run them concurrently.
Threads give you the ability to have multitasking inside multitasking. The user knows that he
can run several applications at a time. The programmer knows that each application can run
several threads at a time. In this chapter, you’ll learn how to create and manage threads in your
applications.

Understanding Simple Threads
A thread is a path of execution through a program. In a multithreaded program, each thread
has its own stack and operates independently of other threads running within the same pro-
gram. MFC distinguishes between UI threads, which have a message pump and typically per-
form user interface tasks, and worker threads, which do not.

Any application always has at least one thread, which is the program’s primary or main
thread. You can start and stop as many additional threads as you need, but the main

thread keeps running as long as the application is active. ■

A thread is the smallest unit of execution, much smaller than a process. Generally each running
application on your system is a process. If you start the same application (for example,
Notepad) twice, there will be two processes, one for each instance. It is possible for several
instances of an application to share a single process: for example, if you choose File, New Win-
dow in Internet Explorer, there are two applications on your taskbar, and they share a process.
The unfortunate consequence is that if one instance crashes, they all do.

To create a worker thread using MFC, all you have to do is write a function that you want to
run parallel with the rest of your application. Then call AfxBeginThread() to start a thread that
will execute your function. The thread remains active as long as the thread’s function is execut-
ing: When the thread function exits, the thread is destroyed. A simple call to
AfxBeginThread() looks like this:

AfxBeginThread(ProcName, param, priority);

In the preceding line, ProcName is the name of the thread’s function, param is any 32-bit value
you want to pass to the thread, and priority is the thread’s priority, which is represented by a
number of predefined constants. Table 27.1 shows those constants and their descriptions.

N O T E

Untitled-1 2/19/99, 9:29 AM632

633

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

Table 27.1 Thread Priority Constants

Constant Description

THREAD_PRIORITY_ABOVE_NORMAL Sets a priority one point higher than normal.

THREAD_PRIORITY_BELOW_NORMAL Sets a priority one point lower than normal.

THREAD_PRIORITY_HIGHEST Sets a priority two points above normal.

THREAD_PRIORITY_IDLE Sets a base priority of 1. For a
REALTIME_PRIORITY_CLASS process, this sets a priority
of 16.

THREAD_PRIORITY_LOWEST Sets a priority two points below normal.

THREAD_PRIORITY_NORMAL Sets normal priority.

THREAD_PRIORITY_TIME_CRITICAL Sets a base priority of 15. For a
REALTIME_PRIORITY_CLASS process, this sets a priority
of 30.

A thread’s priority determines how often the thread takes control of the system, relative to
the other running threads. Generally, the higher the priority, the more running time the

thread gets, which is why the value of THREAD_PRIORITY_TIME_CRITICAL is so high. ■

To see a simple thread in action, build the Thread application as detailed in the following steps.

1. Start a new AppWizard project workspace called Thread, as shown in Figure 27.1.

FIG. 27.1
Start an AppWizard
project workspace
called Thread.

2. Give the new project the following settings in the AppWizard dialog boxes. The New
Project Information dialog box will then look like Figure 27.2.

Step 1: Single document

Step 2: Default settings

N O T E

Understanding Simple Threads

Untitled-1 2/19/99, 9:29 AM633

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

634 Chapter 27 Multitasking with Windows Threads

Step 3: Default settings

Step 4: Turn off all options

Step 5: Default settings

Step 6: Default settings

FIG. 27.2
These are the AppWizard
settings for the Thread
project.

3. Use the resource editor to add a Thread menu to the application’s IDR_MAINFRAME menu.
Give the menu one command called Start Thread with a command ID of
ID_STARTTHREAD, and enter a sensible prompt and ToolTip, as shown in Figure 27.3.

FIG. 27.3
Add a Thread menu with
a Start Thread
command.

Untitled-1 2/19/99, 9:30 AM634

635

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

4. Use ClassWizard to associate the ID_STARTTHREAD command with the OnStartthread()
message-response function, as shown in Figure 27.4. Make sure that you have
CThreadView selected in the Class Name box before you add the function.

FIG. 27.4
Add the
OnStartthread()
message-response
function to the view
class.

5. Click the Edit Code button and then add the following lines to the new OnStartthread()
function, replacing the TODO: Add your command handler code here comment:

 HWND hWnd = GetSafeHwnd();
 AfxBeginThread(ThreadProc, hWnd, THREAD_PRIORITY_NORMAL);

This code will call a function called ThreadProc within a worker thread of its own. Next, add
ThreadProc, shown in Listing 27.1, to ThreadView.cpp, placing it right before the
OnStartthread() function. Note that ThreadProc() is a global function and not a member
function of the CThreadView class, even though it is in the view class’s implementation file.

Listing 27.1 ThreadView.cpp—ThreadProc()

UINT ThreadProc(LPVOID param)
{
 ::MessageBox((HWND)param, “Thread activated.”, “Thread”, MB_OK);

 return 0;
}

This threaded function doesn’t do much, just reports that it was started. The SDK function
MessageBox() is very much like AfxMessageBox(), but because this isn’t a member function of
a class derived from CWnd, you can’t use AfxMessageBox().

Understanding Simple Threads

Untitled-1 2/19/99, 9:30 AM635

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

636 Chapter 27 Multitasking with Windows Threads

The double colons in front of a function name indicate a call to a global function, instead of an MFC
class member function. For Windows programmers, this usually means an API or SDK call. For example,
inside an MFC window class, you can call MessageBox(“Hi, There!”) to display Hi, There! to the
user. This form of MessageBox() is a member function of the MFC window classes. To call the original
Windows version, you write something like ::MessageBox(0, “Hi, There!”, “Message”,
MB_OK). Notice the colons in front of the function name and the additional arguments.

When you run the Thread program, the main window appears. Select the Thread, Start Thread
command, and the system starts the thread represented by the ThreadProc() function and
displays a message box, as shown in Figure 27.5.

T I P

FIG. 27.5
The simple secondary
thread in the Thread
program displays a
message box and then
ends.

Understanding Thread Communication
Usually, a secondary thread performs some sort of task for the main program, which implies
that there needs to be a channel of communication between the program (which is also a
thread) and its secondary threads. There are several ways to accomplish these communica-
tions tasks: with global variables, event objects, and messages. In this section, you’ll explore
these thread-communication techniques.

Communicating with Global Variables
Suppose you want your main program to be able to stop the thread. You need a way, then, to
tell the thread when to stop. One method is to set up a global variable and then have the thread
monitor the global variable for a value that signals the thread to end. Because the threads
share the same address space, they have the same global variables. To see how this technique
works, modify the Thread application as follows:

1. Use the resource editor to add a Stop Thread command to the application’s Thread
menu. Give this new command the ID_STOPTHREAD ID, as shown in Figure 27.6.

Untitled-1 2/19/99, 9:30 AM636

637

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

2. Use ClassWizard to associate the ID_STOPTHREAD command with the OnStopthread()
message-response function, as shown in Figure 27.7. Make sure that you have
CThreadView selected in the Class Name box before you add the function. Add the
following line to the OnStopthread() function, replacing the TODO: Add your command
handler code here comment:
threadController = 0;

FIG. 27.6
Add a Stop Thread
command to the Thread
menu.

FIG. 27.7
Add the
OnStopthread()
message-response
function.

This refers to a new global variable you are about to declare.

3. Add the following line to the top of the ThreadView.cpp file, right after the endif
directive:
volatile int threadController;

Understanding Thread Communication

Untitled-1 2/19/99, 9:31 AM637

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

638 Chapter 27 Multitasking with Windows Threads

The volatile keyword means that you expect this variable will be changed from outside
a thread that uses it. The keyword requests that the compiler not cache the variable in a
register or in any way count on the value staying unchanged just because code in one
thread doesn’t seem to change it.

4. Add the following line to the OnStartthread() function, before the two lines you added
earlier:
 threadController = 1;

By now, perhaps, you’ve guessed that the value of threadController determines
whether the thread will continue. Replace the ThreadProc() function with the one shown
in Listing 27.2.

Listing 27.2 The New ThreadProc() Function

UINT ThreadProc(LPVOID param)
{
 ::MessageBox((HWND)param, “Thread activated.”, “Thread”, MB_OK);

 while (threadController == 1)
 {
 ;
 }

 ::MessageBox((HWND)param, “Thread stopped.”, “Thread”, MB_OK);

 return 0;
}

Now the thread first displays a message box, telling the user that the thread is starting. Then a
while loop continues to check the threadController global variable, waiting for its value to
change to 0. Although this while loop is trivial, it is here that you would place the code that
performs whatever task you want the thread to perform, making sure not to tie things up for
too long before rechecking the value of threadController.

Try a test: Build and run the program, and choose Thread, Start Thread to start the secondary
thread. When you do, a message box appears, telling you that the new thread was started. To
stop the thread, select the Thread, Stop Thread command. Again, a message box appears, this
time telling you that the thread is stopping.

CAUTION

Using global variables to communicate between threads is, to say the least, an unsophisticated approach to
thread communication and can be a dangerous technique if you’re not sure how C++ handles variables from
an assembly-language level. Other thread-communication techniques are safer and more elegant.

Untitled-1 2/19/99, 9:31 AM638

639

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

Communicating with User-Defined Messages
Now you have a simple, albeit unsophisticated, method for communicating information from
your main program to your thread. How about the reverse? That is, how can your thread com-
municate with the main program? The easiest method to accomplish this communication is to
incorporate user-defined Windows messages into the program.

The first step is to define a user message, which you can do easily, like this:

const WM_USERMSG = WM_USER + 100;

The WM_USER constant, defined by Windows, holds the first available user-message number.
Because other parts of your program may use some user messages for their own purposes, the
preceding line sets WM_USERMSG to WM_USER+100.

After defining the message, you call ::PostMessage() from the thread to send the message to
the main program whenever you need to. (Message handling was discussed in Chapter 3,
“Messages and Commands.” Sending your own messages allows you to take advantage of the
message-handling facility built into MFC.) A typical call to ::PostMessage() might look like
this:

::PostMessage((HWND)param, WM_USERMSG, 0, 0);

PostMessage()’s four arguments are the handle of the window to which the message should be
sent, the message identifier, and the message’s WPARAM and LPARAM parameters.

Modify the Thread application according to the next steps to see how to implement posting
user messages from a thread.

1. Add the following line to the top of the ThreadView.h header file, right before the
beginning of the class declaration:
const WM_THREADENDED = WM_USER + 100;

2. Still in the header file, add the following line to the message map, right after the
//{{AFX_MSG(CThreadView) comment and before DECLARE_MESSAGE_MAP:
 afx_msg LONG OnThreadended(WPARAM wParam, LPARAM lParam);

3. Switch to the ThreadView.cpp file and add the following line to the class’s message map,
making sure to place it right after the }}AFX_MSG_MAP comment:
 ON_MESSAGE(WM_THREADENDED, OnThreadended)

4. Replace the ThreadProc() function with the one shown in Listing 27.3.

Listing 27.3 The Message-Posting ThreadProc()

UINT ThreadProc(LPVOID param)
{
 ::MessageBox((HWND)param, “Thread activated.”, “Thread”, MB_OK);

 while (threadController == 1)
 {

continues

Understanding Thread Communication

Untitled-1 2/19/99, 9:31 AM639

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

640 Chapter 27 Multitasking with Windows Threads

 ;
 }

 ::PostMessage((HWND)param, WM_THREADENDED, 0, 0);

 return 0;
}

5. Add the function shown in Listing 27.4 to the end of the ThreadView.cpp file.

Listing 27.4 CThreadView::OnThreadended()

LONG CThreadView::OnThreadended(WPARAM wParam, LPARAM lParam)
{
 AfxMessageBox(“Thread ended.”);
 return 0;
}

When you run the new version of the Thread program, select the Thread, Start Thread com-
mand to start the thread. When you do, a message box appears, telling you that the thread has
started. To end the thread, select the Thread, Stop Thread command. Just as with the previous
version of the program, a message box appears, telling you that the thread has ended.

Although this version of the Thread application seems to run identically to the previous ver-
sion, there’s a subtle difference. Now the program displays the message box that signals the
end of the thread in the main program rather than from inside the thread. The program can do
this because, when the user selects the Stop Thread command, the thread sends a
WM_THREADENDED message to the main program. When the program receives that message, it
displays the final message box.

Communicating with Event Objects
A slightly more sophisticated method of signaling between threads is to use event objects,
which under MFC are represented by the CEvent class. An event object can be in one of two
states: signaled and nonsignaled. Threads can watch for events to be signaled and so perform
their operations at the appropriate time. Creating an event object is as easy as declaring a glo-
bal variable, like this:

CEvent threadStart;

Although the CEvent constructor has a number of optional arguments, you can usually get
away with creating the default object, as shown in the previous line of code. On creation, the
event object is automatically in its nonsignaled state. To signal the event, you call the event
object’s SetEvent() member function, like this:

threadStart.SetEvent();

Listing 27.3 Continued

Untitled-1 2/19/99, 9:31 AM640

641

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

After the preceding line executes, the threadStart event object will be in its signaled state.
Your thread should be watching for this signal so that the thread knows it’s okay to get to
work. How does a thread watch for a signal? By calling the Windows API function,
WaitForSingleObject():

::WaitForSingleObject(threadStart.m_hObject, INFINITE);

This function’s two arguments are

■ The handle of the event for which to check (stored in the event object’s m_hObject data
member)

■ The length of time the function should wait for the event

The predefined INFINITE constant tells WaitForSingleObject() not to return until the speci-
fied event is signaled. In other words, if you place the preceding line at the beginning of your
thread, the system suspends the thread until the event is signaled. Even though you’ve started
the thread execution, it’s halted until whatever you need to happen happens. When your pro-
gram is ready for the thread to perform its duty, you call the SetEvent() function, as previously
described.

When the thread is no longer suspended, it can go about its business. However, if you want to
signal the end of the thread from the main program, the thread must watch for this next event
to be signaled. The thread can do this by polling for the event. To poll for the event, you again
call WaitForSingleObject(), only this time you give the function a wait time of 0, like this:

::WaitForSingleObject(threadend.m_hObject, 0);

In this case, if WaitForSingleObject() returns WAIT_OBJECT_0, the event has been signaled.
Otherwise, the event is still in its nonsignaled state.

To better see how event objects work, follow these steps to further modify the Thread
application:

1. Add the following line to the top of the ThreadView.cpp file, right after the line #include
“ThreadView.h”:
#include “afxmt.h”

2. Add the following lines near the top of the ThreadView.cpp file, after the volatile int
threadController line that you placed there previously:
CEvent threadStart;
CEvent threadEnd;

3. Delete the volatile int threadController line from the file.

4. Replace the ThreadProc() function with the one shown in Listing 27.5.

Understanding Thread Communication

Untitled-1 2/19/99, 9:32 AM641

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

642 Chapter 27 Multitasking with Windows Threads

Listing 27.5 Yet Another ThreadProc()

UINT ThreadProc(LPVOID param)
{
 ::WaitForSingleObject(threadStart.m_hObject, INFINITE);
 ::MessageBox((HWND)param, “Thread activated.”,
 “Thread”, MB_OK);

 BOOL keepRunning = TRUE;
 while (keepRunning)
 {
 int result =
 ::WaitForSingleObject(threadEnd.m_hObject, 0);
 if (result == WAIT_OBJECT_0)
 keepRunning = FALSE;
 }

 ::PostMessage((HWND)param, WM_THREADENDED, 0, 0);

 return 0;
}

5. Replace all the code in the OnStartthread() function with the following line:
 threadStart.SetEvent();

6. Replace the code in the OnStopthread() function with the following line:
 threadEnd.SetEvent();

7. Use ClassWizard to add an OnCreate() function that handles the WM_CREATE message, as
shown in Figure 27.8. Make sure that you have CThreadView selected in the Class Name
box before you add the function.

FIG. 27.8
Use ClassWizard to add
the OnCreate()
function.

8. Add the following lines to the OnCreate() function, replacing the TODO: Add your
specialized creation code here comment:

Untitled-1 2/19/99, 9:32 AM642

643

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

 HWND hWnd = GetSafeHwnd();
 AfxBeginThread(ThreadProc, hWnd);

Again, this new version of the program seems to run just like the preceding version. However,
the program is now using both event objects and user-defined Windows messages to communi-
cate between the main program and the thread. No more messing with clunky global variables.

One big difference from previous versions of the program is that the secondary thread is be-
gun in the OnCreate() function, which is called when the application first runs and creates the
view. However, because the first line of the thread function is the call to
WaitForSingleObject(), the thread immediately suspends execution and waits for the
threadStart event to be signaled.

When the threadStart event object is signaled, the thread is free to display the message box
and then enter its while loop, where it polls the threadEnd event object. The while loop contin-
ues to execute until threadEnd is signaled, at which time the thread sends the WM_THREADENDED
message to the main program and exits. Because the thread is started in OnCreate(), after the
thread ends, it can’t be restarted.

Using Thread Synchronization
Using multiple threads can lead to some interesting problems. For example, how do you pre-
vent two threads from accessing the same data at the same time? What if, for example, one
thread is in the middle of trying to update a data set when another thread tries to read that
data? The second thread will almost certainly read corrupted data because only some of the
data set will have been updated.

Trying to keep threads working together properly is called thread synchronization. Event ob-
jects, about which you just learned, are a form of thread synchronization. In this section, you’ll
learn about critical sections, mutexes, and semaphores—thread synchronization objects that
make your thread programming even safer.

Using Critical Sections
Critical sections are an easy way to ensure that only one thread at a time can access a data set.
When you use a critical section, you give your threads an object that they have to share.
Whichever thread possesses the critical-section object has access to the guarded data. Other
threads have to wait until the first thread releases the critical section, after which another
thread can grab the critical section to access the data in turn.

Because the guarded data is represented by a single critical-section object and because only
one thread can own the critical section at any given time, the guarded data can never be ac-
cessed by more than a single thread at a time.

To create a critical-section object in an MFC program, you create an instance of the
CCriticalSection class, like this:

CCriticalSection criticalSection;

Using Thread Synchronization

Untitled-1 2/19/99, 9:33 AM643

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

644 Chapter 27 Multitasking with Windows Threads

Then, when program code is about to access the data that you want to protect, you call the
critical-section object’s Lock() member function, like this:

criticalSection.Lock();

If another thread doesn’t already own the critical section, Lock() gives the object to the calling
thread. That thread can then access the guarded data, after which it calls the critical-section
object’s Unlock() member function:

criticalSection.Unlock();

Unlock() releases the ownership of the critical-section object so that another thread can grab it
and access the guarded data.

The best way to implement something like critical sections is to build the data you want to
protect into a thread-safe class. When you do this, you no longer have to worry about thread
synchronization in the main program; the class handles it all for you. As an example, look at
Listing 27.6, which is the header file for a thread-safe array class.

Listing 27.6 COUNTARRAY.H—The CCountArray Class Header File

#include “afxmt.h”

class CCountArray
{
private:
 int array[10];
 CCriticalSection criticalSection;

public:
 CCountArray() {};
 ~CCountArray() {};

 void SetArray(int value);
 void GetArray(int dstArray[10]);
};

The header file starts by including the MFC header file, afxmt.h, which gives the program
access to the CCriticalSection class. Within the CCountArray class declaration, the file de-
clares a 10-element integer array, which is the data that the critical section will guard, and
declares the critical-section object, here called criticalSection. The CCountArray class’s
public member functions include the usual constructor and destructor, as well as functions for
setting and reading the array. These latter two member functions must deal with the critical-
section object because these functions access the array.

Listing 27.7 is the CCountArray class’s implementation file. Notice that, in each member func-
tion, the class takes care of locking and unlocking the critical-section object. This means that
any thread can call these member functions without worrying about thread synchronization.
For example, if thread 1 calls SetArray(), the first thing SetArray() does is call
criticalSection.Lock(), which gives the critical-section object to thread 1. The complete for

Untitled-1 2/19/99, 9:33 AM644

645

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

loop then executes, without any fear of being interrupted by another thread. If thread 2 calls
SetArray() or GetArray(), the call to criticalSection.Lock() suspends thread 2 until thread
1 releases the critical-section object, which it does when SetArray() finishes the for loop and
executes the criticalSection.Unlock() line. Then the system wakes up thread 2 and gives it
the critical-section object. In this way, all threads have to wait politely for their chance to access
the guarded data.

Listing 27.7 COUNTARRAY.CPP—The CCountArray Class Implementation
File

#include “stdafx.h”
#include “CountArray.h”

void CCountArray::SetArray(int value)
{
 criticalSection.Lock();

 for (int x=0; x<10; ++x)
 array[x] = value;

 criticalSection.Unlock();
}

void CCountArray::GetArray(int dstArray[10])
{
 criticalSection.Lock();

 for (int x=0; x<10; ++x)
 dstArray[x] = array[x];

 criticalSection.Unlock();
}

Now that you’ve had a chance to see what a thread-safe class looks like, it’s time to put the
class to work. Perform the following steps, which modify the Thread application to test the
CCountArray class:

1. Use the File, New command to add a new C++ header file called CountArray.h to the
project, as shown in Figure 27.9. Enter the code from Listing 27.6.

2. Again choose File, New, and create a new C++ source file called CountArray.cpp in this
project. Enter the code from Listing 27.7.

3. Switch to ThreadView.cpp and add the following line near the top of the file, after the line
#include “afxmt.h”, which you placed there previously:
#include “CountArray.h”

4. Add the following line near the top of the file, after the CEvent threadEnd line you placed
there previously:
CCountArray countArray;

5. Delete the CEvent threadStart and CEvent threadEnd lines from the file.

Using Thread Synchronization

Untitled-1 2/19/99, 9:34 AM645

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

646 Chapter 27 Multitasking with Windows Threads

6. Delete the lines ON_MESSAGE(WM_THREADENDED, OnThreadended),
ON_COMMAND(ID_STOPTHREAD, OnStopthread), and ON_WM_CREATE() from the message
map.

7. Replace the ThreadProc() function with the thread functions shown in Listing 27.8.

Listing 27.8 WriteThreadProc() and ReadThreadProc()

UINT WriteThreadProc(LPVOID param)
{
 for(int x=0; x<10; ++x)
 {
 countArray.SetArray(x);
 ::Sleep(1000);
 }

 return 0;
}

UINT ReadThreadProc(LPVOID param)
{
 int array[10];

 for (int x=0; x<20; ++x)
 {
 countArray.GetArray(array);
 char str[50];
 str[0] = 0;
 for (int i=0; i<10; ++i)
 {
 int len = strlen(str);
 wsprintf(&str[len], “%d “, array[i]);
 }
 ::MessageBox((HWND)param, str, “Read Thread”, MB_OK);
 }

 return 0;
}

FIG. 27.9
Add CountArray.h to the
Thread project.

Untitled-1 2/19/99, 9:34 AM646

647

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

8. Replace all the code in the OnStartthread() function with the following lines:
 HWND hWnd = GetSafeHwnd();
 AfxBeginThread(WriteThreadProc, hWnd);
 AfxBeginThread(ReadThreadProc, hWnd);

9. Delete the OnStopthread(), OnThreadended, and OnCreate() functions from the file.

10. Switch to the ThreadView.h file and delete the line const WM_THREADENDED = WM_USER +
100 from the listing.

11. Also, in ThreadView.h, delete the lines afx_msg LONG OnThreadended(WPARAM wParam,
LPARAM lParam), afx_msg void OnStopthread(), and afx_msg int
OnCreate(LPCREATESTRUCT lpCreateStruct) from the message map.

12. Using the resource editor, remove the Stop Thread command from the Thread menu.

Now build and run the new version of the Thread application. When you do, the main window
appears. Select the Thread, Start Thread command to get things hopping. The first thing you’ll
see is a message box (see Figure 27.10) displaying the current values in the guarded array.
Each time you dismiss the message box, it reappears with the array’s new contents. The mes-
sage box will reappear 20 times. The values listed in the message box depend on how often you
dismiss the message box. The first thread is writing new values into the array once a second,
even as you’re viewing the array’s contents in the second thread.

FIG. 27.10
This message box
displays the current
contents of the guarded
array.

The important thing to notice is that at no time does the second thread interrupt when the first
thread is changing the values in the array. You can tell that this is true because the array al-
ways contains 10 identical values. If the first thread were interrupted as it modified the array,
the 10 values in the array would not be identical, as shown in Figure 27.11.

If you examine the source code carefully, you’ll see that the first thread, named
WriteThreadProc(), is calling the array class’s SetArray() member function 10 times within a
for loop. Each time through the loop, SetArray() gives the thread the critical-section object,
changes the array contents to the passed number, and then takes the critical-section object
away again. Note the call to the Sleep() function, which suspends the thread for the number of
milliseconds given as the function’s single argument.

Using Thread Synchronization

Untitled-1 2/19/99, 9:34 AM647

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

648 Chapter 27 Multitasking with Windows Threads

The second thread, named ReadThreadProc(), is also trying to access the same critical-section
object to construct a display string of the values contained in the array. However, if
WriteThreadProc() is currently trying to fill the array with new values, ReadThreadProc() has
to wait. The inverse is also true. That is, WriteThreadProc() can’t access the guarded data until
it can regain ownership of the critical section from ReadThreadProc().

If you really want to prove that the critical-section object is working, remove the
criticalSection.Unlock() line from the end of the CCountArray class’s SetArray() member
function. Then compile and run the program. This time when you start the threads, no mes-
sage box appears. Why? Because WriteThreadProc() takes the critical-section object and
never lets it go, which forces the system to suspend ReadThreadProc() forever (or at least until
you exit the program).

Using Mutexes
Mutexes are a lot like critical sections but a little more complicated because they enable safe
sharing of resources, not only between threads in the same application but also between
threads of different applications. Although synchronizing threads of different applications is
beyond the scope of this chapter, you can get a little experience with mutexes by using them in
place of critical sections.

Listing 27.9 is the CCountArray2 class’s header file. Except for the new classname and the
mutex object, this header file is identical to the original CountArray.h. Listing 27.10 is the modi-
fied class’s implementation file. As you can see, the member functions look a lot different when
they are using mutexes instead of critical sections, even though both objects provide essen-
tially the same type of services.

FIG. 27.11
Without thread
synchronization, you
might see something
like this in the message
box.

Untitled-1 2/19/99, 9:34 AM648

649

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

Listing 27.9 CCOUNTARRAY2.H—The CCountArray2 Class Header File

#include “afxmt.h”

class CCountArray2
{
private:
 int array[10];
 CMutex mutex;

public:
 CCountArray2() {};
 ~CCountArray2() {};

 void SetArray(int value);
 void GetArray(int dstArray[10]);
};

Listing 27.10 COUNTARRAY2.CPP—The CCountArray2 Class
Implementation File

#include “stdafx.h”
#include “CountArray2.h”

void CCountArray2::SetArray(int value)
{
 CSingleLock singleLock(&mutex);
 singleLock.Lock();

 for (int x=0; x<10; ++x)
 array[x] = value;
}

void CCountArray2::GetArray(int dstArray[10])
{
 CSingleLock singleLock(&mutex);
 singleLock.Lock();

 for (int x=0; x<10; ++x)
 dstArray[x] = array[x];
}

To access a mutex object, you must create a CSingleLock or CMultiLock object, which per-
forms the actual access control. The CCountArray2 class uses CSingleLock objects because
this class is dealing with only a single mutex. When the code is about to manipulate guarded
resources (in this case, the array), you create a CSingleLock object, like this:

CSingleLock singleLock(&mutex);

Using Thread Synchronization

Untitled-1 2/19/99, 9:34 AM649

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

650 Chapter 27 Multitasking with Windows Threads

The constructor’s argument is a pointer to the thread-synchronization object that you want to
control. Then, to gain access to the mutex, you call the CSingleLock object’s Lock() member
function:

singleLock.Lock();

If the mutex is unowned, the calling thread becomes the owner. If another thread already owns
the mutex, the system suspends the calling thread until the mutex is released, at which time
the waiting thread is awakened and takes control of the mutex.

To release the mutex, you call the CSingleLock object’s Unlock() member function. However,
if you create your CSingleLock object on the stack (rather than on the heap, using the new
operator) as shown in Listing 27.10, you don’t have to call Unlock() at all. When the function
exits, the object goes out of scope, which causes its destructor to execute. The destructor
automatically unlocks the object for you.

To try out the new CCountArray2 class in the Thread application, add new CountArray2.h and
CountArray2.cpp files to the Thread project and then delete the original CountArray.h and
CountArray.cpp files. Finally, in ThreadView.cpp, change all references to CCountArray to
CCountArray2. Because all the thread synchronization is handled in the CCountArray2 class, no
further changes are necessary to use mutexes instead of critical sections.

Using Semaphores
Although semaphores are used like critical sections and mutexes in an MFC program, they
serve a slightly different function. Rather than enable only one thread to access a resource at a
time, semaphores enable multiple threads to access a resource, but only to a point. That is,
semaphores enable a maximum number of threads to access a resource simultaneously.

When you create the semaphore, you tell it how many threads should be allowed simultaneous
access to the resource. Then, each time a thread grabs the resource, the semaphore decre-
ments its internal counter. When the counter reaches 0, no further threads are allowed access
to the guarded resource until another thread releases the resource, which increments the
semaphore’s counter.

You create a semaphore by supplying the initial count and the maximum count, like this:

CSemaphore Semaphore(2, 2);

Because in this section you’ll be using a semaphore to create a thread-safe class, it’s more
convenient to declare a CSemaphore pointer as a data member of the class and then create the
CSemaphore object dynamically in the class’s constructor, like this:

semaphore = new CSemaphore(2, 2);

You should do this because you have to initialize a data member in the constructor rather than
at the time you declare it. With the critical-section and mutex objects, you didn’t have to supply
arguments to the class’s constructors, so you were able to create the object at the same time
you declared it.

Untitled-1 2/19/99, 9:35 AM650

651

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

After you have created the semaphore object, it’s ready to start counting resource access. To
implement the counting process, you first create a CSingleLock object (or CMultiLock, if you’re
dealing with multiple thread-synchronization objects), giving it a pointer to the semaphore you
want to use, like this:

CSingleLock singleLock(semaphore);

Then, to decrement the semaphore’s count, you call the CSingleLock object’s Lock() member
function:

singleLock.Lock();

At this point, the semaphore object has decremented its internal counter. This new count re-
mains in effect until the semaphore object is released, which you can do explicitly by calling
the object’s Unlock() member function:

singleLock.Unlock();

Alternatively, if you’ve created the CSingleLock object locally on the stack, you can just let the
object go out of scope, which not only automatically deletes the object but also releases the
hold on the semaphore. In other words, both calling Unlock() and deleting the CSingleLock
object increment the semaphore’s counter, enabling a waiting thread to access the guarded
resource.

Listing 27.11 is the header file for a class called CSomeResource. CSomeResource is a mostly
useless class whose only calling is to demonstrate the use of semaphores. The class has a
single data member, which is a pointer to a CSemaphore object. The class also has a constructor
and destructor, as well as a member function called UseResource(), which is where the sema-
phore will be used.

Listing 27.11 SOMERESOURCE.H

#include “afxmt.h”

class CSomeResource
{
private:
 CSemaphore* semaphore;

public:
 CSomeResource();
 ~CSomeResource();

 void UseResource();
};

Listing 27.12 shows the CSomeResource class’s implementation file. You can see that the
CSemaphore object is constructed dynamically in the class’s constructor and deleted in the
destructor. The UseResource() member function simulates accessing a resource by attaining a
count on the semaphore and then sleeping for five seconds, after which the hold on the sema-
phore is released when the function exits and the CSingleLock object goes out of scope.

Using Thread Synchronization

Untitled-1 2/19/99, 9:35 AM651

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

652 Chapter 27 Multitasking with Windows Threads

Listing 27.12 SOMERESOURCE.CPP

#include “stdafx.h”
#include “SomeResource.h”

CSomeResource::CSomeResource()
{
 semaphore = new CSemaphore(2, 2);
}

CSomeResource::~CSomeResource()
{
 delete semaphore;
}

void CSomeResource::UseResource()
{
 CSingleLock singleLock(semaphore);
 singleLock.Lock();

 Sleep(5000);
}

If you modify the Thread application to use the CSomeResource object, you can watch sema-
phores at work. Follow these steps:

1. Delete any CountArray files that are still in the project. (In FileView, click the file once to
select it; then press Del to delete the file from the project.)

2. Create the new empty SomeResource.h and SomeResource.cpp files in the project.

3. Add the code from Listings 27.11 and 27.12 to these empty files.

4. Load ThreadView.cpp and replace the line #include “CountArray2.h” with the
following:
#include “SomeResource.h”

5. Replace the line CCountArray2 countArray with the following:
CSomeResource someResource;

6. Replace the WriteThreadProc() and ReadThreadProc() functions with the functions
shown in Listing 27.13.

Listing 27.13 ThreadProc1(), ThreadProc2(), and ThreadProc3()

UINT ThreadProc1(LPVOID param)
{
 someResource.UseResource();

 ::MessageBox((HWND)param,
 “Thread 1 had access.”, “Thread 1”, MB_OK);

 return 0;
}

Untitled-1 2/19/99, 9:35 AM652

653

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

27

VI
Part

Ch

UINT ThreadProc2(LPVOID param)
{
 someResource.UseResource();

 ::MessageBox((HWND)param,
 “Thread 2 had access.”, “Thread 2”, MB_OK);

 return 0;
}

UINT ThreadProc3(LPVOID param)
{
 someResource.UseResource();

 ::MessageBox((HWND)param,
 “Thread 3 had access.”, “Thread 3”, MB_OK);

 return 0;
}

7. Replace the code in the OnStartthread() function with that shown in Listing 27.14.

Listing 27.14 LST27_14.TXT—New Code for the OnStartthread() Function

 HWND hWnd = GetSafeHwnd();
 AfxBeginThread(ThreadProc1, hWnd);
 AfxBeginThread(ThreadProc2, hWnd);
 AfxBeginThread(ThreadProc3, hWnd);

Now compile and run the new version of the Thread application. When the main window ap-
pears, select the Thread, Start Thread command. In about five seconds, two message boxes
will appear, informing you that thread 1 and thread 2 had access to the guarded resource.
About five seconds after that, a third message box will appear, telling you that thread 3 also had
access to the resource. Thread 3 took five seconds longer because thread 1 and thread 2
grabbed control of the resource first. The semaphore is set to allow only two simultaneous
resource accesses, so thread 3 had to wait for thread 1 or thread 2 to release its hold on the
semaphore.

Although the sample programs in this chapter have demonstrated using a single thread-
synchronization object, you can have as many synchronization objects as you need in a

single program. You can even use critical sections, mutexes, and semaphores all at once to protect
different data sets and resources in different ways. ■

N O T E

Using Thread Synchronization

Untitled-1 2/19/99, 9:36 AM653

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 Ayanna ch27 lp#3

654 Chapter 27 Multitasking with Windows Threads

For complex applications, threads offer the capability to maintain fast and efficient data pro-
cessing. You no longer have to wait for one part of the program to finish its task before moving
on to something else. For example, a spreadsheet application could use one thread to update
the calculations while the main thread continues accepting entries from the user. Using
threads, however, leads to some interesting problems, not the least of which is the need to
control access to shared resources. Writing a threaded application requires thought and careful
consideration of how the threads will be used and what resources they’ll access. ●

Untitled-1 2/19/99, 9:36 AM654

655

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

C H A P T E R

Future Explorations

28

In this chapter

Creating Console Applications 656

Creating and Using a 32-Bit Dynamic
Link Library 660

Sending Messages and Commands 669

Considering International Software
Development Issues 670

Untitled-2 2/19/99, 9:37 AM655

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

656 Chapter 28 Future Explorations

There are a number of topics that have not been covered elsewhere in this book, but that are
well known to experienced Visual C++ programmers. They are best explored after you have
experience with Developer Studio, MFC, and C++ programming. This chapter has just enough
to show you how interesting these topics are, and to encourage you to explore them yourself in
the months and years to come.

Creating Console Applications
A console application looks very much like a DOS application, though it runs in a resizable
window. It has a strictly character-based interface with cursor keys rather than mouse move-
ment. You use the Console API and character-based I/O functions such as printf() and
scanf() to interact with the user.

Creating a Console Executable
A console application is executed from the DOS command line or by choosing Start, Run and
typing the full name (including the path) of the application. Console applications are probably
still among the easiest programs to create, and this version of the compiler supports them
directly.

Let’s walk together through the few steps necessary to create a basic console application, and
then we’ll explore some beneficial uses of creating these applications. The first console applica-
tion we’ll create is a spin on the classic “Hello, World!” that Kernighan and Ritchie (the creators
of C++’s ancestor C) created in the 1970s.

Open the Microsoft Developer Studio and follow these steps to create a console application:

1. In the Microsoft Developer Studio, select File, New.

2. In the New dialog box, click the Projects tab to bring up the now
familiar New project dialog box. (If it isn’t familiar, go back to Chapter
1, “Building Your First Windows Application.”)

3. Name the project HelloWorld, set an appropriate folder for the project,
and choose Win32 Console Application from the list on the left.

4. Click OK.

5. AppWizard asks whether you want to create An Empty Project, A Simple Application, A
“Hello World” Application, or An Application that uses MFC. Select An Empty Project so
that you can create our slightly simpler HelloWorld by yourself.

6. Click Finish.

The project is created immediately but has no file added to it. You create source and header
files and add them to the project. This sample will all fit in one file. Follow these steps:

1. Select File, New from the File menu and click the File tab.

2. Leave the Add to Project box selected; the new file will be added to
the project.

Untitled-2 2/19/99, 9:37 AM656

657

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

3. Choose C++ Source File from the box on the left.

4. Enter HelloWorld as the filename—the extension .cpp will be added
automatically.

5. The New dialog box should resemble Figure 28.1. Click OK.

A blank text file is created and named for you and added to the project, all in one step. Add the
code in Listing 28.1 to the new file.

Listing 28.1 HelloWorld.cpp

#include <iostream.h>
int main()
{
 cout << “Hello from the console!”<< endl;
 return 0;
}

Choose Build, Execute to compile, link, and execute the program. (A dialog will ask you to
confirm that you want to build the project before executing.) You should see a DOS box appear
that resembles Figure 28.2. The line Press any key to continue is generated by the system
and gives you a chance to read your output before the DOS box disappears.

Writing an Object-Oriented Console Application
The HelloWorld application is clearly C++ and would not compile in a C compiler, which doesn’t
support stream-based I/O with cout, but it’s not object oriented—there’s not an object in it.
Replace the code in HelloWorld.cpp with the lines in Listing 28.2.

FIG. 28.1
Create a C++ source
file for your console
application.

Creating Console Applications

Untitled-2 2/19/99, 9:37 AM657

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

658 Chapter 28 Future Explorations

Listing 28.2 HelloWorld.cpp—With Objects

// HelloWorld.cpp
//

#include <iostream.h>
#include <afx.h>

class Hello
{
private:
 CString message;

public:
 Hello();
 void display();
};

Hello::Hello()
{
 message = “Hello from the console!”;
}

void Hello::display()
{
 cout << message << endl;
}

int main()
{
 Hello hello;
 hello.display();

 return 0;

}

FIG. 28.2
Your application
appears to be a DOS
program.

Untitled-2 2/19/99, 9:37 AM658

659

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

Now this is an object-oriented program, and what’s more, it uses CString, an MFC class. To do
so, it must include <afx.h>. If you build the project now, you will get linker error messages that
refer to _beginthreadex and _endthreadex. By default, console applications are single-
threaded, but MFC is multithreaded. By including afx.h and bringing in MFC, this application
is making itself incompatible with the single-threaded default. To fix this, choose Project Set-
tings and click the C/C++ tab. From the drop-down box at the top of the dialog box, choose
Code Generation. In the drop-down list box labeled Use Run-Time Library, choose Debug
Multithreaded. (The completed dialog box is shown in Figure 28.3.) Click OK and rebuild the
project.

The output of this object-oriented program is just like that of the preceding program—this is
just a sample. But you see that console applications can use MFC, be built around objects, and
be quite small. They must have a main() function, and it is this function that is called by the
operating system when you run the application.

Although this application is small, Visual C++ creates a lot of overhead files.
The Debug directory occupies about 7.8MB, of which about 1.3MB is

HelloWorld.exe. The rest is the MFC libraries—they aren’t small. ■

Scaffolding Discrete Algorithms
One important reason to build a console application these days is to scaf fold small code frag-
ments or single objects. This refers to building a temporary framework around the code you
want to test. (Some developers call this a test harness.) The simplest possible framework is a
console application like the one you just built: In fact, you’ll build a scaffold later in this chapter.

FIG. 28.3
Make your console
application
multithreaded so
that it can use MFC.

Creating Console Applications

N O T E

Untitled-2 2/19/99, 9:38 AM659

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

660 Chapter 28 Future Explorations

To scaffold an object or function, you should do the following:

1. Create a new console application just for the scaffolding process.

2. Add a main() function to the .CPP file you plan to scaffold.

3. Include the header file for the object or function to be tested.

4. Add code to main() that exercises the function or object in a variety of test cases.

Having followed those steps, you can now test the code thoroughly, focusing only on the per-
formance characteristics and correctness of this small piece of your large project. Scaffolding
holds true to the canon of software development that states, “Design in the large and program
in the small.”

By applying a scaffold to any algorithm, you are helping to ensure the accuracy in the small.
Remember there are additional benefits involved, too: By placing the scaffold code directly into
the module, you are clearly documenting that the code has been tested and how to use it. You
make it available for further testing, debugging, or extending at a later date.

Creating and Using a 32-Bit Dynamic
Link Library

Dynamic link libraries (DLLs) are the backbone of the Windows 95 and Windows NT operat-
ing systems. Windows 95 uses Kernel32.dll, User32.dll, and Gdi32.dll to perform the vast ma-
jority of its work, and you can use them as well. The Visual C++ online help is a good source of
information for these three DLLs.

A good tool for poking around in Windows applications is the DumpBin utility, usually found in
\Program Files\Microsoft Visual Studio\VC98\Bin. DumpBin is a command line program that
shows you the imports and exports of executable files and dynamic link libraries. The follow-
ing listing is an excerpted example of the output produced when using DumpBin to examine
the executable file for Spy++, one of the utilities provided with Visual C++.

Listing 28.3 Output from DumpBin

dumpbin -imports spyxx.exe
Microsoft (R) COFF Binary File Dumper Version 6.00.8047
Copyright Microsoft Corp 1992-1998. All rights reserved.

Dump of file spyxx.exe

File Type: EXECUTABLE IMAGE

 Section contains the following imports:

 MFC42.DLL
 44B138 Import Address Table
 452B8C Import Name Table

Untitled-2 2/19/99, 9:38 AM660

661

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

 0 time date stamp
 0 Index of first forwarder reference

 Ordinal 818
 Ordinal 4424

 ... 392 similar lines omitted ...

 MSVCRT.dll
 44B7A4 Import Address Table
 4531F8 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 81 __set_app_type
 6F __p__fmode
 6A __p__commode
 9D _adjust_fdiv
 83 __setusermatherr
 10F _initterm
 58 __getmainargs
 8F _acmdln
 249 exit
 2B5 sscanf
 49 __CxxFrameHandler
 298 memmove
 1B9 _splitpath
 134 _itoa
 159 _mbscmp
 2C9 strtoul
 100 _getmbcp
 168 _mbsnbcpy
 8E _access
 161 _mbsinc
 192 _purecall
 2B2 sprintf
 A5 _beginthread
 C4 _endthread
 25E free
 15F _mbsicmp
 B7 _controlfp
 291 malloc
 158 _mbschr
 F1 _ftol
 1F3 _wcsupr
 2EB wcsrchr
 63 __p___argv
 62 __p___argc
 2D4 toupper
 272 iscntrl
 2D0 time
 55 __dllonexit
 186 _onexit

continues

Creating and Using a 32-Bit Dynamic Link Library

Untitled-2 2/19/99, 9:38 AM661

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

662 Chapter 28 Future Explorations

 CA _except_handler3
 2E ?terminate@@YAXXZ
 D3 _exit
 48 _XcptFilter
 1AA _setmbcp

 MSVCIRT.dll
 44B75C Import Address Table
 4531B0 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 194 ?str@strstreambuf@@QAEPADXZ
 11F ?freeze@strstreambuf@@QAEXH@Z
 10F ?ends@@YAAAVostream@@AAV1@@Z
 171 ?seekp@ostream@@QAEAAV1@J@Z
 8B ??6ostream@@QAEAAV0@K@Z
 87 ??6ostream@@QAEAAV0@G@Z
 50 ??1ostrstream@@UAE@XZ
 14 ??0ios@@IAE@XZ
 31 ??0ostrstream@@QAE@XZ
 1BB _mtlock
 1BC _mtunlock
 47 ??1ios@@UAE@XZ
 8A ??6ostream@@QAEAAV0@J@Z
 89 ??6ostream@@QAEAAV0@I@Z
 88 ??6ostream@@QAEAAV0@H@Z
 85 ??6ostream@@QAEAAV0@E@Z
 93 ??6ostream@@QAEAAV0@PBD@Z

 KERNEL32.dll
 44B084 Import Address Table
 452AD8 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 246 SetEvent
 136 GetProfileStringA
 10F GetModuleFileNameA
 32 CreateFileA
 19 CloseHandle
 2AC WideCharToMultiByte
 1CB MultiByteToWideChar
 93 FindResourceA
 272 SizeofResource
 168 GlobalAlloc
 173 GlobalLock
 1AE LoadResource
 1BC LockResource
 17A GlobalUnlock
 16F GlobalFree

 ... 29 similar lines omitted ...

Listing 28.3 Continued

Untitled-2 2/19/99, 9:38 AM662

663

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

 USER32.dll
 44B8AC Import Address Table
 453300 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 2A5 wsprintfA
 160 GetWindowWord
 253 SetWindowLongA
 158 GetWindowPlacement
 1CF OffsetRect
 189 IsIconic
 16E InflateRect
 240 SetRectEmpty
 CF EnumWindows
 BC EnumChildWindows
 218 SetActiveWindow
 EE GetClientRect

 ... 77 similar lines omitted ...

 GDI32.dll
 44B024 Import Address Table
 452A78 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference

 167 Rectangle
 121 GetStockObject
 17A SelectObject
 3D CreatePen
 19D SetROP2
 30 CreateFontIndirectA
 36 CreateHatchBrush
 41 CreateRectRgn
 72 FrameRgn
 1D CreateBitmap
 E8 GetDeviceCaps
 137 GetTextMetricsA
 130 GetTextExtentPoint32A
 3C CreatePatternBrush
 14E PatBlt
 161 PtInRegion
 46 CreateSolidBrush
 4C DeleteObject
 111 GetObjectA
 23 CreateCompatibleDC
 D BitBlt
 118 GetPixel
 6B ExtTextOutA

 ADVAPI32.dll
 44B000 Import Address Table
 452A54 Import Name Table

continues

Creating and Using a 32-Bit Dynamic Link Library

Untitled-2 2/19/99, 9:38 AM663

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

664 Chapter 28 Future Explorations

 0 time date stamp
 0 Index of first forwarder reference

 148 RegCreateKeyA
 15B RegOpenKeyA
 160 RegQueryInfoKeyA
 149 RegCreateKeyExA
 170 RegSetValueExA
 15C RegOpenKeyExA
 165 RegQueryValueExA
 145 RegCloseKey

 Summary

 17000 .data
 A000 .rdata
 10000 .rsrc
 4A000 .text

As you can see, the utility program Spy++ uses the C Runtime and Windows DLLs extensively.

You can call functions from the Windows DLLs in any of your programs, and more importantly,
you can write DLLs of your own.

Making a 32-Bit DLL
There are two kinds of DLLs in Visual C++: Those that use MFC and those that don’t. Each
kind of DLL has its own AppWizard, as you will see shortly.

If you gather three or four functions into a DLL, your DLL exports those functions for other
programs to use. Quite often a DLL will also import functions from other DLLs to get its work
done.

Importing and Exporting Functions To designate a symbol as exportable, use the following
syntax:

__declspec(dllexport) data_type int var_name; // for variables

or

__declspec(ddlexport) return_type func_name([argument_list]);
// for functions

Importing functions is almost identical: Simply replace the keyword tokens,
__declspec(dllexport) with __declspec(dllimport). Use an actual func-
tion and variable to demonstrate the syntax this time:

__declspec(dllimport) int referenceCount;
__declspec(dllimport) void DiskFree(lpStr Drivepath);

Two underscores precede the keyword __declspec.

Listing 28.3 Continued

T I P

Untitled-2 2/19/99, 9:38 AM664

665

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

By convention, Microsoft uses a header file and a preprocessor macro to make the inclusion of
DLL declarations much simpler. The technique requires that you make a preprocessor token
using a unique token—the header filename works easily and requires very little in the way of
memorization—and define a macro that will replace the token with the correct import or ex-
port statement. Thus, assuming a header file named Diskfree.h, the preprocessor macro in the
header file would be as follows.

Listing 28.4 Diskfree.h

// DISKFREE.H - Contains a simpler function for returning the amount of
// free disk space.
#ifndef __DISKFREE_H
#define __DISKFREE_H

#ifndef __DISKFREE__
#define DISKFREELIB __declspec(dllimport)
#else
#define DISKFREELIB __declspec(dllexport)
#endif
// Use the macro to control an import or export declaration.
DISKFREELIB unsigned long DiskFree(unsigned int drive);
// (e.g. 0 = A:, 1 = B:, 2 = C:
#endif

By including the header file, you can let the preprocessor decide whether DiskFree is being
imported or exported. Now you can share the header file for the DLL developer and the DLL
user, and that means fewer maintenance headaches.

Creating the DiskFree DLL The DiskFree utility provides a simple way to determine the
amount of free disk space for any given drive. The underlying functionality is the
GetDiskFreeSpace() function found in Kernel32.dll.

To create a non-MFC DLL, choose File, New, click the Projects tab, select Win32 Dynamic
Link Library from the list on the left, and enter DiskFree for the project name. Click OK and
the AppWizard dialog box, shown in Figure 28.4, appears. Choose An Empty DLL project, and
your project is created with no files in it.

Add a C++ header file called DiskFree.h to the project and type in the code from Listing 28.5.
Add a C++ source file called DiskFree.cpp and type in the code from Listing 28.6.

Listing 28.5 DiskFree.h

#ifndef __DISKFREE_H
#define __DISKFREE_H
#ifndef __DISKFREE__
#define __DISKFREELIB__ __declspec(dllimport)
#else
#define __DISKFREELIB__ __declspec(dllexport)
#endif

Creating and Using a 32-Bit Dynamic Link-Library

continues

Untitled-2 2/19/99, 9:39 AM665

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

666 Chapter 28 Future Explorations

Listing 28.5 Continued

// Returns the amount of free space on drive number (e.g. 0 = A:, 1= B:,
// 2 = c:)
__DISKFREELIB__ unsigned long DiskFree(unsigned int drive);
#endif

Listing 28.6 DiskFree.cpp

#include <afx.h>
#include <winbase.h> // Declares kernel32 GetDiskFreeSpace
#define __DISKFREE__ // Define the token before including the library
#include “diskfree.h”
// Returns the amount of free space on drive number
// (e.g. 0 = A:, 1= B:, 2 = c:)
__DISKFREELIB__ unsigned long DiskFree(unsigned int drive)
{
 unsigned long bytesPerSector, sectorsPerCluster,
 freeClusters, totalClusters;
 char DrivePath[4] = { char(drive + 65), ‘:’, ‘\\’, ‘\0’ };
 if(GetDiskFreeSpace(DrivePath, §orsPerCluster,
 &bytesPerSector, &freeClusters, &totalClusters))
 {
 return sectorsPerCluster * bytesPerSector * freeClusters;
 }
 else
 {
 return 0;
 }
}

Now you can build the DLL. In the next section, you will see how to use 32-bit DLLs in general
and how Windows finds DLLs on your system.

FIG. 28.4
Creating a non-MFC DLL
project is a one-step
process.

Untitled-2 2/19/99, 9:39 AM666

667

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

The most common use of a DLL is to provide extended, reusable functionality and let Windows
implicitly load the DLL. Topics that aren’t discussed in this book, which you might want to
explore for yourself, include the following:

■ Dynamic versus static linking of MFC

■ Implicit versus explicit DLL loading, which requires the use of
LoadLibrary and FreeLibrary

■ Multithreading DLLs

■ Sharing data across DLL boundaries

■ Calling conventions for DLLs that will be used by other languages
(__stdcall, WINAPI, …)

In this chapter you are going to use a default compile of DiskFree, using an implicit DllMain
(the compiler added one) and an implicit loading of the DLL, allowing Windows to manage
loading and unloading the library.

Using 32-Bit DLLs
Many DLLs are loaded implicitly, and their loading and unloading are managed by Windows.
Libraries loaded in this fashion are searched for like executables: First the directory of the
application loading the DLL is searched, followed by the current directory, the
Windows\System directory for Windows 95 or 98, Winnt\System or Winnt\System32 for NT,
the Windows directory, and finally each directory specified in the path.

It is a common practice to place a DLL in the Windows or Windows\System directory after the
application is shipped, but in the meantime, you can use the development directory of the
executable for temporary storage. One thing to safeguard against is that you don’t end up with
multiple versions of the DLL in each of the Windows, Windows\System, or project directories.

Using a DLL Implicitly loading and using a DLL is about as simple as using any other func-
tion. This is especially true if you created the header file as described in the “Creating the
DiskFree DLL” section. When you compile your DLL, Microsoft Visual C++ creates a .LIB file.
(So, DISKFREE.DLL has a DISKFREE.LIB created by the compiler.) The library (.LIB) file is
used to resolve the load address of the DLL and specify the full pathname of the dynamic link
library, and the header file provides the declaration.

All you have to do is include the header in the file using the DLL functionality and add the .LIB
name to the Project Settings dialog box, on the Link tab (see Figure 28.5), in the Object/Li-
brary Modules edit field.

To test the DiskFree DLL, create a console application called TestDiskFree as An Empty
Project and add a C++ source file called TestDiskFree.cpp. Add the code from Listing 28.7 to
this file. Copy DiskFree.h to this folder and add it to the project by choosing Project, Add To
Project, Files, and selecting DiskFree.h. Copy DiskFree.dll and DiskFree.Lib to the
TestDiskFree folder also. (You’ll find them in DiskFree\Debug.) Change the project settings as
just described to include the DiskFree.Lib file, and build the project.

Creating and Using a 32-Bit Dynamic Link-Library

Untitled-2 2/19/99, 9:39 AM667

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

668 Chapter 28 Future Explorations

FIG. 28.5
Add your LIB file to the
project settings.

Listing 28.7 TestDiskFree.cpp

#include <iostream.h>
#include “diskfree.h”
#define CodeTrace(arg) \
 cout << #arg << endl;\
 arg
int main()
{
 CodeTrace(cout << DiskFree(2) << endl);
 return 0;
}

This code brings in the DLL by including DiskFree.h and then uses it. The CodeTrace macro
simply prints out a line of code before executing it. All this application does is call the
DiskFree() function to ask how much space is free on drive 2. Drive 0 is A:, drive 1 is B:, and
drive 2 is C:. If you build and execute the program, you should see output like Figure 28.6.

FIG. 28.6
Your little application
calls the DLL.

According to TestDiskFree, the C: drive on the machine used for these samples has more than
200MB of free disk space. This number is correct.

Untitled-2 2/19/99, 9:39 AM668

669

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

Now you know how to write real functions in a DLL and use them yourself or make them avail-
able for others.

Sending Messages and Commands
As discussed in Chapter 3, “Messages and Commands,” messages are the heart of Windows.
Everything that happens in a Windows application happens because a message showed up to
make it happen. When you move your mouse and click a button, a huge number of messages
are generated, including WM_MOUSEMOVE for each movement of the mouse, WM_LBUTTONDOWN
when the button goes down, WM_LBUTTONCLICK when the button is released, and higher-level,
more abstract messages such as the WM_COMMAND message with the button’s resource ID as one
of its parameters. You can ignore the lower-level messages if you want; many programmers do.

What you may not know is that you can generate messages, too. There are two functions that
generate messages: CWnd::SendMessage() and CWnd::PostMessage(). Each of these gets a
message to an object that inherits from CWnd. An object that wants to send a message to a win-
dow using one of these functions must have a pointer to the window, and the window must be
prepared to catch the message. A very common approach to this situation is to have a member
variable in the sending object that stores a pointer to the window that will receive the message
and another that stores the message to be sent:

CWnd* m_messagewindow;
UINT m_message;

Messages are represented by unsigned integers. They appear to have names only because
names like WM_MOUSEMOVE are connected to integers with #define statements.

The sending class has a member function to set these member variables, typically very short:

void Sender::SetReceiveTarget(CWnd *window, UINT message)
{
 m_messagewindow = window;
 m_message = message;
}

When the sending class needs to get a message to the window, it calls SendMessage():

 m_messagewindow->SendMessage(m_message, wparam, lparam);

or PostMessage():

 m_messagewindow->PostMessage(m_message, wparam, lparam);

The difference between sending and posting a message is that SendMessage() does not return
until the message has been handled by the window that received it, but PostMessage() just
adds the message to the message queue and returns right away. If, for example, you build an
object, pass that object’s address as the lparam, and then delete the object, you should choose
SendMessage() because you can’t delete the object until you are sure that the message-
handling code has finished with it. If you aren’t passing pointers, you can probably use
PostMessage() and move on as soon as the message has been added to the queue.

Sending Messages and Commands

Untitled-2 2/19/99, 9:39 AM669

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

670 Chapter 28 Future Explorations

The meaning of the wparam and lparam values depends on the message you are sending. If it is
a defined system message like WM_MOUSEMOVE, you can read the online documentation to learn
what the parameters are. If, as is more likely, you are sending a message that you have in-
vented, the meaning of the parameters is entirely up to you. You are the one who is inventing
this message and writing the code to handle it when it arrives at the other window.

To invent a message, add a defining statement to the header file of the class that will catch it:

#define WM_HELLO WM_USER + 300

WM_USER is an unsigned integer that marks the start of the range of message numbers available
for user-defined messages. In this release of MFC, its value is 0x4000, though you should not
depend on that. User-defined messages have message numbers between WM_USER and 0x7FFF.

Then add a line to the message map, in both the header and source file, outside the
ClassWizard comments. The source file message map might look like this:

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 ON_MESSAGE(WM_HELLO, OnHello)
END_MESSAGE_MAP()

The entry added outside the //AFX_MSG_MAP comments catches the
WM_HELLO message and arranges for the OnHello() function to be called. The
header file message map might look like this:

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 afx_msg LRESULT OnHello(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()

Then you add an implementation of OnHello() to the source file to complete
the process.

Considering International Software
Development Issues

International boundaries are shrinking at incredible rates. As the Internet and other methods
of cheap international software distribution continue to grow, so will the demand for compo-
nents built by vendors worldwide. Even in-house software development will less frequently be
able to ignore international markets. The rise in popularity of the Internet has expanded the
reach of many developers into countries where languages other than English and character
sets other than ASCII predominate. This means your applications should be able to

Untitled-2 2/19/99, 9:40 AM670

671

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

28

VI
Part

Ch

communicate with users in languages other than English, and in characters sets other than the
typical Western character set.

Microcomputers were invented in the United States, which explains why we have 8-bit
character-based operating systems. There are only 26 letters in our alphabet and 10 digits,
which leaves plenty of room (about 220 characters worth) for punctuation and other miscella-
neous characters. But countries like Japan and China require a character set in the thousands.

Unicode is one way to tackle the character set problem. The Unicode standard was developed
and is supported by a consortium of some of the biggest players in the international computing
markets. Among these are Adobe, Aldus, Apple, Borland, Digital, IBM, Lotus, Microsoft,
Novell, and Xerox. (For more information, check www.unicode.org.)

Unicode uses two bytes for each character, whereas ASCII uses only one. One byte (8 bits) can
represent 28 or 256 characters. Two bytes (16 bits) can represent 65,536 characters. This is
enough not just for one language, but for all the character sets in general use. For example, the
Japanese character set, one of the largest, needs about 5,000 characters. Most require far less.
The Unicode specification sets aside different ranges for different character sets and can cover
almost every language on Earth in one universal code—a Unicode.

MFC has full Unicode support, with Unicode versions of almost every function. For example,
consider the function CWnd::SetWindowText(). It takes a string and sets the title of the window,
or the caption of a button, to that string. What kind of string it takes depends on whether you
have Unicode support turned on in your application. In reality, two different functions set the
window text one—a Unicode version and a non-Unicode version—and in WINUSER.H, the
block of code shown in Listing 28.8 changes the function name that you call to SetWindowTextA
if you are not using Unicode or to SetWindowTextW if you are.

Listing 28.8 Microsoft’s WINUSER.H Implementing Unicode
Support

WINUSERAPI BOOL WINAPI SetWindowTextA(HWND hWnd, LPCSTR lpString);
WINUSERAPI BOOL WINAPI SetWindowTextW(HWND hWnd, LPCWSTR lpString);

#ifdef UNICODE
#define SetWindowText SetWindowTextW
#else
#define SetWindowText SetWindowTextA
#endif // !UNICODE

The difference between these two functions is the type of the second parameter: LPCSTR for the
A version and LPCWSTR for the W (Wide) version.

If you are using Unicode, whenever you pass a literal string (such as “Hello”) to a function,
wrap it in the _T macro, like this:

pWnd->SetWindowText(_T(“Hello”));

Considering International Software Development Issues

Untitled-2 2/19/99, 9:40 AM671

Brands3/Art3/SWG4 SEUVisual C++ 6 #1539-2 7.21.98 Ayanna CH28 LP#2

672 Chapter 28 Future Explorations

If you can deal with the annoyance of wrapping all text strings in _T macros, just like that, your
application is Unicode aware. When you prepare your Greek or Japanese version of the applica-
tion, life will be much simpler.

Windows 95 was built on earlier versions of Windows, so it was not built using Unicode.
This means that if you use Unicode in your Windows 95 programs, you are going to suffer

performance penalties because the Windows 95 kernel will have to convert Unicode strings back to
ordinary strings. Windows NT was designed at Microsoft from scratch, so it is completely compatible
with Unicode.

If you are developing for several platforms with C++ and using Unicode, your Win95 version may seem
sluggish in comparison to the Windows NT version. ■

N O T E

Untitled-2 2/19/99, 9:40 AM672

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptVII LP#3

VIIP A R T

Appendixes

A C++ Review and Object-Oriented Concepts 675

B Windows Programming Review and a Look Inside
CWnd 693

C The Visual Studio User Interface, Menus, and Toolbars 705

D Debugging 757

E MFC Macros and Globals 773

F Useful Classes 783

Untitled-3 2/19/99, 9:42 AM673

B3A3 swg4 UsingVisualC++6 1539-2 7.21.98 Ayanna ptVII LP#3

Untitled-3 2/19/99, 9:42 AM674

675

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

A P P E N D I X

C++ Review and Object-Oriented
Concepts

A

In this appendix

Working with Objects 676

Reusing Code and Design with Inheritance 683

Managing Memory 687

Untitled-4 2/19/99, 9:43 AM675

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

676 Appendix A C++ Review and Object-Oriented Concepts

Working with Objects
C++ is an object-oriented programming language. You can use it to write programs that are not
object-oriented, like the “Hello World!” example in Chapter 28, “Future Explorations,” but its
real power comes from the way it helps you to implement your applications as objects rather
than procedures. As a Visual C++ programmer, you will make extensive use of MFC, the
Microsoft Foundation Classes: These are implementations of objects almost every application
uses.

If you never worked with C++ before you picked up this book, you are likely to need more help than one
chapter can provide. As an introduction, consider using any of Jesse Liberty’s books on C++: Sams
Teach Yourself C++ in 24 Hours, Sams Teach Yourself C++ in 21 Days, or Sams Teach Yourself C++
in 21 Days: Complete Compiler Edition.

What Is an Object?
An object is a bundle, a clump, a gathering together of items of information that belong to-
gether, and functions that work on those items of information. For example, a BankAccount
object might gather up a customer number, account number, and current balance—these three
pieces of information are required for all bank accounts. Many languages provide a way to
group related information together into structures or records or whatever the language calls the
feature. However, where an object differs from these is in including functions, or behavior, as
well as information. Our BankAccount object will have Deposit(), Withdraw(), and
GetBalance() functions, for example. Figure A.1 shows one way of looking at the design of an
object.

T I P

GetBalance()

Deposit() Withdraw()

account_num
balance

customer_id

FIG. A.1
Objects combine
information (variables)
and behavior
(functions).

Untitled-4 2/19/99, 9:43 AM676

677

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Why Use Objects?
There are many advantages to an object-oriented approach to application development, but the
two most important are maintanability and robustness. That’s what you call them when you’re
persuading your manager to switch to C++. In your day-to-day life, they mean you can change
one thing without breaking anything else, and you don’t have to count on remembering to
always do step B whenever you do step A. Both these benefits arise because code from outside
our BankAccount object can’t directly access any information inside the object, only through
the functions you’ve added to the object. For example, imagine that some piece of code creates
a bank account like this:

BankAccount account;

That code can now deposit or withdraw money or find out the balance in the account, like this:

account.Deposit(100.00);
account.Withdraw(50.00);
float newbalance = account.GetBalance();

That code cannot work on the balance directly, like this:

account.balance = 100.00;
account.balance -= 50.00;
float newbalance = account.balance;

This information hiding doesn’t seek to protect the numeric value of the account balance—the
three lines of code that work are obviously using and affecting that value. Instead, information
hiding protects design decisions made by the programmer, and it leaves you free to change
them later.

As an example, say you decide to use a floating point number to represent the account balance,
the number of dollars in the account. Later, you change your mind, deciding that using an
integer that represents the number of pennies in the account would be faster, or more accurate,
or less of a burden on available memory. Of course, you will have to change the code for
Deposit() and Withdraw(), which will still take floating point arguments, to convert from
dollars to pennies. After you do that, all the code that other people wrote that called those
functions will work perfectly: They’ll never know you changed anything. If you’re the one
writing the whole project, you’ll know that you have no work to do other than the changes
within your BankAccount object. If other code could talk to balance directly, as in the second
set of three lines, you’d have to find every place in the whole application that does so and
change it to convert from dollars to pennies or from pennies to dollars. What a nightmare!

What if you never make such a fundamental change as that? After all, it’s rare to change the
type of a variable partway through the project. Well then, imagine a change in the business
rules governing withdrawals. When the project started, you were told that accounts couldn’t be
overdrawn, so you wrote code for the Withdraw() function that looked like this:

balance -= amounttowithdraw;
if (balance < 0)
 balance += amounttowithdraw; //reverse transaction

Working with Objects

Untitled-4 2/19/99, 9:44 AM677

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

678 Appendix A C++ Review and Object-Oriented Concepts

Then, just as the application was almost complete, you were told that, in fact, many accounts
have overdraft protection and you should have written the following:

balance -= amounttowithdraw;
if (balance < -overdraftlimit)
 balance += amounttowithdraw; //reverse transaction

If all withdrawals go through the Withdraw() function, your life is easy: Make one change in
the function, and everything’s taken care of. If lots of other places in the code were processing
withdrawals themselves, by just lowering the value of balance, you would have to find all those
places and fix the overdraft check in each place. If you missed one, your program would have a
strange and subtle bug that missed overdrafts in some situations and caught them in others.
The object-oriented way is much safer.

What Is a Class?
In any bank, there are many bank accounts: yours, mine, and thousands of others. They all
have fundamental things in common: They have a balance and a customer, and certain kinds of
transactions are allowed with them. In a banking application, you will have perhaps thousands
of bank account objects, and each will be an instance of the BankAccount class.

When you define a class, you define what it means to be a BankAccount (or a Truck, or an
Employee, or whatever). You list the information that is kept by objects of this class in the
form of member variables, and the things objects of this class can do, in the form of member
functions. Also, you make it clear which parts of the class you want to protect with information
hiding. Listing A.1 shows a declaration for the class BankAccount.

Listing A.1 Declaring the BankAccount Class

class BankAccount
{
 private:
 float balance;
 char[8] customer_id;
 char[8] account_num;

 public:
 float GetBalance();
 void Withdraw(float amounttowithdraw);
 void Deposit(float amounttodeposit);
};

The keyword private before the three variables directs the compiler not to compile code that
accesses these variables, unless that code is within a member function of BankAccount. The
keyword public before the three functions tells the compiler any code at all can call them. This
is a typical arrangement for a well-designed object-oriented program: All the variables are
private, and all the functions are public.

Untitled-4 2/19/99, 9:44 AM678

679

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Occasionally, you might write a function for an object that is used to perform some repetitive task. It’s
not always appropriate for other objects to use that function to direct your object to perform that task.
In this case, you can make the function private. Many developers make variables public to save the
bother of writing public functions to access the variable. There’s rarely a good reason to do this; it’s just
laziness.

Now if certain code declares two bank accounts, mine and yours, each will have its own
balance, customer_id, and account_num variables. Depositing money into my bank account
will not affect your balance. Listing A.2 shows some code that creates bank accounts and then
exercises their functions.

Listing A.2 Using BankAccount Objects

BankAccount mine, yours;
mine.Deposit(1000);
yours.Deposit(100);
mine.Withdraw(500);
float mybalance = mine.GetBalance();
float yourbalance = yours.GetBalance();

Where Are the Functions?
The three member functions—Deposit(), Withdraw(), and GetBalance()—must be written,
and their code must be compiled. You can put the code for these functions in two places: inside
the class declaration (called inline code) or outside the class declaration, usually in a separate
file. Only very short and simple functions should have inline code because long functions here
make the class declaration hard to read. If all three functions in this sample class had inline
code, the class declaration would be as shown in Listing A.3.

Listing A.3 BankAccount with Inline Code

class BankAccount
{
 private:
 float balance;
 char[8] customer_id;
 char[8] account_num;

 public:
 float GetBalance() { return balance;}
 void Withdraw(float amounttowithdraw)
 {
 balance -= amounttowithdraw;
 if (balance < 0)
 balance += amounttowithdraw; //reverse transaction
 }
 void Deposit(float amounttodeposit) {balance += amounttodeposit;}
};

T I P

Working with Objects

Untitled-4 2/19/99, 9:44 AM679

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

680 Appendix A C++ Review and Object-Oriented Concepts

Notice that the semicolon after the function names in Listing A.1 has been replaced by the
function body, surrounded by braces. The Withdraw() function is a little too long to include in
the class declaration like this and would be better placed outside the class. Because all func-
tions in an object-oriented program belong to a class, when you provide the code, you must
indicate the name of the class to which the function belongs. Listing A.4 shows the code for
Withdraw() as it might appear outside the class declaration. The two colons (::) between the
classname and the function name are called the scope resolution operator.

Listing A.4 BankAccount’s Withdraw() Function

void BankAccount::Withdraw(float amounttowithdraw)
 {
 balance -= amounttowithdraw;
 if (balance < 0)
 balance += amounttowithdraw; //reverse transaction
 }

Usually, the class declaration is placed in a file of its own with a name such as
BankAccount.h so that it can be used by all the other code that makes BankAccount

objects or calls BankAccount functions. This file is generally referred to as the header file. Typically,
the rest of the code is placed in another file with a name such as BankAccount.cpp, referred to as the
implementation file. ■

Inline Functions
It’s easy to confuse inline code, such as that in Listing A.3, with inline functions. The compiler can
choose to make any function an inline function, which provides tremendous performance improve-
ments for small functions. Because it can harm performance for long functions, generally the
compiler, not the programmer, makes the decision about inlining. When you provide inline code, you
are suggesting to the compiler that the function be inlined. Another way to make this suggestion is to
use the keyword inline with the code outside the class declaration, like this:

inline void BankAccount::Withdraw(float amounttowithdraw)

 {

 balance -= amounttowithdraw;

 if (balance < 0)

 balance += amounttowithdraw; //reverse transaction

 }

If this function will be called from other objects, don’t inline it like this in the .cpp file. Leave it in the
header file or make a separate file for inline functions, an .inl file, and #include it into each file
that calls the member functions. That way the compiler will be able to find the code.

The compiler might not inline a function, even though it has inline code (in the class declaration) or
you use the inline keyword. If you know what you’re doing, the __forceinline keyword

N O T E

Untitled-4 2/19/99, 9:45 AM680

681

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

introduced in Visual C++ 6 enables you to insist that a function be inlined. (Notice that this keyword,
like all nonstandard compiler keywords, starts with two underscores.) Because this can cause code
bloat and slow your application, use this feature only when you have an almost complete application
and are looking for performance improvements. This is a Visual C++–only keyword that won’t work
with other compilers.

Perhaps you’ve already seen one of the other advantages of C++. Functions generally require
much fewer parameters. In another language, you might pass the account number into each of
these three functions to make it clear which balance you want to know about or change. Per-
haps you would pass the balance itself into a Withdraw() function that checks the business
rules and then approves or denies the withdrawal. However, because these BankAccount func-
tions are member functions, they have all the member variables of the object to work with and
don’t require them as parameters. That makes all your code simpler to read and maintain.

How Are Objects Initialized?
In C, you can just declare a variable, like this:

int i;

If you prefer, you can declare it and initialize it at the same time, like this:

int i = 3;

A valid bank account needs values for its customer_id and account_num member variables. You
can probably start with a balance of 0, but what sensible defaults can you use for the other two?
More importantly, where would you put the code that assigns these values to the variables? In
C++, every object has an initializer function called a constructor, and it handles this work. A
constructor is different from ordinary member functions in two ways: Its name is the name of
the class, and it doesn’t have a return type, not even void. Perhaps you might write a construc-
tor like the one in Listing A.5 for the BankAccount class.

Listing A.5 BankAccount Constructor

BankAccount::BankAccount(char* customer, char* account, float startbalance)
 {
 strcpy(customer_id, customer);
 strcpy(account_num, account);
 balance = startbalance;
 }

strcpy() is a function from the C runtime library, available to all C and C++ programs, that copies
strings. The code in Listing A.5 copies the strings that were passed to the constructor into the member
variables.

T I P

Working with Objects

Untitled-4 2/19/99, 9:45 AM681

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

682 Appendix A C++ Review and Object-Oriented Concepts

After writing the BankAccount constructor, you would add its declaration to the class by adding
this line to the class declaration:

BankAccount(char* customer, char* account, float startbalance);

Notice that there is no return type. You don’t need the class name and scope resolution opera-
tor because you are in the class definition, and the semicolon at the end of the line indicates
that the code is outside the class declaration.

Now, when you declare a BankAccount object, you can initialize by providing constructor pa-
rameters, like this:

BankAccount account(“AB123456”,”11038-30”,100.00);

What Is Overloading?
Imagine the banking application you are writing also deals with credit cards and that there is a
CreditCard class. You might want a GetBalance() function in that class, too. In C, functions
weren’t associated with classes. They were all global, and you couldn’t have two functions with
the same name. In C++ you can. Imagine that you write some code like this:

BankAccount account(“AB123456”,”11038-30”,100.00);
float accountbalance = account.GetBalance();
CreditCard card(“AB123456”, “4500 000 000 000”, 1000.00);
card.GetBalance();

Most developers can see that the second line will call the BankAccount GetBalance() function,
whose full name is BankAccount::GetBalance(), and the fourth line will call
CreditCard::GetBalance(). In a sense, these functions don’t have the same name. This is one
example of overloading, and it’s a really nice thing for developers because it lets you use a
simple and intuitive name for all your functions, instead of one called
GetBankAccountBalance() and another called GetCreditCardBalance().

There’s another, even nicer situation in which you might want two functions with the same
name, and that’s within a single class. Take, for example, that BankAccount constructor you
saw a little earlier in this chapter. It might be annoying to pass in a zero balance all the time.
What if you could have two constructors, one that takes the customer identifier, account num-
ber, and starting balance and another that takes only the customer and account identifiers? You
might add them to the class declaration like this:

BankAccount(char* customer, char* account, float startbalance);
BankAccount(char* customer, char* account);

As Listing A.6 shows, the code for these functions would be very similar. You might feel that
you need different names for them, but you don’t. The compiler tells them apart by their signa-
ture: the combination of their full names and all the parameter types that they take. This isn’t
unique to constructors: All functions can be overloaded as long as at least one aspect of the
signature is different for the two functions that have the same name.

Untitled-4 2/19/99, 9:45 AM682

683

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Two functions in the same class, with the same name, must differ in the type or number of parameters.
If they differ only in the return type, that is not a valid overload.

Listing A.6 Two BankAccount Constructors

BankAccount::BankAccount(char* customer, char* account, float startbalance)
 {
 strcpy(customer_id, customer);
 strcpy(account_num, account);
 balance = startbalance;
 }
BankAccount::BankAccount(char* customer, char* account)
 {
 strcpy(customer_id, customer);
 strcpy(account_num, account);
 balance = 0;
 }

Reusing Code and Design with Inheritance
Maintainability and robustness, thanks to information hiding, are two of the features that in-
spire people to switch to object-oriented programming. Another is reuse. You can reuse other
people’s objects, calling their public functions and ignoring their design decisions, by simply
making an object that is an instance of the class and calling the functions. The hundreds of
classes that make up MFC are a good example. C++ enables another form of reuse as well,
called inheritance.

What Is Inheritance?
To stick with the banking example, imagine that after you have BankAccount implemented,
tested, and working perfectly, you decide to add checking and savings accounts to your sys-
tem. You would like to reuse the code you have already written for BankAccount, not just copy it
into each of these new classes. To see whether you should reuse by making an object and
calling its functions or reuse by inheriting, you try saying these sample sentences:

A checking account IS a bank account.

A checking account HAS a bank account part.

A savings account IS a bank account.

A savings account HAS a bank account part.

Most people agree that the IS sentences sound better. In contrast, which of the following would
you choose?

A car IS an engine (with some seats and wheels)

A car HAS an engine (and some seats and wheels)

T I P

Reusing Code and Design with Inheritance

Untitled-4 2/19/99, 9:45 AM683

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

684 Appendix A C++ Review and Object-Oriented Concepts

If the IS sentences don’t sound silly, inheritance is the way to implement your design. Listing
A.7 contains possible class declarations for the two new classes.

The class reusing code in this way is called a derived class or sometimes a subclass. The class
providing the code is called the base class or sometimes the superclass.

Listing A.7 CheckingAccount and SavingsAccount

class SavingsAccount: public BankAccount
{
 private:
 float interestrate;

 public:
 SavingsAccount(char* customer, char* account,
 float startbalance, float interest);
 void CreditInterest(int days);
};
class CheckingAccount: public BankAccount
{

 public:
 Checking(char* customer, char* account, float startbalance);
 void PrintStatement(int month);
};

Now, if someone makes a CheckingAccount object, he can call functions that CheckingAccount
inherited from BankAccount or functions that were written specially for CheckingAcount. Here’s
an example:

CheckingAccount ca(“AB123456”,”11038-30”,100.00);
ca.Deposit(100);
ca.PrintStatement(5);

What’s terrific about this is what happens when someone changes the business rules. Perhaps
management notices that there are no service charges in this system and instructs you to add
them. You will charge 10 cents for each deposit and withdrawal, and subtract the service
charges on instruction from some monthly maintenance code that another developer is writing.
You open up BankAccount.h and add a private member variable called servicecharges. You
set this to zero in the constructor and increase it by 0.1 in both Deposit() and Withdraw().
Then you add a public function called ApplyServiceCharges() that reduces the balance and
resets the charges to zero.

At this point in most other languages, you’d have to repeat all this for CheckingAccount and
SavingsAccount. Not in C++! You have to add a line to the constructors for these classes, but
you don’t change anything else. You can reuse your changes as easily as you reused your
BankAccount class in the first place.

T I P

Untitled-4 2/19/99, 9:46 AM684

685

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

What Is Protected Access?
Without writing all of CheckingAccount::PrintStatement(), you can assume it will need to
know the balance of the account. To spare any hard-to-read code that would put that number
onscreen, consider this line of code:

float bal = balance;

This line, inside CheckingAccount::PrintStatement(), will not compile. balance is a private
member variable, and no code can access it, other than code in BankAccount member func-
tions. Though this probably seems outrageous, it’s actually very useful. Remember the pos-
sible design decision that would change the type of balance from float to int? How would the
BankAccount programmer know all the classes out there that inherited from BankAccount and
rely on the type of the balance member variable? It’s much simpler to prevent access by any
other code. After all, CheckingAccount::PrintStatement() can use a public function,
GetBalance(), to achieve the desired result.

If you want to grant code in derived classes direct access to a member variable, and you’re
confident that you will never need to find all these classes to repeat some change in all of them,
you can make the variable protected rather than private. The class declaration for BankAccount
would start like this:

class BankAccount
{
 protected:
 float balance;
 private:
 char[8] customer_id;
 char[8] account_num;

 // ...
};

What Is Overriding?
At times, your class will inherit from a base class that already provides a function you need, but
the code for that function isn’t quite what you want. For example, BankAccount might have a
Display() function that writes onscreen the values of the three member variables:
customer_id, account_num, and balance. Other code could create BankAccount,
CheckingAccount, or SavingsAccount objects and display them by calling this function. No
problem. Well, there is one little problem: All SavingsAccount objects have an interestrate
variable as well, and it would be nice if the Display() function showed its value, too. You can
write your own code for SavingsAccount::Display(). This is called an override of the function
from the base class.

You want SavingsAccount::Display() to do everything that BankAccount::Display() does
and then do the extra things unique to savings accounts. The best way to achieve this is to call
BankAccount::Display() (that’s its full name) from within SavingsAccount::Display(). Be-
sides saving you time typing or copying and pasting, you won’t have to recopy later if someone
changes the base class Display().

Reusing Code and Design with Inheritance

Untitled-4 2/19/99, 9:46 AM685

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

686 Appendix A C++ Review and Object-Oriented Concepts

What Is Polymorphism?
Polymorphism is a tremendously useful feature of C++, but it doesn’t sneak up on you. You can
use it only if you are using inheritance and pointers, and then only if the base class in your
inheritance hierarchy deliberately activates it. Consider the code in Listing A.8.

If you haven’t worked with pointers before, you may find the &, *, and -> operators used in this code
example confusing. & means address of and obtains a pointer from a variable. * means contents of
and uses a pointer to access the variable it points to. -> is used when the pointer has the address of
an object rather than an integer, float, or other fundamental type.

Listing A.8 Inheritance and Pointers

BankAccount ba(“AB123456”,”11038-30”,100.00);
CheckingAccount ca(“AB123456”,”11038-32”,200.00);
SavingsAccount sa(“AB123456”,”11038-39”,1000.00, 0.03);

BankAccount* pb = &ba;
CheckingAccount* pc = &ca;
SavingsAccount* ps = &sa;

pb->Display();
pc->Display();
ps->Display();

BankAccount* pc2 = &ca;
BankAccount* ps2 = &sa;

pc2->Display();
ps2->Display();

};

In this example, there are three objects and five pointers. pb, pc, and ps are straightforward,
but pc2 and ps2 represent what is often called an upcast: A pointer that points to a derived class
object is being carried around as a pointer to a base class object. Although there doesn’t seem
to be any use at all in doing such a thing in this code example, it would be very useful to be
able to make an array of BankAccount pointers and then pass it to a function that wouldn’t have
to know that SavingsAccount or CheckingAccount objects even existed. You will see an ex-
ample of that in a moment, but first you need to be clear about what’s happening in Listing A.8.

The call to pb->Display() will execute the BankAccount::Display() function, not surprisingly.
The call to pc->Display() would execute CheckingAccount::Display() if you had written one,
but because CheckingAccount only inherits the base class code, this call will be to
BankAccount::Display(), also. The call to ps->Display() will execute the override,
SavingsAccount::Display(). This is exactly the behavior you want. Each account will be
displayed completely and properly.

T I P

Untitled-4 2/19/99, 9:47 AM686

687

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Things aren’t as simple when it comes to pc2 and ps2, however. These pointers, though they
point to a CheckingAccount object and a SavingsAccount object, are declared to be of type
pointer-to-BankAccount. Each of the display calls will execute the BankAccount::Display()
function, which is not what you want at all. To achieve the desired behavior, you must include
the keyword virtual in your declaration of BankAccount::Display(). (The keyword must
appear in the base class declaration of the function.) When you do so, you are asking for poly-
morphism, asking that the same line of code sometimes do quite different things. To see how
this can happen, consider a function such as this one:

void SomeClass::DisplayAccounts(BankAccount* a[], int numaccounts)
{
 for (int i = 0; i < numaccounts; i++)
 {
 a[i]->Display();
 }
}

This function takes an array of BankAccount pointers, goes through the array, and displays
each account. If, for example, the first pointer is pointing to a CheckingAccount object,
BankAccount::Display() will be executed. If the second pointer is pointing to a
SavingsAccount object, and Display() is virtual, SavingsAccount::Display() will be ex-
ecuted. You can’t tell by looking at the code which lines will be executed, and that’s polymor-
phism.

It’s a tremendously useful feature. Without it, you’d have to write switch statements that de-
cide which function to call, and every time you add another kind of BankAccount, you’d have to
find those switch statements and change them. With it, you can add as many new kinds of
BankAccount classes as you want, and you never have to change
SomeClass::DisplayAccounts() to accommodate that.

Managing Memory
When you declare an object in a block of code, it lasts only until the last line of code in the
block has been executed. Then the object goes out of scope, and its memory is reclaimed. If
you want some cleanup task taken care of, you write a destructor (the opposite of a constructor)
for the object, and the system will call the destructor before reclaiming the memory.

Often you want to create an object that will continue to exist past the lifetime of the function
that created it. You must, of course, keep a pointer to the object somewhere. A very common
situation is to have the pointer as a member variable of a class: The constructor for the class
allocates the memory, and the destructor releases it.

Allocating and Releasing Memory
In C, you allocate memory like this with the malloc() function. For example, to allocate
enough memory for a single integer, you would write

int *pi = (int *) malloc (sizeof(int));

Managing Memory

Untitled-4 2/19/99, 9:47 AM687

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

688 Appendix A C++ Review and Object-Oriented Concepts

However, when you allocate memory for an object, you want the constructor to run. malloc(),
written long before C++ was developed, can’t call constructors. Therefore, you use an operator
called new to allocate and initialize the memory, like this:

BankAccount* pb = new BankAccount(“AB123456”,”11038-30”,100.00);

The parameters after the classname are passed along to the constructor, as they were when
you allocated a BankAccount within a block. Not only does new call the constructor, but you also
don’t have to calculate the number of bytes you need with sizeof, and you don’t have to cast
the pointer you receive back. This is a handy operator.

The place where this memory is allocated is technically called the free store. Many C++ developers call
it the heap. On the other hand, variables allocated within a block are said to be on the stack.

When you’re finished with the object you allocated with new, you use the delete operator to get
rid of it, like this:

delete pb;

delete will call the destructor and then reclaim the memory. The older C function, free(),
must never be used to release memory that was allocated with new. If you allocate some other
memory (say, a dynamic array of integers) with malloc(), you must release it with free()
rather than delete. Many developers find it simpler to leave free() and malloc() behind
forever and use new and delete exclusively.

new can be used for array allocation, like this:

int * numbers = new int[100];

When you are finished with memory that was allocated like this, always use the array form of
delete to release it:

delete[] numbers;

Pointers as Member Variables
It’s common to use pointers within objects. Consider the BankAccount class that’s been the
example throughout this chapter. Why should it carry around a character string representing a
customer identifier? Wouldn’t it be better to carry around a pointer to an object that is an in-
stance of the class Customer? This is easy to do. Remove the private customer_id variable and
add a Customer pointer to the class declaration, like this:

Customer* pCustomer;

You would have to write code in the constructor that finds the right Customer object using only
the customer identifer passed to the constructor, and you would probably add two new con-
structors that take Customer pointers. You can’t take away a public function after you’ve written
it, because someone might be relying on it. If you are sure no one is, you could remove it.

T I P

Untitled-4 2/19/99, 9:48 AM688

689

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Now a BankAccount can do all sorts of useful things by delegating to the Customer object it is
associated with. Need to print the customer’s name and address at the top of the statement? No
problem, have the Customer object do it:

pCustomer->PrintNameandAddress();

This is a terrific way to reuse all the work that went into formatting the name and address in
the Customer class. It also completely isolates you from changes in that format later.

This kind of reuse is generally called aggregation or containment and is contrasted with inheritance. It
corresponds to the HAS sentences presented in the inheritance section.

Dynamic Objects
A BankAccount is always associated with exactly one Customer object. However, there are other
things about a BankAccount that might or might not exist. Perhaps an account is associated
with a CreditCard, and if so, possible overdrafts are covered from that card.

To implement this in code, you would add another private member variable to the BankAccount
class:

CreditCard *pCard;

All the constructors written so far would set this pointer to NULL to indicate that it doesn’t point
to a valid CreditCard:

pCard = NULL;

You could then add a public function such as AddCreditCard() that would set the pointer. The
code could be inline, like this:

void AddCreditCard(CreditCard* card) {pCard = card;}

The new code for Withdraw() would probably look like this:

void BankAccount::Withdraw(float amounttowithdraw)
 {
 balance -= amounttowithdraw;
 if (balance < 0)
 {
 if (pCard)
 {
 int hundreds = - (int) (balance / 100);
 hundreds++;
 pCard->CashAdvance(hundreds * 100);
 balance += hundreds * 100;
 }
 else
 balance += amounttowithdraw; //reverse transaction
 }
 }

T I P

Managing Memory

Untitled-4 2/19/99, 9:48 AM689

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

690 Appendix A C++ Review and Object-Oriented Concepts

This rounds the overdraft (not the withdrawal) to the nearest hundred and obtains that amount
from the credit card. If this account has no associated card, it reverses the transaction, as
before.

Destructors and Pointers
When a BankAccount object is thrown away, the Customer or CreditCard objects to which it
might have had pointers continue to exist. That means BankAccount doesn’t need a destructor
at the moment. Many times, objects with pointers as member variables do need destructors.

Consider the situation of ordering new checks. When the checks arrive, the charge is taken
out of the account. Perhaps you will make a CheckOrder object to gather up the information and
will add a function to CheckingAccount to make one of these. Without taking this example too
far afield by trying to design CheckOrder, the OrderChecks() function might look like this:

CheckingAccount::OrderChecks()
{
 pOrder = new CheckOrder(/* whatever parameters the constructor takes */);
}

You would add pOrder as a private member variable of CheckingAccount:

 CheckOrder* pOrder;

In the constructor for CheckingAccount, you would set pOrder to NULL because a brand new
account doesn’t have an outstanding check order.

When the checks arrive, whatever outside code called OrderChecks() could call
ChecksArrive(), which would look like this:

CheckingAccount::ChecksArrive()
{
 balance -= pOrder.GetCharge();
 delete pOrder;
 pOrder = NULL;
}

This function will be able to access balance directly like this only if balance was
protected in BankAccount rather than private, as discussed earlier. ■

The delete operator will clean up the order object by running its destructor and then reclaim
the memory. You set the pointer to NULL afterwards to make sure that no other code tries to
use the pointer, which no longer points to a valid CheckOrder object.

What if a CheckingAccount is closed while an order is outstanding? If you throw away the
pointer, the memory occupied by the CheckOrder object will never be reclaimed. You will have
to write a destructor for CheckingAccount that cleans this up. Remember that constructors
always have the same name as the class. Destructor names are always a tilde (~) followed by
the name of the class. CheckingAccount::~CheckingAccount() would look like this:

CheckingAccount::~CheckingAccount()
{
 delete pOrder;
}

N O T E

Untitled-4 2/19/99, 9:49 AM690

691

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

A

VII
Part

App

Running Destructors Accidentally
When a class has a destructor that does something destructive, you have to be very careful to
make sure that it isn’t unexpectedly called and causes you trouble. Look at the code in Listing
A.9. It makes a CheckingAccount object, orders checks, passes the object to some function or
another, and then tells the account that the checks have arrived.

Listing A.9 Accidental Destruction

CheckingAccount ca(“AB123456”,”11038-32”,200.00);
ca.OrderChecks();
SomeFunction(ca);
ca.ChecksArrive();

This looks harmless enough. However, when you pass the CheckingAccount object to
SomeFunction(), the system makes a copy of it to give to the function. This copy is identical to
ca: It has a pointer in it that points to the same CheckOrder as ca. When the call to
SomeFunction() returns, the copy is no longer needed, so the system runs the destructor and
reclaims the memory. Unfortunately, the destructor for the temporary CheckingAccount object
will delete its CheckOrder, which is also ca’s CheckOrder. The call to ChecksArrive() can’t work
because the CheckOrder object is gone.

There are two ways to deal with this problem. The first is to change SomeFunction() so that it
takes a pointer to a CheckingAccount or a reference to a CheckingAccount. The second is to
write a function called a copy constructor that controls the way the temporary CheckingAccount
is made. References and copy constructors are beyond the scope of this chapter. If the function
takes a pointer, no copy is made, and there can be no accidental destruction.

What Else Should I Know?
If you bought a book solely on C++ or attended a week-long introductory course, you would
learn a number of other C++ features, including the following:

■ Default parameter values

■ Constructor initializer line

■ The const keyword

■ Passing parameters by reference

■ Returning values by reference

■ Static member variables and static member functions

■ Copy constructors

■ Operator overloading

Two topics not always covered in introductory material are exceptions and templates. These
are discussed in Chapter 26, “Exceptions and Templates.”

Managing Memory

Untitled-4 2/19/99, 9:49 AM691

Brands3/Art3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP A LP#3

692 Appendix A C++ Review and Object-Oriented Concepts

Untitled-4 2/19/99, 9:49 AM692

693

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

A P P E N D I X

Windows Programming Review and a
Look Inside CWnd

B

In this appendix

Programming for Windows 694

Encapsulating the Windows API 698

Inside CWnd 698

Getting a Handle on All These MFC Classes 701

Untitled-5 2/19/99, 9:51 AM693

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

694 Appendix B Windows Programming Review and a Look Inside CWind

The Microsoft Foundation Classes were written for one single purpose: to make Windows
programming easier by providing classes with methods and data that handle tasks common to
all Windows programs. The classes that are in MFC are designed to be useful to a Windows
programmer specifically. The methods within each class perform tasks that Windows program-
mers often need to perform. Many of the classes have a close correspondence to structures
and window classes, in the old Windows sense of the word class. Many of the methods corre-
spond closely to API (Application Programming Interface) functions already familiar to Win-
dows programmers, who often refer to them as the Windows SDK or as SDK functions.

Programming for Windows
If you’ve programmed for Windows in C, you know that the word class was used to describe a
window long before C++ programming came to Windows. A window class is vital to any Win-
dows C program. A standard structure holds the data that describes this window class, and the
operating system provides a number of standard window classes. A programmer usually builds
a new window class for each program and registers it by calling an API function,
RegisterClass(). Windows that appear onscreen can then be created, based on that class, by
calling another API function, CreateWindow().

A C-Style Window Class
The WNDCLASS structure, which describes the window class, is equivalent to the WNDCLASSA
structure, which looks like Listing B.1.

Listing B.1 WNDCLASSA Structure from WINUSER.H

typedef struct tagWNDCLASSA {
 UINT style;
 WNDPROC lpfnWndProc;
 int cbClsExtra;
 int cbWndExtra;
 HINSTANCE hInstance;
 HICON hIcon;
 HCURSOR hCursor;
 HBRUSH hbrBackground;
 LPCSTR lpszMenuName;
 LPCSTR lpszClassName;
} WNDCLASSA, *PWNDCLASSA, NEAR *NPWNDCLASSA, FAR *LPWNDCLASSA;

WINUSER.H sets up two very similar window class structures: WNDCLASSA for programs that
use normal strings and WNDCLASSW for Unicode programs. Chapter 28, “Future Explorations,”
covers Unicode programs in the “Unicode” section.

WINUSER.H is code supplied with Developer Studio. It’s typically in the folder \Program Files\
Files\Microsoft Visual Studio\VC98\include.

T I P

Untitled-5 2/19/99, 9:51 AM694

695

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

If you were creating a Windows program in C, you would need to fill a WNDCLASS structure. The
members of the WNDCLASS structure are as follows:

■ style—A number made by combining standard styles, represented with constants like
CS_GLOBALCLASS or CS_OWNDC, with the bitwise or operator (|). A perfectly good class can
be registered with a style value of 0; the other styles are for exceptions to normal
procedure.

■ lpfnWndProc—A pointer to a function that is the Windows Procedure (generally called
the WindProc) for the class. Refer to Chapter 3, “Messages and Commands,” for a
discussion of this function.

■ cbClsExtra—The number of extra bytes to add to the window class. It’s usually 0, but C
programmers would sometimes build a window class with extra data in it.

■ cbWndExtra—The number of extra bytes to add to each instance of the window, usually 0.

■ hInstance—A handle to an instance of an application, the running program that is
registering this window class. For now, think of this as a way for the window class to
reach the application that uses it.

■ hIcon—An icon to be drawn when the window is minimized. Typically, this is set with a
call to another API function, LoadIcon().

■ hCursor—The cursor that displays when the mouse is over the screen window associ-
ated with this window class. Typically, this is set with a call to the API function
LoadCursor().

■ hbrBackground—The brush to be used for painting the window background. The API
call to GetStockObject() is the usual way to set this variable.

■ lpszMenuName—A long pointer to a string that is zero terminated and contains the name
of the menu for the window class.

■ lpszClassName—The name for this window class, to be used by CreateWindow(), when a
window (an instance of the window class) is created. You make up a name.

Window Creation
If you’ve never written a Windows program before, having to fill out a WNDCLASS structure
might intimidate you. This is the first step, though, in Windows programming in C. However,
you can always find simple sample programs to copy, like this one:

WNDCLASS wcInit;

 wcInit.style = 0;
 wcInit.lpfnWndProc = (WNDPROC)MainWndProc;
 wcInit.cbClsExtra = 0;
 wcInit.cbWndExtra = 0;
 wcInit.hInstance = hInstance;
 wcInit.hIcon = LoadIcon (hInstance, MAKEINTRESOURCE(ID_ICON));
 wcInit.hCursor = LoadCursor (NULL, IDC_ARROW);

Programming for Windows

Untitled-5 2/19/99, 9:51 AM695

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

696 Appendix B Windows Programming Review and a Look Inside CWind

 wcInit.hbrBackground = GetStockObject (WHITE_BRUSH);
 wcInit.lpszMenuName = “DEMO”;
 wcInit.lpszClassName =”NewWClass”;

 return (RegisterClass (&wcInit));

Hungarian Notation
You might wonder what kind of variable name lpszClassName is or why it’s wcInit and not just
Init. The reason for this is Microsoft programmers use a variable naming convention called
Hungarian Notation. It is so named because a Hungarian programmer named Charles Simonyi
popularized it at Microsoft (and probably because at first glance, the variable names seem to be
written in another language).

In Hungarian Notation, the variable is given a descriptive name, like Count or ClassName, that
starts with a capital letter. If it is a multiword name, each word is capitalized. Then, before the
descriptive name, letters are added to indicate the variable type—for example, nCount for an integer
or bFlag for a Boolean (TRUE or FALSE) variable. In this way, the programmer should never forget a
variable type or do something foolish such as pass a signed variable to a function that is expecting
an unsigned value.

The style has gained widespread popularity, although some people hate it. If you long for the good
old days of arguing where to put the braces, or better still whether to call them brace, face, or
squiggle brackets, but can’t find anyone to rehash those old wars anymore, you can probably find
somebody to argue about Hungarian Notation instead. The arguments in favor boil down to “you
catch yourself making stupid mistakes,” and the arguments against it to “it’s ugly and hard to read.”
The practical truth is that the structures used by the API and the classes defined in MFC all use
Hungarian Notation, so you might as well get used to it. You’ll probably find yourself doing it for your
own variables, too. The prefixes are as follows:

Prefix Variable Type Comment

a Array

b Boolean

d Double

h Handle

i Integer “index into”

l Long

lp Long pointer to

lpfn Long pointer to function

m_ Member variable

n Integer “number of”

p Pointer to

s String

sz Zero-terminated string

Untitled-5 2/19/99, 9:52 AM696

697

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

u Unsigned integer

C Class

Many people add their own type conventions to variable names; the wc in wcInit stands for window
class.

Filling the wcInit structure and calling RegisterClass is standard stuff: registering a class
called NewWClass with a menu called DEMO and a WindProc called MainWndProc. Everything
else about it is ordinary to an experienced Windows C programmer. After registering the class,
when those old-time Windows programmers wanted to create a window onscreen, out popped
some code like this:

 HWND hWnd;
 hInst = hInstance;
 hWnd = CreateWindow (
 “NewWClass”,
 “Demo 1”,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL);

 if (! hWnd)
 return (FALSE);

 ShowWindow (hWnd, nCmdShow);
 UpdateWindow (hWnd);

This code calls CreateWindow(), then ShowWindow(), and UpdateWindow(). The parameters to
the API function CreateWindow() are as follows:

■ lpClassName—A pointer to the classname that was used in the RegisterClass() call.

■ lpWindowName—The window name. You make this up.

■ dwStyle—The window style, made by combining #define constants with the | operator.
For a primary application window like this one, WS_OVERLAPPEDWINDOW is standard.

■ x—The window’s horizontal position. CW_USEDEFAULT lets the operating system calculate
sensible defaults, based on the user’s screen settings.

■ y—The window’s vertical position. CW_USEDEFAULT lets the operating system calculate
sensible defaults, based on the user’s screen settings.

■ nWidth—The window’s width. CW_USEDEFAULT lets the operating system calculate
sensible defaults, based on the user’s screen settings.

■ nHeight—The window’s height. CW_USEDEFAULT lets the operating system calculate
sensible defaults, based on the user’s screen settings.

Programming for Windows

Untitled-5 2/19/99, 9:52 AM697

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

698 Appendix B Windows Programming Review and a Look Inside CWind

■ hWndParent—The handle of the parent or owner window. (Some windows are created by
other windows, which own them.) NULL means that there is no parent to this window.

■ hMenu—The handle to a menu or child-window identifier, in other words a window owned
by this window. NULL means that there are no children.

■ hInstance—The handle of the application instance that is creating this window.

■ lpParam—A pointer to any extra parameters. None are needed in this example.

CreateWindow()returns a window handle—everybody calls his window handles hWnd—and this
handle is used in the rest of the standard code. If it’s NULL, the window creation failed. If the
handle returned has any non-NULL value, the creation succeeded and the handle is passed to
ShowWindow() and UpdateWindow(), which together draw the actual window onscreen.

Handles
A handle is more than just a pointer. Windows programs refer to resources such as windows, icons,
cursors, and so on, with a handle. Behind the scenes there is a handle table that tracks the
resource’s address as well as information about the resource type. It’s called a handle because a
program uses it as a way to “get hold of” a resource. Handles are typically passed to functions that
need to use resources and are returned from functions that allocate resources.

There are a number of basic handle types: HWND for a window handle, HICON for an icon handle,
and so on. No matter what kind of handle is used, remember that it’s a way to reach a resource so
that you can use the resource.

Encapsulating the Windows API
API functions create and manipulate windows onscreen, handle drawing, connect programs to
Help files, facilitate threading, manage memory, and much more. When these functions are
encapsulated into MFC classes, your programs can accomplish these same basic Windows
tasks, with less work on your part.

There are literally thousands of API functions, and it can take six months to a year to get a
good handle on the API, so this book doesn’t attempt to present a minitutorial on the API. In
the “Programming for Windows” section earlier in this chapter, you were reminded about two
API functions, RegisterClass() and CreateWindow(). These illustrate what was difficult about
C Windows programming with the API and how the MFC classes make it easier. Documenta-
tion on the API functions is available on MSDN, which comes with Visual C++.

Inside CWnd
CWnd is an enormously important MFC class. Roughly a third of all the MFC classes use it as a
base class—classes such as CDialog, CEditView, CButton, and many more. It serves as a wrap-
per for the old-style window class and the API functions that create and manipulate window
classes. For example, the only public member variable is m_hWnd, the member variable that

Untitled-5 2/19/99, 9:53 AM698

699

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

stores the window handle. This variable is set by the member function CWnd::Create() and
used by almost all the other member functions when they call their associated API functions.

You might think that the call to the API function CreateWindow() would be handled automati-
cally in the CWnd constructor, CWnd::CWnd, so that when the constructor is called to initialize a
CWnd object, the corresponding window on the screen is created. This would save you, the
programmer, a good deal of effort because you can’t forget to call a constructor. In fact, that’s
not what Microsoft has chosen to do. The constructor looks like this:

CWnd::CWnd()
{
 AFX_ZERO_INIT_OBJECT(CCmdTarget);
}

AFX_ZERO_INIT_OBJECT is just a macro, expanded by the C++ compiler’s preprocessor, that uses
the C function memset to zero out every byte of every member variable in the object, like this:

#define AFX_ZERO_INIT_OBJECT(base_class)
➥ memset(((base_class*)this)+1, 0, sizeof(*this)
➥ - sizeof(class base_class));

The reason why Microsoft chose not to call CreateWindow() in the constructor is that con-
structors can’t return a value. If something goes wrong with the window creation, there are
no elegant or neat ways to deal with it. Instead, the constructor does almost nothing, a step
that essentially can’t fail, and the call to CreateWindow() is done from within the member
function Cwnd::Create()or the closely related CWnd::CreateEx(), which looks like the one
in Listing B.2.

Listing B.2 CWnd::CreateEx() from WINCORE.CPP

BOOL CWnd::CreateEx(DWORD dwExStyle, LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName, DWORD dwStyle,
 int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU nIDorHMenu, LPVOID lpParam)
{
 // allow modification of several common create parameters
 CREATESTRUCT cs;
 cs.dwExStyle = dwExStyle;
 cs.lpszClass = lpszClassName;
 cs.lpszName = lpszWindowName;
 cs.style = dwStyle;
 cs.x = x;
 cs.y = y;
 cs.cx = nWidth;
 cs.cy = nHeight;
 cs.hwndParent = hWndParent;
 cs.hMenu = nIDorHMenu;
 cs.hInstance = AfxGetInstanceHandle();
 cs.lpCreateParams = lpParam;

continues

Inside CWnd

Untitled-5 2/19/99, 9:53 AM699

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

700 Appendix B Windows Programming Review and a Look Inside CWind

 if (!PreCreateWindow(cs))
 {
 PostNcDestroy();
 return FALSE;
 }

 AfxHookWindowCreate(this);
 HWND hWnd = ::CreateWindowEx(cs.dwExStyle, cs.lpszClass,
 cs.lpszName, cs.style, cs.x, cs.y, cs.cx, cs.cy,
 cs.hwndParent, cs.hMenu, cs.hInstance, cs.lpCreateParams);

#ifdef _DEBUG
 if (hWnd == NULL)
 {
 TRACE1(“Warning: Window creation failed: Â
 GetLastError returns 0x%8.8X\n”,
 GetLastError());
 }
#endif

 if (!AfxUnhookWindowCreate())
 PostNcDestroy();
 // cleanup if CreateWindowEx fails too soon

 if (hWnd == NULL)
 return FALSE;
 ASSERT(hWnd == m_hWnd); // should have been set in send msg hook
 return TRUE;
}

WINCORE.CPP is code supplied with Developer Studio. It’s typically in the folder \Program
Files\Microsoft Visual Studio\VC98\mfc\src.

This sets up a CREATESTRUCT structure very much like a WNDCLASS and fills it with the param-
eters that were passed to CreateEx(). It calls PreCreateWindow, AfxHookWindowCreate(),
::CreateWindow(), and AfxUnhookWindowCreate() before checking hWnd and returning.

The AFX prefix on many useful MFC functions dates back to the days when Microsoft’s internal name for
its class library was Application Framework. The :: in the call to CreateWindow identifies it as an API
function, sometimes referred to as an SDK function in this context. The other functions are member
functions of CWnd that set up other background boilerplate for you.

On the face of it, there doesn’t seem to be any effort saved here. You declare an instance of
some CWnd object, call its Create() function, and have to pass just as many parameters as you
did in the old C way of doing things. What’s the point? Well, CWnd is really a class from which to
inherit. Things become much simpler in the derived classes. Take CButton, for example, a
class that encapsulates the concept of a button on a dialog box. A button is just a tiny window,

Listing B.2 Continued

T I P

T I P

Untitled-5 2/19/99, 9:53 AM700

701

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

but its behavior is constrained—for example, the user can’t resize a button. Its Create() mem-
ber function looks like this:

BOOL CButton::Create(LPCTSTR lpszCaption, DWORD dwStyle,
 const RECT& rect, CWnd* pParentWnd, UINT nID)
{
 CWnd* pWnd = this;
 return pWnd->Create(_T(“BUTTON”), lpszCaption, dwStyle, rect, pParentWnd, nID);
}

That amounts to a lot fewer parameters. If you want a button, you create a button and let the
class hierarchy fill in the rest.

Getting a Handle on All These MFC Classes
There are more than 200 MFC classes. Why so many? What do they do? How can any normal
human keep track of them and know which one to use for what? Good questions. Questions
that will take a large portion of this book to answer. The first half of this book presents the
most commonly used MFC classes. This section looks at some of the more important base
classes.

CObject
Figure B.1 shows a high-level overview of the inheritance tree for the classes in MFC. Only a
handful of MFC classes do not inherit from CObject. CObject contains the basic functionality
that all the MFC classes (and most of the new classes you create) will be sure to need, such as
persistence support and diagnostic output. As well, classes derived from CObject can be con-
tained in the MFC container classes, discussed in Appendix F, “Useful Classes.”

CCmdTarget
Some of the classes that inherit from CObject, such as CFile and CException, and their derived
classes don’t need to interact directly with the user and the operating system through mes-
sages and commands. All the classes that do need to receive messages and commands inherit
from CCmdTarget. Figure B.2 shows a bird’s-eye view of CCmdTarget’s derived classes, generally
called command targets.

CObject

CCmdTarget CException CFile many other classes

34
classes

not
derived

from
CObject

FIG. B.1
Almost all the classes
in MFC inherit from
CObject.

Getting a Handle on All These MFC Classes

Untitled-5 2/19/99, 9:54 AM701

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

702 Appendix B Windows Programming Review and a Look Inside CWind

CWnd
As already mentioned, CWnd is an extremely important class. Only classes derived from CWnd
can receive messages; threads and documents can receive commands but not messages.

Chapter 3, “Messages and Commands,” explores the distinction between commands and messages.
Chapter 4, “Documents and Views,” explains documents, and Chapter 27, “Multitasking with Windows
Threads,” explains threads.

CWnd provides window-oriented functionality, such as calls to CreateWindow and DestroyWindow,
functions to handle painting the window onscreen, processing messages, talking to the Clip-
board, and much more—almost 250 member functions in all. Only a handful of these will need
to be overridden in derived classes. Figure B.3 shows the classes that inherit from CWnd; there
are so many control classes that to list them all would clutter up the diagram, so they are
lumped together as control classes.

All Those Other Classes
So far you’ve seen 10 classes in these three figures. What about the other 200+? You’ll meet
them in context throughout the book. If there’s a specific class you’re wondering about, check
the index. Check the online help, too, because every class is documented there. Also, don’t
forget that the full source for MFC is included with every copy of Visual C++. Reading the
source is a hard way to figure out how a class works, but sometimes you need that level of
detail.

CObject

CCmdTarget

CWnd

many other classes

CWinThread CDocument other classes

FIG. B.2
Any class that will
receive a command
must inherit from
CCmdTarget.

T I P

Untitled-5 2/19/99, 9:54 AM702

703

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

B

VII
Part

App

CObject

CCmdTarget

CWnd

many other classes

CFrameWnd CDialog

many other classes

CView many control classes

FIG. B.3
Any class that will
receive a message must
inherit from CWnd,
which provides lots of
window-related
functions.

Getting a Handle on All These MFC Classes

Untitled-5 2/19/99, 9:54 AM703

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.17.98 Ayanna APP B LP#2

704 Appendix B Windows Programming Review and a Look Inside CWind

Untitled-5 2/19/99, 9:54 AM704

705

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

A P P E N D I X

The Visual Studio User Interface,
Menus, and Toolbars

Reviewing Developer Studio: An Integrated Development Environment 706

Choosing a View 706

Looking at Interface Elements 708

Looking at Your Code, Arranged by Class 714

Looking at Your Code, Arranged by File 718

Output and Error Messages 719

Editing Your Code 719

Learning the Menu System 722

Reviewing Toolbars 752

C

In this chapter

Untitled-6 2/19/99, 9:56 AM705

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

706 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Reviewing Developer Studio: An Integrated
Development Environment

When you buy Microsoft Visual C++, you actually get Microsoft Developer Studio with the
Visual C++ component activated. Developer Studio is far more than just a compiler, and you
have far more to learn than you may think. The interface is very visual, which means that there
are many possibilities greeting you when you first run Visual C++.

Microsoft Visual C++ is one component of the Microsoft Developer Studio. The capabilities of
this one piece of software are astonishing. It is called an integrated development environment
(IDE) because within a single tool, you can perform the following:

■ Generate starter applications without writing code.

■ View a project several different ways.

■ Edit source and include files.

■ Build the visual interface (menus and dialog boxes) of your application.

■ Compile and link.

■ Debug an application while it runs.

Visual C++ is, technically speaking, just one component of Developer Studio. You can buy, for
example, Microsoft’s Visual J++ compiler and use it in Developer Studio as well. Looking at it
another way, Visual C++ is more than just Developer Studio because the Microsoft Foundation
Classes (MFC) that are becoming the standard for C++ Windows programming are a class
library and not related to the development environment. In fact, the major C++ compilers all
use MFC now. However, for most people, Visual C++ and Developer Studio mean the same
thing, and in this book the names are used interchangeably.

Choosing a View
The user interface of Developer Studio encourages you to move from view to view in your
project, looking at your resources, classes, and files. The main screen is divided into panes that
you can resize to suit your own needs. There are many shortcut menus, reached by right-
clicking different places on the screen, that simplify common tasks.

With Visual C++, you work on a single application as a workspace, which contains one or more
projects. A project is a collection of files: source, headers, resources, settings, and configuration
information. Developer Studio is designed to enable work on all aspects of a single workspace
at once. You create a new application by creating a new project. When you want to work on
your application, open the workspace (a file with the extension .DSW) rather than each code
file independently. The interface of \revdttm1176855283 Developer Studio, shown in Figures
C.1 and C.2, is designed to work with a workspace and is divided into several zones.

Untitled-6 2/19/99, 9:56 AM706

707

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

The zones that make up the Developer Studio interface are as follows:

■ Across the top: menus and toolbars. These are discussed in the second half of this
chapter.

■ On the left: the Workspace window.

FIG. C.1
The Developer Studio
interface presents a lot
of information. The
Workspace window is
on the left.

FIG. C.2
When the Workspace
window is narrowed, the
words on the tabs are
replaced with icons.

Choosing a View

Untitled-6 2/19/99, 9:56 AM707

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

708 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ On the right: your main working area where you edit files.

■ Across the bottom: the output window and status bar.

Open Developer Studio and try to resize the panes and follow along as functions are described in this
chapter. If you want an application to follow along with, you can build a very simple one as described
in Chapter 1, “Building Your First Windows Application.”

The Workspace window determines which way you look at your project and what is in the main
working area: code or resources (menus, icons, and dialog boxes). Each of these views is dis-
cussed in detail in a separate section in this chapter, including the following:

■ The ResourceView is discussed in the “Looking at Interface Elements” section.

■ The ClassView is discussed in the “Looking at Your Code, Arranged by Class” section.

■ The FileView is discussed in the “Looking at Your Code, Arranged by File” section.

Developer Studio uses two different files to keep track of all the information about your project.
The project workspace file, with a .DSW extension, contains the names of all the files in the
project, what directories they are in, compiler and linker options, and other information re-
quired by everyone who may work on the project. There is also a project file, with a .DSP exten-
sion, for each project within the workspace. The workspace options file, with an .OPT extension,
contains all your personal settings for Developer Studio—colors, fonts, toolbars, which files are
open and how their MDI windows are sized and located, breakpoints from your most recent
debugging session, and so on. If someone else is going to work on your project, you give that
person a copy of the project workspace file and project file but not the project options file.

To open the project, open the project workspace file. The other files are opened automatically.

Looking at Interface Elements
After you’ve opened or created a workspace, clicking the ResourceView tab in the Workspace
window opens an expandable and collapsible outline of the visual elements of your program:
accelerators, dialog boxes, icons, menus, the string table, toolbars, and version information.
These resources define the way users interact with your program. Chapter 2, “Dialogs and
Controls;” Chapter 8, “Building a Complete Application: ShowString;” and Chapter 9, “Status
Bars and Toolbars” cover the work involved in creating and editing these resources. The next
few sections cover the way in which you can look at completed resources.

Open one of the projects that was built in this book, or a sample project from Visual C++, and follow
along as functions are described in this section. ShowString, the sample application from Chapter 8, is
a good choice because it uses most of the features described in this section.

T I P

T I P

Untitled-6 2/19/99, 9:56 AM708

709

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Accelerators
Accelerators associate key combinations with menu items. Figure C.3 shows an accelerator
resource created by AppWizard. All these accelerator combinations are made for you when you
create a new application. You can add accelerators for specific menu items, if necessary.

FIG. C.3
Accelerators associate
key combinations with
menu items.

Dialog Boxes
Your application receives information from users through dialog boxes. When a dialog resource
is being displayed in the main working area, as in Figure C.4, a control palette floats over the
working area. (If it’s not displayed, right-click the menu bar and check Controls to display it.)
Each small icon on the palette represents a control (edit box, list box, button, and so on) that
can be inserted onto your dialog box. By choosing View, Properties, the Dialog Properties box
shown in Figure C.4 is displayed. Here the behavior of a control or of the whole dialog box can
be controlled.

Click the pushpin at the top left of the Properties box to keep it displayed, even when a different item is
highlighted. The box displays the properties of each item you click.

This method of editing dialog boxes is one of the reasons for the name Visual C++. In this
product, if you want a button to be a little lower on a dialog box, you click it with the mouse,
drag it to the new position, and release the mouse button. Similarly, if you want the dialog box
larger or smaller, grab a corner or edge and drag it to the new size, like any other sizable win-
dow. Before Visual C++ was released, the process involved coding and pixel counting and took
many minutes rather than just a few seconds. This visual approach to dialog box building made
Windows programming accessible to many more programmers.

T I P

Looking at Interface Elements

Untitled-6 2/19/99, 9:56 AM709

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

710 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Icons
Icons are small bitmaps that represent your program or its documents. For example, when a
program is minimized, an icon is used to represent it. A larger version of that icon is used to
represent both the program and its documents within an Explorer window. When an MDI
window is minimized within your application, the minimized window is represented by an icon.
Figure C.5 shows the default icon provided by AppWizard for minimized MDI windows. One of
your first tasks after building any application is to replace this with an icon that more clearly
represents the work your program performs.

An icon is a 32×32 pixel bitmap that can be edited with any number of drawing tools, including
the simple bitmap editor included in Developer Studio. The interface is very similar to
Microsoft Paint or Microsoft Paintbrush in Zoom mode. You can draw one pixel at a time by
clicking, or freehand lines by clicking and dragging. You can work on the small or zoomed
versions of the icon and see the effects at once in both places.

Menus
With menus, users can tell your program what to do. Keyboard shortcuts (accelerators) are
linked to menu items, as are toolbar buttons. AppWizard creates the standard menus for a new
application, and you edit those and create new ones in this view. Later, you’ll use ClassWizard
to connect menu items to functions within your code. Figure C.6 shows a menu displayed in
the ResourceView. Choose View, Properties to display the Menu \revised Properties box for
the menu item. Every menu item has the following three components:

FIG. C.4
Dialog boxes receive
information from the
user.

Untitled-6 2/19/99, 9:57 AM710

711

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

■ Resource ID. This uniquely identifies this menu item. Accelerators and toolbar buttons
are linked to resource IDs. The convention is to build the ID from the menu choices that
lead to the item. In Figure C.6, the resource ID is ID_FILE_OPEN.

■ Caption. This is the text that appears for a menu choice. In Figure C.6, the caption is
&Open…\tCtrl+O. The & means that the O will appear underlined, and the menu item can
be selected by typing O when the menu is displayed. The \t is a tab, and the Ctrl+O is
the accelerator for this menu item, as defined in Figure C.3.

■ Prompt. A prompt appears in the status bar when the highlight is on the menu item or
the cursor is over the associated toolbar button. In Figure C.6, the prompt is Open an
existing document\nOpen. Only the portion before the newline (\n) is displayed in the
status bar. The second part of the prompt, Open, is the text for the ToolTip that appears if
the user pauses the mouse over a toolbar button with this resource ID. All this function-
ality is provided for you automatically by the framework of Visual C++ and MFC.

The String Table
The string table is a list of strings within your application. Many strings, such as the static text
on dialog boxes or the prompts for menu items, can be accessed in far simpler ways than
through the string table, but some are reached only through it. For example, a default name or
value can be kept in the string table and changed without recompiling any code, though the
resources will have to be compiled and the project linked. Each of these could be hard-coded
into the program, but then changes would require a full recompile.

Figure C.7 shows the string table for a sample application. To change a string, open the String
Table Properties dialog box and change the caption. Strings cannot be changed within the
main working area.

FIG. C.5
Icons represent your
application and its
documents.

Looking at Interface Elements

Untitled-6 2/19/99, 9:57 AM711

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

712 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Toolbars
Toolbars are the lines of small buttons typically located directly underneath the menus of an
application. Each button is linked to a menu item, and its appearance depends on the state of
the menu item. If a menu item is grayed, the corresponding toolbar button is grayed as well. If

FIG. C.6
Your application
receives commands
through menus.

FIG. C.7
The string table stores
all the prompts and text
in your application.

Untitled-6 2/19/99, 9:57 AM712

713

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

a menu item is checked, the corresponding toolbar button is typically drawn as a pushed-in
button. In this way, toolbar buttons serve as indicators as well as mechanisms for giving com-
mands to the application.

A toolbar button has two parts: a bitmap of the button and a resource ID. When a user clicks
the button, it is just as though the menu item with the same resource ID was chosen. Figure
C.8 shows a typical toolbar and the properties of the File, Open button on that toolbar. In this
view, you can change the resource ID of any button and edit the bitmap with the same tools
used to edit icons.

FIG. C.8
Toolbar buttons are
associated with menu
items through a
resource ID.

Version Information
Good installation programs use the version information resource when installing your applica-
tion on a user’s machine. For example, if a user is installing an application that has already
been installed, the installation program may not have to copy as many files. It may alert the
user if an old version is being installed over a new version, and so on.

When you create an application with AppWizard, version information like that in Figure C.9 is
generated for you automatically. Before attempting to change any of it, make sure you under-
stand how installation programs use it.

Looking at Interface Elements

Untitled-6 2/19/99, 9:57 AM713

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

714 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Looking at Your Code, Arranged by Class
The ClassView shows the classes in your application. Under each class, the member variables
and functions are shown, as demonstrated in Figure C.10. Member functions are shown first
with a purple icon next to them, followed by member variables with a turquoise icon. Protected
members have a key next to the icon, whereas private members have a padlock.

FIG. C.9
Version information
is used by install
programs.

FIG. C.10
The ClassView shows
the functions and
variables in each class
in your application.

Untitled-6 2/19/99, 9:57 AM714

715

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Double-clicking a function name opens the source for that function in the main working area,
as shown in Figure C.10. Double-clicking a variable name opens the file in which the variable is
declared.

Right-clicking a classname opens a shortcut menu, shown in Figure C.11, with these items:

■ Go to Definition. Opens the header (.h) file at the definition of this class.

■ Go to Dialog Editor. For classes associated with a dialog box, opens the dialog box in the
resource editor.

■ Add Member Function. Opens the Add Member Function dialog box shown in Figure
C.12. This adds a declaration of the function to the header file, and the stub of a defini-
tion to the source file.

FIG. C.11
Common commands
related to classes are
on the ClassView
shortcut menu for a
class.

■ Add Member Variable. Opens the Add Member Variable dialog box shown in Figure C.13.
This adds a declaration of the variable to the header file.

FIG. C.12
Never again forget to
add part of a function
declaration or definition
when you use the Add
Member Function
shortcut.

Looking at Your Code, Arranged by Class

Untitled-6 2/19/99, 9:58 AM715

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

716 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ Add Virtual Function. Opens the New Virtual Override dialog box, discussed in Chapter
3, “Messages and Commands.”

■ Add Windows Message Handler. Opens the New Windows Message and Event Handlers
dialog box, discussed in Chapter 3.

■ References. Opens a list of the places where the classname is mentioned within your
application. Typically the classname occurs in declarations of instances of the class, but
this will also find places where the classname is passed as a parameter to a function or
macro.

■ Derived Classes. Opens a list of all the member functions and member variables of this
class, a list of other classes that use this class as a base class, and the references
information.

■ Base Classes. Opens a list of all the member functions and member variables of this class,
a list of the base classes of this class, and the references information.

■ Add to Gallery. Adds this class to the Component Gallery, discussed in Chapter 25,
“Achieving Reuse with the Gallery and Your Own AppWizards.”

■ New Folder. Creates a folder you can drag classes into. This helps to organize projects
with large numbers of classes.

■ Group by Access. Rearranges the order of the list. By default, functions are listed in
alphabetical order, followed by data members in alphabetical order. With this option
toggled on, functions come first (public, then protected, then private functions, alphabeti-
cally in each section) followed by data members (again public, then protected, then
private data members, alphabetically in each section).

■ Docking View. Keeps the project workspace window docked at the side of the main
working area or undocks it if it was docked.

■ Hide. Hides the project workspace window. To redisplay it, choose View, Workspace.

■ Properties. Displays the properties of the class (name, base class).

Menu items that appear on a toolbar have their toolbar icon next to them on the menu. Make note of
the icon; the next time you want to choose that item, perhaps you can use a toolbar instead.

Right-clicking the name of a member function opens a substantial shortcut menu, with the
following menu items:

■ Go To Definition. Opens the source (.cpp) file at the code for this function.

■ Go To Declaration. Opens the header (.h) file at the declaration of this function.

FIG. C.13
Simplify adding member
variables with this
shortcut.

T I P

Untitled-6 2/19/99, 9:58 AM716

717

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

■ Delete. Removes the function from the class.

■ Set Breakpoint. Sets a breakpoint. Breakpoints are discussed in Appendix D,
“Debugging.”

■ References. Opens a list of the places where the function is called within your application.

■ Calls. Displays a collapsible and expandable outline of all the functions that this function
calls. Figure C.14 shows a sample Call Graph window.

FIG. C.14
The Call Graph window
lists all the functions
that your function calls,
and all the functions
they call, and so on.

■ Called By. Displays a Callers Graph listing the functions this function is called by.

■ New Folder. Creates a folder you can drag classes into. This helps organize projects with
large numbers of classes.

■ Group by Access. Rearranges the order of the list. By default, functions are listed in
alphabetical order, followed by data members in alphabetical order. With this option
toggled on, functions come first (public, then protected, then private functions, alphabeti-
cally in each section) followed by data members (again public, then protected, then
private data members, alphabetically in each section).

■ Docking View. Keeps the workspace window docked at the side of the main working area.

■ Hide. Hides the workspace window. To redisplay it, choose View, Workspace.

■ Properties. Displays the properties of the function (name, return type, parameters).

Right-clicking the name of a member variable opens a shortcut menu with less menu items.
The items are as follows:

■ Go To Definition. Opens the header (.h) file at the declaration of this variable.

■ References. Opens a list of the places where the variable is used within your application.

■ New Folder. Creates a folder you can drag classes into. This helps organize projects with
large numbers of classes.

■ Group by Access. Rearranges the order of the list. By default, functions are listed in
alphabetical order, followed by data members in alphabetical order. With this option
toggled on, functions come first (public, then protected, then private functions, alphabeti-
cally in each section) followed by data members (again public, then protected, then
private data members, alphabetically in each section).

Looking at Your Code, Arranged by Class

Untitled-6 2/19/99, 9:59 AM717

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

718 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ Docking View. Keeps the workspace window docked at the side of the main working area.

■ Hide. Hides the workspace window. To redisplay it, choose View, Workspace.

■ Properties. Displays the properties of the variable (name and type).

When the main working area is displaying a source or header file, you can edit your code as
described in the later section “Editing Your Code.”

Looking at Your Code, Arranged by File
The FileView is much like the ClassView in that you can display and edit source and header
files (see Figure C.15). However, it gives you access to parts of your file that are outside class
definitions and makes it easy to open non-code files like resources and plain text.

The project workspace window contains a tree view of the source files in your project. The
default categories used are Source Files, Header Files, Resource Files, Help Files (if you
project has Help) and External Dependencies. You can add your own categories by right-
clicking anywhere in the FileView and choosing New Folder, and then specifying which file
extensions belong in the new category.

FIG. C.15
The FileView displays
source and header files.

Double-clicking a file name displays that file in the main working area. You can then edit the
file (even if it isn’t a source or header file) as described in the later section “Editing Your
Code.”

Untitled-6 2/19/99, 9:59 AM718

719

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Output and Error Messages
Across the bottom of the Developer Studio screen is the Output view. This is a tabbed view that
shows output and error messages from a variety of Developer Studio functions.

If there is no Output view on your screen, choose View, Output from the menu to restore the view.

The five tabs in the Output view are the following:

■ Build. Displays the results of compiling and linking.

■ Debug. Used when debugging, as discussed in Appendix D.

■ Find in Files 1. Displays the results of the Find in Files search, discussed later in this
chapter.

■ Find in Files 2. An alternative display window for Find in Files results so that you can
preserve earlier results.

■ Results. Displays results of tools like the profiler, discussed in Chapter 24, “Improving
Your Application’s Performance.”

If you have installed the Enterprise Edition of Visual C++, there is a sixth tab, SQL Debugging.
For more information, see Chapter 23, “SQL and the Enterprise Edition.”

Editing Your Code
For most people, editing code is the most important task you do in a development environ-
ment. If you’ve used any other editor or word processor before, you can handle the basics of
the Developer Studio editor right away. You should be able to type in code, fix your mistakes,
and move around in source or header files by using the basic Windows techniques you would
expect to be able to use. Because this is a programmer’s editor, there are some nice features
you should know about.

Basic Typing and Editing
To add text to a file, click where you want the text to go and start typing. By default, the editor
is in Insert mode, which means your new text pushes the old text over. To switch to Overstrike
mode, press the Insert key. Now your text types over the text that is already there. The OVR
indicator on the status bar reminds you that you are in Overstrike mode. Pressing Insert again
puts you back in Insert mode. Move around in the file by clicking with the mouse or use the
cursor keys. To move a page or more at a time, use the Page Up and Page Down keys or the
scrollbar at the right side of the main working area.

By default, the window for the file you are editing is maximized within the main working
area. You can click the Restore button at the top right, just under the Restore button for all of
Developer Studio, to show the file in a smaller window. If you have several files open at once,
you can arrange them so that you can see them side by side, as shown in Figure C.16.

T I P

Editing Your Code

Untitled-6 2/19/99, 9:59 AM719

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

720 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Working with Blocks of Text
Much of the time, you will want to perform an action on a block of text within the editor. First,
select the block by clicking at one end of it and, holding the mouse button down, moving the
mouse to the other end of the block, then releasing the mouse button. This should be familiar
from so many other Windows applications. Not surprisingly, at this point you can copy or cut
the block to the Clipboard, replace it with text you type, replace it with the current contents of
the Clipboard, or delete it.

To select columns of text, as shown in Figure C.17, hold down the Alt key as you select the block.

Syntax Coloring
You may have noticed the color scheme used to present your code. Developer Studio
highlights the elements of your code with syntax coloring. By default, your code is black, with
comments in green and keywords (reserved words in C++ such as public, private, new, or
int) in blue. You can also arrange for special colors for strings, numbers, or operators
(such as + and -) if you want, using the Format tab of the Options dialog box, reached by
choosing Tools, Options.

Syntax coloring can help you spot silly mistakes. If you forget to close a C-style comment, the
huge swath of green in your file points out the problem right away. If you type inr where you
meant to type int, the inr isn’t blue, and that alerts you to a mistyped keyword. This means you
can prevent most compiler errors before you even compile.

FIG. C.16
Your files are in MDI
windows, so you can
edit several at once,
side by side.

T I P

Untitled-6 2/19/99, 9:59 AM720

721

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

If you build Web pages and still use Notepad from time to time so that you can see the tags, you’re in
for a pleasant surprise. Open an HTML file in Developer Studio and see HTML syntax coloring in action.
You’ll never go back to Notepad.

Shortcut Menu
Many of the actions you are likely to perform are available on the shortcut menu that appears
when you right-click within a file you are editing. The items on that menu are as follows:

■ Cut. Cuts the selected text to the Clipboard.

■ Copy. Copies the selected text to the Clipboard.

■ Paste. Replaces the selected text with the Clipboard contents, or if no text is selected,
inserts the Clipboard contents at the cursor.

■ Insert File Into Project. Adds the file you are editing to the project you have open.

■ Check Out. If you’re using Visual Source Safe, marks the file as being changed by you.

■ Open. Opens the file whose name is under the cursor. Especially useful for header files
because you don’t need to know what folder they are in.

■ List members. Lists the member variables and functions of the object under the cursor.

■ Type Info. Pops up a tip to remind you of the type of a variable or function.

■ Parameter Info. Pops up a tip to remind you the parameters a function takes.

■ Complete Word. “Wakes up” AutoComplete to help with a variable or function name that
is partially typed.

FIG. C.17
Selecting columns
makes fixing indents
much simpler. Hold
down the Alt key as you
select the block.

T I P

Editing Your Code

Untitled-6 2/19/99, 10:00 AM721

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

722 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ Go To Definition. Opens the file where the item under the cursor is defined (header for a
variable, source for a function) and positions the cursor at the definition of the item.

■ Go To Reference. Positions the cursor at the next reference to the variable or function
whose name is under the cursor.

■ Insert/Remove Breakpoint. Inserts a breakpoint at the cursor or removes one that is
already there.

■ Enable Breakpoint. Enables a disabled breakpoint (breakpoints are discussed in Appen-
dix D).

■ ClassWizard. Opens ClassWizard.

■ Properties. Opens the property sheet.

Not all the items are enabled at once—for example, Cut and Copy are only enabled when there
is a selection. Insert File into Project is enabled only when the file you’re editing is not in the
project you have open. All these actions have menu and toolbar equivalents and are discussed
more fully later in this chapter.

Learning the Menu System
Developer Studio has many menus. Some commands are three or four levels deep under the
menu structure. In most cases, there are far quicker ways to accomplish the same task, but for
a new user, the menus are an easier way to learn because you can rely on reading the menu
items as opposed to memorizing shortcuts. There are nine menus on the Developer Studio
menu bar, as follows:

■ File. For actions related to entire files, such as opening, closing, and printing.

■ Edit. For copying, cutting, pasting, searching, and moving about.

■ View. For changing the appearance of Developer Studio, including toolbars and
subwindows such as the Workspace window.

■ Insert. For adding files or components to your project.

■ Project. For dealing with your entire project.

■ Build. For compiling, linking, and debugging.

■ Tools. For customizing the Developer Studio and accessing standalone utilities.

■ Window. To change which window is maximized or has focus.

■ Help. To use the InfoViewer system (not the usual online help).

The following section presents each Developer Studio menu in turn and mentions keyboard
shortcuts and toolbar buttons where they exist.

Using the File Menu
The File menu, shown in Figure C.18, collects most of the commands that affect entire files or
the entire project.

Untitled-6 2/19/99, 10:00 AM722

723

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
PartFile New (Ctrl+N) Choosing this menu item opens the New dialog box, shown in Figure

C.19. This tabbed dialog box is used to create new files, projects, workspaces, or other docu-
ments. The Project tab is used to start AppWizard, discussed for the first time in Chapter 1,
“Building Your First Windows Application.”

FIG. C.18
The File menu has
actions for files like
Open, Close, and Print.

FIG. C.19
The New dialog box is
used to create new files
or workspaces.

This dialog box is an easy way to create a blank file, give it a name, and insert it into your
project all in one step.

File Open (Ctrl+O) Choosing this item opens the Open dialog box, as shown in Figure C.20.
(It’s the standard Windows File Open dialog box, so it should be familiar.) The file type defaults
to Common Files with .C, .CPP, .CXX, .TLI, .H, .TLH, .INL, or .RC extensions. By clicking the
drop-down box, you can open almost any kind of file, including executables and workspaces.

Don’t forget the list of recently opened files further down the File menu. That can save a lot of typing or
clicking.

T I P

Learning the Menu System

Untitled-6 2/19/99, 10:00 AM723

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

724 Appendix C The Visual Studio User Interface, Menus, and Toolbars

File Close Choosing the File, Close item closes the file that has focus; if no file has focus, the
item is grayed. You can also close a file by clicking the cancel button, depicted by an X, in the
top-right corner. You may also close the window by double-clicking the icon in the upper-left
corner. (The icon used to be the system menu, shown with a minus on a button.)

File Open Workspace Use this item to open a workspace. (You can use File, Open and
change the file type to Project Workspaces, but using File, Open Workspace is quicker.)

File Save Workspace Use this item to save a workspace and all the files within it.

File Close Workspace Use this item to close a workspace. The current workspace is closed
automatically when you create a new project or open another workspace, so you won’t use this
menu item very often.

File Save (Ctrl+S) Use this item to save the file that has focus at the moment; if no file has
focus, the item is grayed. There is a Save button on the Standard toolbar as well.

File Save As Use this item to save a file and change its name at the same time. It saves the
file that has focus at the moment; if no file has focus, the item is grayed.

File Save All This item saves all the files that are currently open. All files are saved just be-
fore a compile and when the application is closed, but if you aren’t compiling very often and are
making a lot of changes, it’s a good idea to save all your files every 15 minutes or so. (You can
do it less often if the idea of losing that amount of work doesn’t bother you.)

File Page Setup This item opens the Page Setup dialog box, shown in Figure C.21. Here you
specify the header, footer, and margins—left, right, top, and bottom. The header and footer can
contain any text including one or more special fields, which you add by clicking the arrow next
to the edit box or entering the codes yourself. The codes are

■ Filename. The name of the file being printed (&f).

■ Page Number. The current page number (&p).

■ Current Time. The time the page was printed (&t).

FIG. C.20
The familiar File Open
dialog box is used to
open a variety of file
types.

Untitled-6 2/19/99, 10:01 AM724

725

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

■ Current Date. The date the page was printed (&d).

■ Left Align. Align this portion to the left (&l).

■ Right Align. Align this portion to the right (&c).

■ Center. Center this portion (this is the default alignment) (&c).

FIG. C.21
The Page Setup dialog
box lays out your
printed pages the way
you want.

File Print (Ctrl+P) Choosing this item prints the file with focus according to your Page Setup
settings. (The item is grayed if no file has focus.) The Print dialog box, shown in Figure C.22,
has you confirm the printer you want to print on. If you have some text highlighted, the Selec-
tion radio button is enabled. Choosing it lets you print just the selected text; otherwise, only
the All radio button is enabled, which prints the entire file. If you forget to set the headers,
footers, and margins before choosing File, Print, the Setup button opens the Page Setup dialog
box discussed in the previous section. There is no way to print only certain pages or to cancel
printing after it has started.

FIG. C.22
The Print dialog box
confirms your choice to
print a file.

Recent Files and Recent Workspaces The recent files and workspaces items, between Print
and Exit, each lead to a cascading menu. The items on the secondary menus are the names of
files and workspaces that have been opened most recently, up to the last four of each. These
are real time-savers if you work on several projects at once. Whenever you want to open a file,
before you click that toolbar button and prepare to point and click your way to the file, think
first whether it might be on the File menu. Menus aren’t always the slower way to go.

File Exit Probably the most familiar Windows menu item of all, this closes Developer Studio.
You can also click the X in the top-right corner or double-click what used to be the system
menu in the top left. If you have made changes without saving, you get a chance to save each
file on your way out.

Edit
The Edit menu, shown in Figure C.23, collects actions related to changing text in a source file.

Edit Undo (Ctrl+Z) The Undo item reverses whatever you just did. Most operations, like text
edits and deleting text, can be undone. When Undo is disabled, it is an indication that nothing
needs to be undone or you cannot undo the last operation.

Learning the Menu System

Untitled-6 2/19/99, 10:01 AM725

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

726 Appendix C The Visual Studio User Interface, Menus, and Toolbars

There is an Undo button on the Standard toolbar. Clicking the arrow next to the button dis-
plays a stack (reverse order list from most recent to least recent) of operations that can be
undone. You must select a contiguous range of undo items including the first, second, and so
on. You cannot pick and choose.

Edit Redo (Ctrl+Y) As you undo actions, the name given to the operations move from the
Undo to the Redo list (Redo is next to Undo on the toolbar). If you undo a little too much,
choose Edit, Redo to un-undo them (if that makes sense).

Edit Cut (Ctrl+X) This item cuts the currently highlighted text to the Clipboard. That means
a copy of it goes to the Clipboard, and the text itself is deleted from your file. The Cut button
(represented as scissors) is on the Standard toolbar.

Edit Copy (Ctrl+C) Editing buttons on the toolbar are grouped next to the scissors (Cut).
Edit, Copy copies the currently selected text or item to the Windows Clipboard.

Edit Paste (Ctrl+V) Choosing this item copies the Clipboard contents at the cursor or re-
places the highlighted text with the Clipboard contents if any text is highlighted. The Paste
item and button are disabled if there is nothing in the Clipboard in a format appropriate for
pasting to the focus window. In addition to text, you can copy and paste menu items, dialog box
items, and other resources. The Paste button is on the Standard toolbar.

Edit Delete (Delete) Edit, Delete clears the selected text or item. If what you deleted is
undeletable, the Undo button is enabled, and the last operation is added to the Undo button
combo box. Deleted material does not go to the Clipboard and cannot be retrieved except by
undoing the delete.

Edit Select All (Ctrl+A) This item selects everything in the file with focus that can be se-
lected. For example, if a text file has focus, the entire file is selected. If a dialog box has focus,
every control on it is selected.

FIG. C.23
The Edit menu holds
items that change the
text in a file.

Untitled-6 2/19/99, 10:01 AM726

727

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

To select many items on a dialog box, you can click the first item and then Ctrl+click each
remaining item. It is often faster to use Edit, Select All to select everything and then Ctrl+click
to deselect the few items you do not want highlighted.

Edit Find (Ctrl+F) The Find dialog box shown in Figure C.24 enables you to search for text
within the file that currently has the focus. Enter a word or phrase into the Find What edit box.
The following check boxes set the options for the search:

■ Match Whole Word Only. If this is checked, table in the Find What box matches only
table, not suitable or tables.

■ Match Case. If this is checked, Chapter in the Find What box matches only Chapter, not
chapter or CHAPTER. Uppercase and lowercase must match.

■ Regular Expression. The Find What box is treated as a regular expression if this box is
checked.

■ Search All Open Documents. Expands your search to all the documents you have open at
the moment.

■ Direction. Choose the Up radio button to search backwards and the Down radio button
to search forwards through the file.

FIG. C.24
The Find dialog box is
used to find a string
within the file that has
focus.

If you highlight a block of text before selecting Edit, Find, that text is put into the Find What box for you.
If no text is highlighted, the word or identifier under the cursor is put into the Find What box.

A typical use for the Find dialog box is to enter some text and click the Find Next button until
you find the precise occurrence of the text for which you are searching. You may want to com-
bine the Find feature with bookmarks (discussed a little later in this section) and put a book-
mark on each line that has an occurrence of the string. Click the Mark All button in the Find
dialog box to add temporary, unnamed bookmarks on match lines; they are indicated with a
blue oval in the margin.

There is a Find edit box on the Standard toolbar. Enter the text you want to search for in the
box and press Enter to search forward. Regular expressions are used if you have turned them
on using the Find dialog box. To repeat a search, click in the search box and press Enter. You
may wish to add the Find Next or Find Previous buttons to the Standard toolbar using the
Tools, Customize menu item described later in this chapter.

T I P

Learning the Menu System

Untitled-6 2/19/99, 10:02 AM727

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

728 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Regular Expressions
Many of the find and replace operations within Developer Studio can be made more powerful with
regular expressions. For example, if you want to search for a string only at the end of a line, or one of
several similar strings, you can do so by constructing an appropriate regular expression, entering it in
the Find dialog box, and instructing Developer Studio to use regular expressions for the search. A
regular expression is some text combined with special characters that represent things that can’t be
typed, such as “the end of a line” or “any number” or “three capital letters.”

When regular expressions are being used, some characters give up their usual meaning and instead
stand in for one or more other characters. Regular expressions in Developer Studio are built from
ordinary characters mixed in with these special entries, shown in Table C.1.

You don’t have to type these in if you have trouble remembering them. Next to the Find What box is
an arrowhead pointing to the right. Click there to open a shortcut menu of all these fields, and click
any one of them to insert it into the Find What box. (You need to be able to read these symbols to
understand what expression you are building, and there’s no arrowhead on the toolbar’s Find box.)
Remember to select the Regular Expressions box so that these regular expressions are evaluated
properly.

Here are some examples of regular expressions:

● ^test$ matches only test alone on a line.

● doc[1234] matches doc1, doc2, doc3, or doc4 but not doc5.

● doc[1-4] matches the same strings as above but requires less typing.

● doc[^56] matches doca, doc1, and anything else that starts with doc and is not doc5 or
doc6.

● H\~e matches Hillo and Hxllo (and lots more) but not Hello. H[^e]llo has the same
effect.

● [xy]z matches xz and yz.

● New *York matches New York but also NewYork and New York.

● New +York matches New York and New York but not NewYork.

● New.*k matches Newk, Newark, and New York, plus lots more.

● \:n matches 0.123, 234, and 23.45 (among others) but not -1C.

● World$ matches World at the end of a line, but World\$ matches only World$ anywhere
on a line.

Table C.1 Regular Expression Entries

Entry Matches

^ Start of the line.

$ End of the line.

. Any single character.

Untitled-6 2/19/99, 10:02 AM728

729

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Entry Matches

[] Any one of the characters within the brackets (use - for a range, ^ for “except”).

\~ Anything except the character that follows next.

* Zero or more of the next character.

+ One or more of the next character.

{ } Doesn’t match specially, but saves part of the match string to be used in the
replacement string. Up to nine portions can be tagged like this.

[] Either of the characters within the [].

\:a A single letter or number.

\:b Whitespace (tabs or spaces).

\:c A single letter.

\:d A single numerical digit.

\:n An unsigned number.

\:z An unsigned integer.

\:h A hexadecimal number.

\:i A string of characters that meets the rules for C++ identifiers (starts with a letter,
number, or underscore).

\:w A string of letters only.

\:q A quoted string surrounded by double or single quotes.

\ Removes the special meaning from the character that follows.

Edit Find in Files This useful command searches for a word or phrase within a large number
of files at once. In its simplest form, shown in Figure C.25, you enter a word or phrase into the
Find What edit box, restrict the search to certain types of files in the In Files /File Types box,
and choose the folder to conduct the search within the In Folder edit box. The following check
boxes in the bottom half of the dialog box set the options for the search:

FIG. C.25
The simplest Find In
Files approach
searches for a string
within a folder and its
subfolders.

■ Match Whole Word Only. If this is checked, table in the Find What box matches only
table, not suitable or tables.

Learning the Menu System

Untitled-6 2/19/99, 10:03 AM729

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

730 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ Match Case. If this is checked, Chapter in the Find What box matches only Chapter, not
chapter or CHAPTER. Uppercase and lowercase must match.

■ Regular Expression. The Find What box is treated as a regular expression (see the
sidebar “Regular Expressions”) if this box is checked.

■ Look in Subfolders. Work through all the subfolders of the chosen folder if this is
checked.

■ Output to Pane 2. Sends the results to the Find in Files 2 pane of the output window, so
as not to wipe out the results of an earlier search.

Using Advanced Text Finding Features At the bottom right of the Find in Files dialog box is
the Advanced button. Clicking it expands the dialog box shown in Figure C.26 and allows you
to search several different folders at once.

FIG. C.26
Advanced Find in Files
searches for a string
within several folders
and their subfolders.

If you highlight a block of text before selecting Find in Files, that text is put into the Find What box for
you. If no text is highlighted, the word or identifier under the cursor is put into the Find What box.

The results of the Find in Files command appear in the Find in Files 1 tab (unless you ask for
pane 2) of the output window; the output window will be visible after this operation if it was not
already. You can resize this window like any other window, by holding the mouse over the
border until it becomes a sizing cursor, and you can scroll around within the window in the
usual way. Double-clicking a filename in the output list opens that file with the cursor on the
line where the match was found.

Edit Replace (Ctrl+H) This item opens the Replace dialog box, shown in Figure C.27. It is
very similar to the Find dialog box but is used to replace the found text with new text. Enter
one string into the Find What edit box and the replacement string into the Replace With edit
box. The three check boxes—Regular Expression, Match Case, and Match Whole Word
Only—have the same meaning as on the Find dialog box (discussed in the previous section).
The Replace In radio buttons enable you to restrict the search-and-replace operation to a block
of highlighted text, if you prefer.

T I P

Untitled-6 2/19/99, 10:03 AM730

731

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

To see the next match before you agree to replace it, click Find Next. To replace the next
match or the match you have just found, click Replace. If you are confident that there won’t be
any false matches, you can click Replace All to do the rest of the file all at once. (If you realize
after you click Replace All that you were wrong, there is always Edit, Undo.)

Edit Go To (Ctrl+G) The Go To dialog box (see Figure C.28) is a central navigation point. It
enables you to go to a particular line number (the default), address, reference, or bookmark,
among other things. To use the Go To dialog box, select something from the Go To What list
on the left; if Line is selected, enter a line number; if Bookmark is selected, pick the particular
bookmark from the combo box; and so on.

FIG. C.27
The Replace dialog box
is used to replace one
string with another.

FIG. C.28
The Go To dialog box
moves you around
within your project.

The Go To What box contains the following choices:

■ Address. In the Memory or Disassembly windows, as explained in Appendix D, you can
go to an address given by a debugger expression.

■ Bookmark. In a text file, you can go to a bookmark, though you are more likely to choose
Edit, Bookmarks or the bookmark-related buttons on the Edit toolbar.

■ Definition. If the cursor is over the name of a function, this opens the source (.cpp) file at
its definition. If the cursor is over a variable, it opens the include (.h) file.

■ Error/Tag. After a compile, you can move from error to error by double-clicking them
within the output window by using this dialog box or (most likely) by pressing F4.

■ Line. This is the default selection. The line number that is filled in for you is your current
line.

■ Offset. Enter an offset address (in hexadecimal).

■ Reference. Enter a name, such as a function or object name, and the cursor will be placed
on the line of code where the name is defined, in your code or in the MFC libraries.

The pushpin in the upper-left corner of this dialog box is used to “pin” it to the screen so that it stays in
place after you have gone to the requested location. Click the pin to unpin the dialog box from the
screen so that it goes away after the jump.

T I P

Learning the Menu System

Untitled-6 2/19/99, 10:03 AM731

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

732 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Edit Bookmarks (Alt+F2) This item is used to manage the bookmarks within your text files.
The bookmark list is shown in Figure C.29. Note that temporary bookmarks set by the Find
command are not included in this list.

FIG. C.29
The Bookmark dialog
box manages the
bookmarks you have set
in text files.

To add a named bookmark for the line you are on and have it saved with the file, type a name in
the Name box and click Add. To go to a named bookmark, choose it from the list box and click
Go To. There are buttons on the Edit toolbar to add or delete a bookmark at the cursor, move
to the next or preceding bookmark, and clear all bookmarks in the file.

Edit ActiveX Control in HTML If you have Visual InterDev installed and are working with an
ActiveX control, this menu item will let you edit its settings. Building ActiveX controls is dis-
cussed in Chapter 17, “Building an ActiveX Control.”

Edit HTML Layout This item is used to edit an HTML layout with Visual InterDev.

Edit Advanced Choosing this item opens a cascading menu with the following items:

■ Incremental Search. This is a faster search than opening the Find dialog box discussed
earlier. You enter your search string directly on the status bar. As you type each letter,
Developer Studio finds the string you have built so far. For example, in a header file, if
you choose Edit, Advanced, Incremental Search and then type p, the cursor will jump to
the first instance of the letter p, probably in the keyword public. If you then type r, the
cursor will jump to the first pr, probably in the keyword protected. This can save you
typing the entire word you are looking for.

■ Format Selection. This item adjust the indenting of a selection using the same rules that
apply when you are entering code.

■ Tabify Selection. Converts spaces to tabs.

■ Untabify Selection. Converts tabs to spaces.

■ Make Selection Uppercase. Converts the selected text to capital letters.

■ Make Selection Lowercase. Converts the selected text to lowercase letters.

■ View Whitespace. Inserts small placeholder characters (. for space and >> for tab) to
show all the whitespace in your document.

Untitled-6 2/19/99, 10:04 AM732

733

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Edit Breakpoints (Alt+F9) A breakpoint pauses program execution. The Edit, Breakpoints
item displays the Breakpoints dialog box, shown in Figure C.30 and discussed in Appendix D.

FIG. C.30
The Breakpoints dialog
box is used in
debugging your
application.

Edit List Members (Ctrl+Alt+T) This item is used to “reawaken” Autocomplete for code you
have already typed. It opens a list of member variables and functions for the class whose imple-
mentation you are editing, as well as global variables and functions. This list is generally too
long to be useful.

Edit Type Info (Ctrl+T) This pops up a little window telling you the type of variable the cursor
is on. You can get this window much more easily by pausing the mouse over the variable and
waiting a second or two.

Edit Parameter Info (Ctrl+Shift+Space) This pops up a window reminding you of the param-
eters taken by the function the cursor is on. Again, this information will pop up if you just pause
the mouse over the function name.

Edit Complete Word (Ctrl+Space) This asks Autocomplete to fill in the word you are typing.
If you haven’t typed much of it, you may get a dialog box from which to choose the word you
want. The Autocomplete dialog box generally only appears after you have typed -> or . to
indicate you are looking for a member function or variable. When the function you want to call
is a member of the class you are editing, it’s annoying to type this--> just to open
Autocomplete. Use Ctrl+Space instead.

If these options are disabled, check your AutoComplete settings by choosing Tools, Options
and clicking the Editor tab, shown in Figure C.55. ■

Using the View Menu
The View menu, shown in Figure C.31, collects actions that are related to the appearance of
Developer Studio—which windows are open, what toolbars are visible, and so on.

View ScriptWizard This InterDev-related command is used to edit Web page scripts.

View ClassWizard (Ctrl+W) ClassWizard is probably the most used tool in Developer Studio.

N O T E

Learning the Menu System

Untitled-6 2/19/99, 10:04 AM733

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

734 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Whenever you add a resource (menu, dialog box, control, and so on), you connect it to your
code with ClassWizard. When you are working with ActiveX, you use ClassWizard to set up
properties, methods, and events. If you use custom messages, you use ClassWizard to arrange
for them to be caught. You learn how to use ClassWizard starting in Chapter 2.

CAUTION

All changed files are saved when you open ClassWizard, just as they are saved before a compile. If you have
been making changes that you may not want saved, don’t open ClassWizard.

View Resource Symbols This item opens the Resource Symbols dialog box, shown in Figure
C.32. It displays the resource IDs, such as ID_EDIT_COPY, used in your application. The large
list box at the top of the dialog box lists resource IDs, and the smaller box below it reminds you
where this resource is used—on a menu, in an accelerator, in the string table, and so on. The
buttons along the right side are used to make changes. Click New to create a new resource ID,
Delete to delete this resource ID (if it’s not in use), Change to change the ID (if it’s in use by
only one resource), and View Use to open the resource (menu, string table, and so on) that is
highlighted in the lower list.

FIG. C.31
The View menu controls
the appearance of
Developer Studio.

FIG. C.32
The Resource Symbols
dialog box displays
resource IDs.

View Resource Includes Choosing this item opens the Resource Includes dialog box, as
shown in Figure C.33. It is unusual for you to need to change this generated material. In the
rare cases where the resource.h file generated for you is not quite what you need, you can add
extra lines with this dialog box.

Untitled-6 2/19/99, 10:04 AM734

735

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

View Full Screen This item hides all the toolbars, menus, Output window, and Project
Workspace window, giving you the entire screen as the main working area. One small toolbar
appears whose only button is Toggle Full Screen. Click that button or press the Esc key to
restore the menus, toolbars, and windows.

View Workspace (Alt+0) Choosing this item opens the Workspace window, if it is hidden. It
does not take away the Workspace window. To hide it, right-click the window and choose Hide,
or press Shift+Esc while the window has focus. There is a Workspace button on the Standard
toolbar, which hides or displays the window.

View Output (Alt+2) This item opens the Output window, if it is hidden. To hide the Output
window, right-click it and choose Hide, or press Shift+Esc while the window has focus. The
Output window opens automatically when you build your project or use Find in Files.

View Debug Windows This cascading menu deals with windows used while debugging,
which are discussed in Appendix D. It contains the following items:

■ Watch

■ Call Stack

■ Memory

FIG. C.33
The Resource Includes
dialog box lets you
insert extra instructions
into the file that
describes the resources
of your project.

View Properties (Alt+Enter) Choosing this item opens a property sheet. The property sheets
for different items vary widely, as shown in Figures C.34, C.35, and C.36, which illustrate the
property sheet for an entire source file, an accelerator table selected in the Project Workspace
window, and one key in that accelerator table, respectively.

Property sheets are a powerful way of editing non-source file entities, such as resources. For
functions and variables, however, it’s usually easier to make the changes in the source file.
Some rather obscure effects can only be achieved through property sheets. For example, to
turn off syntax coloring for a file, use the property sheet to set the language to None. (The
effect will be observed after the window is repainted by Windows.)

The property normally disappears as soon as you click something else. If you click the pushpin button
in the top-left corner, it stays “pinned” to the screen as you work, displaying the properties of all the
entities you are working with.

■ Variables

■ Registers

■ Disassembly

T I P

Learning the Menu System

Untitled-6 2/19/99, 10:05 AM735

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

736 Appendix C The Visual Studio User Interface, Menus, and Toolbars

FIG. C.34
The property sheet for a
source file reminds you
of the name and size
and lets you set the
language (used for
syntax coloring) and tab
size.

FIG. C.35
The property sheet for
an accelerator table is
where you set the
language, enabling you
to include multiple
tables in one
application.

Untitled-6 2/19/99, 10:05 AM736

737

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Insert
The Insert menu, shown in Figure C.37, collects actions related to inserting something into
your project or one of its files.

FIG. C.36
The property sheet for
an entry in an
accelerator table gives
you full control over the
keystrokes associated
with the resource ID.

FIG. C.37
The Insert menu is one
way to add items to a
project or a file.

Insert New Class Use this item to create a header and source file for a new class and add it
to this project. The New Class dialog box is shown in Figure C.38. Note the drop-down box that
makes specifying the base class simpler.

Insert New Form This item generates a CFormView and attaches it to your application. A
CFormView can contain controls, such as a combination of a dialog and a view.

Insert Resource (Ctrl+R) Use this item to add a new resource to your project. The Insert
Resource dialog box, shown in Figure C.39, appears. Choose the type of resource to be added
and click New.

There are buttons on the Resource toolbar to add a new dialog box, menu, cursor, icon, bitmap,
toolbar, accelerator, string table, or version.

Learning the Menu System

Untitled-6 2/19/99, 10:05 AM737

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

738 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Insert Resource Copy Use this item to copy an existing resource, changing only the lan-
guage (for example, from US English to Canadian French) or the condition (for example, build-
ing a debug version of a dialog box). Your project will have different language versions of the
resource, allowing you to use compiler directives to determine which resource is compiled into
the executable.

Insert File As Text This item reads an entire file from the hard drive into the file you are
editing. The text is inserted at the current cursor position.

Insert New ATL Object When you are creating an ActiveX control with the Active Template
Library (ATL), use this item to insert ATL objects into your project. See Chapter 21, “The
Active Template Library.”

Project
The Project menu, shown in Figure C.40, holds items associated with project maintenance. The
items in this menu are listed in the following sections.

Project Set Active Project If you have several projects in your workspace, this item sets
which project is active.

FIG. C.38
The New Class dialog
box simplifies creating a
new class.

FIG. C.39
The Insert Resource
dialog box is one way to
add resources to your
project.

Untitled-6 2/19/99, 10:05 AM738

739

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Project Add to Project This item opens a cascading menu with the following choices:

■ New. Opens the same dialog box as File, New with the Add to Project box selected.

■ New Folder. Creates a new folder to organize the classes in the project.

■ Files. Opens the Insert Files into Project dialog box shown in Figure C.41.

■ Data Connection. Available in the Enterprise Edition discussed in Chapter 23, this item
connects your project to a data source.

■ Components and Controls. Opens the Components and Control Gallery, discussed in
Chapter 25.

FIG. C.40
The Project menu
simplifies project
maintenance.

FIG. C.41
The Insert Files into
Project dialog box looks
very much like a File
Open dialog box.

Project Source Control This item gathers together a number of tasks related to tracking and
controlling revisions to your project source.
◊ See “Using Visual Source Safe,” p. 583

Project Dependencies This item allows you to make one project dependent on another so
that when one project is changed, its dependents are rebuilt.

Project Settings (Alt+F7) This item opens the Project Settings dialog box, which has the
following 10 tabs:

■ General. Change the static versus shared DLL choice you made when AppWizard built
this project, and change the directory where intermediate (source and object) or output
(EXE, DLL, OCX) files are kept (see Figure C.42).

■ Debug. These settings are discussed in Appendix D.

Learning the Menu System

Untitled-6 2/19/99, 10:06 AM739

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

740 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ C/C++. These are your compiler settings. The Category combo box has General selected
by default. To change the settings category, select a category from the combo box.
Figure C.43 shows the General category. You can change the optimization criteria (your
choices are Default, Maximize Speed, Minimize Size, Customize, or Disable if your
debugging is being thrown off by the optimizer) or the warning level. This tab is
discussed in more detail in Chapter 24.

FIG. C.42
The General tab of the
Project Settings dialog
box governs where files
are kept.

FIG. C.43
The C/C++ tab of the
Project Settings dialog
box governs compiler
settings in eight
categories, starting with
General.

■ Link. This tab controls linker options, which you are unlikely to need to change. The
settings are divided into five categories; the General category is shown in Figure C.44.

■ Resources. This tab, shown in Figure C.45, is used to change the language you are
working in. This tab enables you to change which resources are compiled into your
application, and other resource settings.

■ MIDL. This tab is used by programmers who are building a type library (TLB) from an
object description (ODL) file. ODL files are discussed in Chapter 16, “Building an
Automation Server.”

Untitled-6 2/19/99, 10:06 AM740

741

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

■ Browse Info. This tab, shown in Figure C.46, controls the Browse Info (.BSC) file used
for Go To Definition, Go To Declaration, and similar menu items. If you never use these,
your links will be quicker if you don’t generate browse information. If you want browse
information, in addition to checking Build Browse Info File Name on this tab, check
Generate Browse Info in the General category of the C/C++ tab.

FIG. C.44
The Link tab of the
Project Settings dialog
box governs linker
settings in five
categories, starting with
General.

FIG. C.45
The Resources tab of
the Project Settings
dialog box governs
resources settings,
including language.

FIG. C.46
The Browse Info tab of
the Project Settings
dialog box turns on or
off the powerful browse
feature.

Learning the Menu System

Untitled-6 2/19/99, 10:06 AM741

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

742 Appendix C The Visual Studio User Interface, Menus, and Toolbars

■ Custom Build. These settings allow you to add your own steps to be performed as part of
every build process.

■ Pre-Link Step. You can add your own steps just before the link step.

■ Post-Build Step. You can add your own steps to be performed after everything else has
successfully completed.

To see the last few tabs, click the right-pointing arrow at the end of the list of tabs. You can
adjust the settings for each configuration (Debug, Release, and so on) separately or all at once.
Many of the panes have a Reset button that restores the settings to those you chose when you
first created the project.

Build
The Build menu, shown in Figure C.47, holds all the actions associated with compiling, run-
ning, and debugging your application.

FIG. C.47
The Build menu is used
to compile, link, and
debug your application.

The Build menu will be a hub of activity when your are ready to compile and debug. The Build
menu item names are listed in the following sections.

Build Compile (Ctrl+F7) Choosing this item compiles the file with focus. This is a very use-
ful thing to do when you are expecting to find errors or warnings, such as the first time you
compile after a lot of changes. For example, if there is an error in a header file that is included
in many source files, a typical build produces error messages related to that header file over
and over again as each source file is compiled. If there are warnings in one of your source files,
a typical build links the project, but you might prefer to stop and correct the warnings. There is
a Compile button on the Build toolbar, represented by a stack of papers with an arrow pointing
downward.

Build Build (F7) This item compiles all the changed files in the project and then links them.
There is a Build button on the Build toolbar.

Build Rebuild All This item compiles all files in the project, even those that have not been
changed since the last build, and then links them. There are times when a typical build misses
a file that should be recompiled; using this item corrects the problem.

Untitled-6 2/19/99, 10:06 AM742

743

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Build Batch Build Typically a project contains at least two configurations: Debug and Re-
lease. Usually you work with the Debug configuration, changing, building, testing, and chang-
ing the project again until it is ready to be released, and then you build a Release version. If you
ever need to build several configurations at once, use this menu item to open the Batch Build
dialog box shown in Figure C.48. Choose Build to compile only changed files and Rebuild All
to compile all files. If the compiles are successful, links follow. Choose Clean to delete interme-
diate and output files, leaving only source files.

FIG. C.48
The Batch Build dialog
box builds several
configurations of your
project at once.

Build Clean This item deletes all the intermediate and output files so that your project direc-
tory contains only source files.

Build Start Debug Debugging is a lengthy topic, discussed in Appendix D.

Build Debugger Remote Connection It is possible to run a program on one computer and
debug it on another. As part of that process, you use this menu item to connect the two comput-
ers. This is discussed in Appendix D.

Build Execute (Ctrl+F5) Choosing the Build, Execute item runs your application without
opening the debugger.

Build Set Active Configuration The Set Active Project Configuration dialog box, shown in
Figure C.49, sets which of your configurations is active (typically Debug and Release). The
active configuration is built by the Build commands.

FIG. C.49
The Set Active Project
Configuration dialog
box sets the default
configuration.

Build Configurations Choosing this item opens the Configurations dialog box, shown in
Figure C.50. Here you can add or remove configurations. Use Project Settings to change the
settings for the new configuration.

Learning the Menu System

Untitled-6 2/19/99, 10:07 AM743

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

744 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Build Profiler The profiler is a powerful tool to identify bottlenecks in your applications. It is
discussed in Chapter 24.

Tools
The Tools menu, shown in Figure C.51, simplifies access to add-in tools and holds some odds-
and-ends leftover commands that don’t fit on any other menu.

FIG. C.50
The Configurations
dialog box lets you add
to the standard Debug
and Release configura-
tions.

FIG. C.51
The Tools menu
organizes add-in tools.

Tools Source Browser (Alt+F12) The browser is a very powerful addition to Developer
Studio; you use it whenever you go to a definition or reference, check a call graph, or other-
wise explore the relationships among the classes, functions, and variables in your project.
However, it’s unusual to access the browser through this menu item, which opens the Browse
dialog box shown in Figure C.52. You are more likely to use Edit, Go To, a Go To item from the
right-click menu, or one of the 11 buttons on the Browse toolbar.

FIG. C.52
The Browse dialog box is
a less common way to
browse your objects,
functions, and variables.

Tools Close Source Browser File Whenever you rebuild your project, your browse file is re-
built, too. If you rebuild your project outside Developer Studio with a tool such as NMAKE, you
should close the browse file first (with this menu choice) so that it can be updated by that tool.

Untitled-6 2/19/99, 10:07 AM744

745

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Accessory Tools A number of tools are added to the Tools menu when you install Visual C++,
and you can add more tools with the Customize menu item, discussed next.

Tools Customize Choosing this option opens the Customize dialog box. The Commands pane
of that dialog box is shown in Figure C.53 with the File buttons showing. The 11 buttons corre-
spond to items on the File menu, and if you would like one of those items on any toolbar, sim-
ply drag it from the dialog box to the appropriate place on the toolbar and release it. The list
box on the left side of the Toolbar tab lets you choose other menus, each with a collection of
toolbar buttons you can drag to any toolbar. Remember that the menu bar is also a toolbar to
which you can drag buttons, if you want.

FIG. C.53
The Commands pane of
the Customize dialog
box lets you build your
own toolbars.

If your toolbars are messed up, with extra buttons or missing buttons or both, the Reset All Menus
button on this dialog box returns objects to their normal state.

The Toolbars pane, shown in Figure C.54, is one way to control which toolbars are displayed.
As you can see, you can also suppress ToolTips if they annoy you or turn on larger toolbar
buttons if you have the space for them. (The standard toolbar in Figure C.54 has large but-
tons.)

T I P

FIG. C.54
The Toolbars tab of the
Customize dialog box is
one way to turn a
toolbar on or off, and
the only way to govern
ToolTips and button
size.

The Tools tab lets you add programs to the Tools menu, and the Keyboard tab lets you change
the keyboard shortcuts for commands or add shortcuts for commands without them. The Add-
Ins and Macro Files tab lets you add macros, which are written in VBScript and can automate

Learning the Menu System

Untitled-6 2/19/99, 10:07 AM745

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

746 Appendix C The Visual Studio User Interface, Menus, and Toolbars

many Developer Studio tasks, or add-ins, which can be written in any language and also auto-
mate Developer Studio tasks, to your workspace.

Tools Options This item gathers up a great number of settings and options that relate to
Developer Studio itself. For example, Figure C.55 shows the Editor tab of the Options dialog
box. If there is a feature of Developer Studio you don’t like, you can almost certainly change it
within this large dialog box.

FIG. C.55
The Editor tab of the
Options dialog box is
where you change editor
settings.

The tabs are as follows:

■ Editor. Chooses scrollbars, enables drag and drop, sets automatic saving and loading,
and controls the AutoComplete suite of features

■ Tabs. Sets options related to tabs (inserted when you press the Tab key) and indents
(inserted by the editor on new lines after language elements such as braces)

■ Debug. Determines what information is displayed during debugging

■ Compatibility. Lets you choose to emulate another editor (Brief or Epsilon) or just one
portion of that editor’s interface

■ Build. Generates an external makefile or a build log

■ Directories. Sets directories in which to look for include, executable, library, and source
files

■ Source Control. Sets options related to Visual SourceSafe, discussed in Chapter 23

■ Workspace. Shown in Figure C.56, sets docking windows, status bar, and project
reloading

■ Data View. (Enterprise Edition only) Governs the appearance of the DataView

■ Macros. Sets the rules for reloading a changed macro

■ Help System. Determines the information displayed by the help system, typically MSDN

■ Format. Sets the color scheme, including syntax coloring, for source windows

Untitled-6 2/19/99, 10:07 AM746

747

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

If you work on the same project all the time, check the Reload Last Workspace at Startup box on the
Workspace tab of the Option dialog box. Loading the Developer Studio and the last project then
becomes a one-step process; simply loading the Developer Studio will load the last project, too. If you
work on a variety of different projects, uncheck this box so that Developer Studio comes up more
quickly.

Tools Macro This item opens the Macro dialog box, shown in Figure C.57. Here you can
record or play back simple macros, or edit a set of recorded keystrokes by adding VBScript
statements.

Tools Record Quick Macro If you don’t want to name your macro and use it in many
different projects but want to speed up a task right now, record a quick macro and you won’t
have to name it, describe it, or save it in a file. You can have only one “quick macro” at a time:
Recording a new one will wipe out the old one.

Tools Play Quick Macro This item plays your most recently recorded quick macro.

Window
The Window menu, shown in Figure C.58, controls the windows in the main working area of
Developer Studio.

Window New Window Choosing this item opens another window containing the same source
file as the window with focus. The first window’s title bar is changed, with :1 added after the
filename; in the new window, :2 is added after the filename. Changes made in one window are
immediately reflected in the other. The windows can be scrolled, sized, and closed indepen-
dently.

FIG. C.56
The Workspace tab of
the Options dialog box
sets which views dock
and which float, as well
as reload options.

T I P

Learning the Menu System

Untitled-6 2/19/99, 10:08 AM747

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

748 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Window Split Choosing this window puts cross hairs over the file with focus; when you click
the mouse, the window is split into four panes along the lines of these cross hairs. You can drag
these boundaries about in the usual way if they are not in the right place. Scrolling one pane
scrolls its companion pane as well so that the views stay in sync. To unsplit a window, drag a
boundary right to the edge of the window and it disappears. Drag away both the horizontal and
vertical boundaries, and the window is no longer split.

Window Docking View (Alt+F6) This menu item governs whether the window with focus is a
docking view. It is disabled when the main working area has focus.

Window Close Choosing this item closes the window with focus and its associated file. If you
have any unsaved changes, you are asked whether to save them.

Window Close All Choosing this item closes all the windows in the main working area. If you
have any unsaved changes, you are asked whether to save them.

FIG. C.57
The Macro dialog box is
the nerve center for
creating, editing, and
using macros.

FIG. C.58
The Window menu
controls the windows in
the main working area.

Untitled-6 2/19/99, 10:08 AM748

749

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Window Next (Ctrl+Tab) This item switches focus to the next window. The order of the win-
dows can be determined by looking at the list of open windows at the bottom of the menu. If
you have a number of windows open at once, you can cycle among them using Ctrl+Tab. This
is a great way to get back to where you were after going to another file to look at something or
copy some code.

Window Previous (Ctrl+Shift+Tab) This item switches focus to the previous window.

Window Cascade This item arranges all the windows in the main working area in the famil-
iar cascade pattern, like the one shown in Figure C.59. Minimized windows are not restored
and cascaded.

FIG. C.59
Arranging windows in a
cascade makes it easy
to switch between
them.

Window Tile Horizontally This item arranges all the windows in the main working area so
that each is the full width of the working area, as shown in Figure C.60. The file that had focus
when you chose this item is at the top.

Window Tile Vertically This item arranges all the windows in the main working area so that
each is the full height of the working area, as shown in Figure C.61. The file that had focus
when you chose this item is at the left.

Open Windows The bottom section of this menu lists the windows in the main working area
so that you can move among them even when they are maximized. If there are more than nine
open windows, only the first nine are listed. The rest can be reached by choosing Window,
Windows.

Learning the Menu System

Untitled-6 2/19/99, 10:08 AM749

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

750 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Window Windows This item opens the Windows dialog box, shown in Figure C.62. From
here you can close, save, or activate any window.

FIG. C.60
When windows are tiled
horizontally, each is the
full width of the main
working area.

FIG. C.61
When windows are tiled
vertically, each is the full
height of the main
working area.

Untitled-6 2/19/99, 10:08 AM750

751

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Help
The Help system for Developer Studio is a separate product. Choosing items on this menu,
shown in Figure C.63, or pressing F1 activates the Help system, typically the Microsoft Devel-
oper Network, MSDN.

FIG. C.62
The Windows dialog box
allows access to any
window in the main
working area.

FIG. C.63
The Help menu is your
doorway to the help
system.

Help Contents This item starts MSDN if it is not running, or switches focus to MSDN and
displays the Table of Contents tab.

Help Search This item starts MSDN if it is not running, or switches focus to MSDN and
displays the Search tab.

Help Index This item starts MSDN if it is not running, or switches focus to MSDN and dis-
plays the Index tab.

Help Use Extension Help This item, when set, triggers a different Help system instead of
MSDN. It’s a good way for your group to include your own documentation, but you’ll want to
toggle extension help off again so that F1 will search MSDN for your error messages or
classnames.

Help Readme This item displays the “read me” file for Visual C++.

Help Keyboard Map This item does not involve MSDN. Choosing it opens the Help Key-
board dialog box, shown in Figure C.64. Use the drop-down box at the top to choose the com-
mands for which you want to see keystrokes: Bound commands (those with keystrokes as-
signed), All commands, or commands from the File, Edit, View, Insert, Build, Debug, Tools,
Window, or Help menus. Commands related to Images and Layout are also available.

Learning the Menu System

Untitled-6 2/19/99, 10:08 AM751

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

752 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Click the title bars across the top of the table to sort the display by that column. Keystrokes
cannot be changed here; choose Tools, Customize and use the Keyboard tab to change key-
strokes.

Help Tip of the Day Choosing this item opens the Tip of the Day, like that in Figure C.65.
Some are Windows tips; others are specific to Developer Studio. If you can’t wait to see a new
tip each time you open Developer Studio, click Next Tip to scroll through the list. If you are
annoyed by these tips on startup, deselect the Show Tips at Startup box.

FIG. C.64
The Help Keyboard
dialog box displays the
keystrokes associated
with commands.

FIG. C.65
The Tip of the Day is a
great way to learn more
about Developer Studio.

Help Technical Support If you think you need technical support, start here. Not only do you
learn how to get that support, but you may also find the answer to your question.

Help Microsoft on the Web One of the ways Microsoft supplies information about Developer
Studio and other products is through the World Wide Web. Choosing this item opens a cascad-
ing menu with a list of Web sites. Choosing any of these displays the pages in your default Web
browser.

Help About Visual C++ Choosing this item opens the About box for Visual C++, which in-
cludes, among other information, your Product ID.

Reviewing Toolbars
After you are familiar with the sorts of actions you are likely to request of Developer Studio, the
toolbars save you a lot of time. Instead of choosing File, Open, which takes two clicks and a

Untitled-6 2/19/99, 10:09 AM752

753

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

mouse move, it is simpler to just click the Open button on the toolbar. There are, however, 11
toolbars plus a menu bar in this product, and that means a lot of little icons to learn. In this
section, you will see each toolbar and which menu items the buttons correspond to.

Figure C.66 shows all the toolbars that are available in Developer Studio. The quickest way to
turn several toolbars on and off is with the Toolbars dialog box, which you can also use to turn
ToolTips on or off and set whether the tips include the shortcut keys for the command. Any of
these toolbars can dock against any of the four edges of the working area, as shown in Figure
C.67. To move a docked toolbar, drag it by the wrinkles—the two vertical bars at the far right.
You move an undocked toolbar like any other window. When it nears the edge of the main
working area, the shape change shows you it will dock. Take some time to experiment moving
toolbars around until you find a configuration that suits you.

FIG. C.66
Developer Studio has
11 toolbars and a
menu bar, shown here
floating.

Two of the most important toolbars are the Standard and the Build Mini-bar. These are dis-
cussed in the sections that follow. For a full description of what each button does, refer to the
section earlier in this chapter for the corresponding menu item.

Standard Toolbar
The Standard Toolbar helps you maintain and edit text and files in your workspace. Table C.2
names each Standard tool button and its equivalent menu operation.

Reviewing Toolbars

Untitled-6 2/19/99, 10:09 AM753

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

754 Appendix C The Visual Studio User Interface, Menus, and Toolbars

Table C.2 Standard Toolbar Buttons and Equivalent Menu Operations

Button Name Menu Equivalent

New Text File File, New

Open File, Open

Save File, Save

Save All File, Save All

Cut Edit, Cut

Copy Edit, Copy

Paste Edit, Paste

Undo Edit, Undo

Redo Edit, Redo

Workspace View, Workspace

Output View, Output

Window List Window, Windows

Find in Files Edit, Find in Files

Find Edit, Find

Search Help, Search

FIG. C.67
Developer Studio
toolbars can dock
against any edge.

Untitled-6 2/19/99, 10:09 AM754

755

brands 03/swg#4 seu vis c++ #1539-2 7.20.98 ayanna app c LP#2

C
App

VII
Part

Build Mini-bar
The names for the Build Mini-bar buttons, which are related to compiling and debugging, are
defined in Table C.3.

Table C.3 Build Mini-Bar Buttons and Equivalent Menu Commands

Button Name Menu Equivalent

Compile Build, Compile

Build Build, Build

Stop Build Build, Stop Build

Execute Build, Execute

Go Build, Start Debug, Go

Insert/Remove Breakpoint N/A

Using Other Toolbars
You can display any or all of the toolbars, add and remove buttons to them, and generally make
Developer Studio into a product that works the way you work. Experiment and see what simpli-
fies your software development effort.

Reviewing Toolbars

Untitled-6 2/19/99, 10:09 AM755

Untitled-6 2/19/99, 10:09 AM756

757

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

A P P E N D I X

Debugging

Debugging Vocabulary 758

Debugging Commands and Windows 758

Using MFC Tracer 767

Defining a Dump Member Function 768

D

In this appendix

Untitled-7 2/19/99, 10:10 AM757

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

758 Appendix D Debugging

Debugging is a vital part of programming. Whenever a program doesn’t do what you expect,
even if it doesn’t blow up, you should turn to the debugger to see what’s really going on. Some
of the philosophies and techniques of debugging have been explained elsewhere in this book,
especially in Chapter 24, “Improving Your Application’s Performance.” This appendix concen-
trates on the nuts and bolts of how to use the debugger: the menus, toolbars, and windows that
were not covered in Appendix C, “The Visual Studio User Interface, Menus, and Toolbars.”

Debugging Vocabulary
Probably the most important word in debugging is breakpoint. A breakpoint is a spot in your
program, a single line of code, where you would like to pause. Perhaps you are wondering how
many times a loop is executed, whether control transfers inside a certain if statement, or
whether a function is even called. Setting a breakpoint on a line will make execution stop when
that line is about to be executed. At that point you may want the program to be off and running
again or want to move through your code a line or so at a time. You may want to know some of
your variables’ values or see how control transferred to this point by examining the call stack.
Often, you’ll spot the cause of a bug and correct your code on the spot.

When it’s time to move along, there are a number of ways you might like execution to resume.
These are explained in the following list:

■ Go—Execute to the next breakpoint or, if there are no more breakpoints, until the
program completes.

■ Restart—Start again from the beginning.

■ Step Over—Execute only the next statement, and then pause again. If it is a function call,
run the whole function and pause after returning from it.

■ Step Into—Execute just the next statement, but if it is a function, go into it and pause
before executing the first statement in the function.

■ Step Out—Execute the rest of the current function and pause in the function that called
this one.

■ Run to Cursor—Start running and stop a few (or many) lines from here, where the
cursor is positioned.

Most information made available to you by the debugger is in the form of new windows. These
are discussed in the following sections.

Debugging Commands and Windows
Developer Studio has a powerful debugger with a rich interface. There are menu items, toolbar
buttons, and windows (output areas) that are used only when debugging.

Untitled-7 2/19/99, 10:10 AM758

759

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

Menu Items
The user interface for debugging starts with items on some ordinary menus that are used only
in debugging and are not discussed in Appendix C. These include

■ Edit, Breakpoints

■ View, Debug Windows, Watch

■ View, Debug Windows, Call Stack

■ View, Debug Windows, Memory

■ View, Debug Windows, Variables

■ View, Debug Windows, Registers

■ View, Debug Windows, Disassembly

■ Build, Start Debug, Go

■ Build, Start Debug, Step Into

■ Build, Start Debug, Run to Cursor

■ Build, Start Debug, Attach to Process

■ Build, Debugger Remote Connection

These are not the only menu items you’ll use, of course. For example, the Edit, Go To dialog
box can be used to scroll the editor to a specific breakpoint as easily as a line, bookmark, or
address. Many menu items you’ve already learned about are useful during debugging.

When you start debugging, the Build menu disappears and a Debug menu appears. The items
on that menu are as follows:

■ Debug, Go

■ Debug, Restart

■ Debug, Stop Debugging

■ Debug, Break

■ Debug, Apply Code Changes

■ Debug, Step Into

■ Debug, Step Over

■ Debug, Step Out

■ Debug, Run to Cursor

■ Debug, Step into Specific Function

■ Debug, Exceptions

■ Debug, Threads

■ Debug, Show Next Statement

■ Debug, QuickWatch

Debugging Commands and Windows

Untitled-7 2/19/99, 10:11 AM759

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

760 Appendix D Debugging

As you can see, some items from the Build, Start Debug cascading menu are also on the De-
bug menu, along with many other items. The sections that follow discuss the individual items.

Setting Breakpoints
Probably the simplest way to set a breakpoint is to place the cursor on the line of code where
you would like to pause. Then, toggle a breakpoint by pressing F9 or by clicking the Insert/
Remove Breakpoint button on the Build MiniBar, which looks like an upraised hand (you’re
supposed to think “Stop!”). A red dot appears in the margin to indicate you have placed a
breakpoint here, as shown in Figure D.1.

FIG. D.1
The F9 key toggles a
breakpoint on the line
containing the cursor.

The application being debugged throughout this appendix is ShowString, as built in
Chapter 8, “Building a Complete Application: ShowString.” ■

Choosing Edit, Breakpoints displays a tabbed dialog box to set simple or conditional
breakpoints. For example, you may want to pause whenever a certain variable’s value changes.
Searching through your code for lines that change that variable’s value and setting breakpoints
on them all is tiresome. Instead, use the Data tab of the Breakpoints dialog box, shown in Fig-
ure D.2. When the value of the variable changes, a message box tells you why execution is
pausing; then you can look at code and variables, as described next.

You can also set conditional breakpoints, such as break on this line when i exceeds 100,
that spare you from mindlessly clicking Go, Go, Go until you have been through a loop 100
times.

N O T E

Untitled-7 2/19/99, 10:11 AM760

761

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

Examining Variable Values
When you set a breakpoint and debug the program, everything proceeds normally until the
breakpoint line of code is about to execute. Then Developer Studio comes up on top of your
application, with some extra windows in the display and a yellow arrow in the red margin dot
that indicates your breakpoint, as shown in Figure D.3. This shows you the line of code that is
about to execute.

FIG. D.2
You can arrange for
execution to pause
whenever a variable or
expression changes
value.

FIG. D.3
A yellow arrow indicates
the line of code about
to execute.

Move the mouse over a variable name, like color or horizcenter. A DataTip appears, telling
you the current value of this variable. You can check as many local variables as you want like
this, then continue executing, and check them again. There are other ways, though, to examine
variable values.

Debugging Commands and Windows

Untitled-7 2/19/99, 10:11 AM761

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

762 Appendix D Debugging

You could click on the variable (or move the cursor to it some other way) and choose Debug,
QuickWatch or click the QuickWatch button (a pair of glasses) on the toolbar. This brings up
the QuickWatch window, which shows you the value of a variable or expression and lets you
add it to the Watch window, if you want. You’re probably wondering why anyone uses this
feature now that DataTips will show you a variable’s value without even clicking. DataTips can’t
handle expressions, even simple ones like dlg.m_horizcenter, but QuickWatch can, as you see
in Figure D.4. You can also change a variable’s value with this dialog box to recover from hor-
rible errors and see what happens.

FIG. D.4
The QuickWatch dialog
box evaluates expres-
sions. You add them to
the Watch window by
clicking Add Watch.

Figure D.5 shows a debug session after running forward a few lines from the original
breakpoint (you’ll see how to do this in a moment). The Watch and Variable windows have
been undocked to show more clearly which is which, and two watches have been added: one
for horizcenter and one for dlg.m_horizcenter. The program is paused immediately after the
user clicks OK on the Options dialog, and in this case the user changed the string, the color,
and both kinds of centering.

The Watch window simply shows the values of the two variables that were added to it.
horizcenter is still TRUE (1) because the line of code that sets it has not yet been executed.
dlg.m_horizcenter is FALSE (0) because the user deselected the check box associated with the
member variable. (Dialogs, controls, and associating controls with member variables are dis-
cussed in Chapter 2, “Dialogs and Controls.”)

The Variables window has a lot more information in it, which sometimes makes it harder to
use. The local variable dlg and the pointer to the object for whom this member function was
invoked, this, are both in the Variables window in tree form: Click on a + to expand the tree
and on a – to collapse it. In addition, the return value from DoModal(), 1, is displayed.

At the top of the Variables window is a drop-down box labeled Context. Dropping it down shows
how control got here: It lists the names of a series of functions. The top entry is the function in
which the line about to be executed is contained, CShowStringDoc::OnToolsOptions(). The
second entry is the function that called this one, _AfxDispatchCmdMsg(), which dispatches
command messages. Chapter 3, “Messages and Commands,” introduces commands and mes-
sages and discusses the way that control passes to a message-handling function like
OnToolsOptions(). Here, the debugger gives proof of this process right before your eyes.

Untitled-7 2/19/99, 10:11 AM762

763

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

Click on any function name in the drop-down box and the code for that function is displayed.
You can look at variables local to that function, and so on.

The Call Stack window, shown in Figure D.6, is easier to examine than the drop-down box in
the Variables window, and it shows the same information. As well as the function names, you
can see the parameters that were passed to each function. You may notice the number 32771
recurring in most of the function calls. Choose View, Resource Symbols, and you’ll see that
32771 means ID_TOOLS_OPTIONS, the resource ID associated with the menu item Tools, Options
in ShowString (see Figure D.7).

FIG. D.5
The Watch window and
the Variable window
make it easy to know
the values of all your
variables.

FIG. D.6
The Call Stack window
shows how you arrived
here.

Stepping Through Code
Double-clicking a function name in the call stack or the context drop-down box of the Variables
window doesn’t make any code execute: It simply gives you a chance to examine the local
variables and code of the functions that called the function now executing. After you’ve looked
at everything you want to look at, it’s time to move on. Although there are items on the Debug
menu to Step Over, Step Into, and so on, most developers use the toolbar buttons or the key-
board shortcuts. The Debug toolbar can be seen in Figures D.1, D.3, and D.5. Pause your

Debugging Commands and Windows

Untitled-7 2/19/99, 10:12 AM763

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

764 Appendix D Debugging

mouse over each button to see the command it is connected to and a reminder of the keyboard
shortcut. For example, the button showing an arrow going down into a pair of braces is Step
Into, and the shortcut key is F11.

FIG. D.7
The number 32771
corresponds to
ID_TOOLS_OPTIONS.

As you move through code, the yellow arrow in the margin moves with you to show which line
is about to execute. Whenever the program is paused, you can add or remove breakpoints,
examine variables, or resume execution. These are the mechanics of debugging.

Edit and Continue
Most developers are familiar with the cycle of debugging work. You build your project, you run
it, and something unusual happens. You debug for a while to understand why. You find the bad
code, change it, rebuild, rerun, and either find another bug or convince yourself that the appli-
cation works. Sometimes you think you’ve fixed it, but you haven’t. As your project grows,
these rebuilds can take a very long time, and they break the rhythm of your work. It can also
take a significant amount of time to run the application to the trouble spot each time. It’s very
boring to enter the same information every time on a dialog box, for example, trying to set up
an error condition.

In version 6.0 of Visual C++, in many cases you can keep right on debugging after making a
code change—without rebuilding and without rerunning. This feature is called Edit and Con-
tinue and is sure to be a major time-saver.

To use Edit and Continue, you should start by confirming that it’s enabled both for the product
as a whole and for this specific project. First, choose Tools, Options and click the Debug tab.
Make sure that Debug commands Invoke Edit and Continue is selected, as in Figure D.8.
Second, choose Project, Settings and click the C/C++ tab. In the left pane, make sure you are
editing your Debug settings. Ensure that the Debug Info drop-down box contains Program
Database for Edit and Continue. If not, drop the box down, select this option, as in Figure D.9
(it’s last on the list), and then rebuild the project after exiting the Project Settings dialog. Al-
ways check the project settings when you start a new project, to confirm that Edit and Con-
tinue is enabled.

Untitled-7 2/19/99, 10:12 AM764

765

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

Now, debug as you always did, but don’t automatically click Build after making a code change:
Try to step to the next line. If it’s not possible to continue without a build, you will receive a line
of output in the Build tab of the Output window telling you so and the familiar One or More
Files Are out of Date message box offering you a chance to rebuild your project. If it’s possible
to continue, you will have saved a tremendous amount of time.

Most simple code changes, such as changing the condition in an if or for statement or chang-
ing the value to which you set a variable, should work immediately. More complex changes will
require a rebuild. For example, you must rebuild after any one of these changes:

■ Any change to a header file, including changing code in an inline function

■ Changing a C++ class definition

■ Changing a function prototype

■ Changing the code in a global (nonmember) function or a static member function

Try it yourself: Imagine that you can’t remember why the string originally displayed by
ShowString is black, and you’d like it to be red. You suspect that the OnNewDocument() function
is setting it, so you expand CShowStringDoc in the ClassView and double-click
OnNewDocument(). Then you place a breakpoint (F9) on this line:

string = “Hello, world!”;

FIG. D.8
Enable Edit And
Continue on the Debug
tab of the Options
dialog.

FIG. D.9
Your project must
generate Edit and
Continue information.

Debugging Commands and Windows

Untitled-7 2/19/99, 10:12 AM765

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

766 Appendix D Debugging

Click Go (F5), or choose Build, Start Debug, Go; ShowString will run, create a new document,
and stop at your breakpoint. Change the next line of code to read

color = 1; //red

Click Go again and wait. Watch your output window and you will see that showstringdoc.cpp is
recompiling. After a short wait, the familiar Hello, world! will appear—in red. Your changes
went into effect immediately.

When you finish your debugging session, it’s a good idea to do a build because the changes
used by Edit and Continue may be in memory only and not written out to your executable file.

Other Debug Windows
Three debug windows have not yet been mentioned: Memory, Registers, and Disassembly.
These windows provide a level of detail rarely required in ordinary debugging. With each
release of Visual C++, the circumstances under which these windows are needed dwindle. For
example, the Registers window used to be the only way to see the value just returned from a
function call. Now that information is in the Variables window in a more accessible format.

The Memory Window This window, shown in Figure D.10, shows you the hex values in every
byte of the memory space from 0x00000000 to 0xFFFFFFFF. It’s a very long list, which makes
the dialog box hard to scroll—use the Address box to enter an address that interests you.
Typically, these addresses are copied (through the Clipboard, not by hand) from the Variables
window. It is a handy way to look through a large array or to track down subtle platform-
dependent problems.

FIG. D.10
You can examine raw
memory, though you’ll
rarely need to.

The Registers Window If you are debugging at the assembler level, it might be useful to
examine the registers. Figure D.11 shows the Registers window. This shot was taken at the
same point of execution as Figure D.5, and you can see that the EAX register contains the
value 1, which is the return value from DoModal().

FIG. D.11
All the registers
are available for
examination.

Untitled-7 2/19/99, 10:12 AM766

767

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

The Disassembly Window By default, the Disassembly window comes up full screen, replac-
ing the C++ code in the main working area. You can see the assembly language statements
generated for your C++ code, shown in Figure D.12. Debugging at the assembly level is beyond
the scope of this book, though perhaps you might be curious to see the assembly code gener-
ated for parts of your program.

FIG. D.12
You can debug the
assembler that was
generated for you.

Using MFC Tracer
The MFC Tracer utility is a standalone application with an integrated menu item in the Devel-
oper Studio. To run it, choose Tools, MFC Tracer. Figure D.13 shows the Tracer dialog that
appears.

FIG. D.13
A standalone utility
simplifies setting trace
flags.

Tracer doesn’t do very much: It’s just an easy way to set trace flags that govern the kind of
debug output you get. Try setting all the flags on and running ShowString, simply starting it up
and shutting it down. Turn off a few flags and see how the output changes.

With all the trace flags on, your application will be slow. Use Tracer to set only the ones you’re
interested in, while you’re interested in them. It’s much easier than changing a variable on-
the-fly.

Using MFC Tracer

Untitled-7 2/19/99, 10:13 AM767

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

768 Appendix D Debugging

Defining a Dump Member Function
All MFC classes have a Dump() member function. When things go wrong, some error-handling
code calls this function to show you the object’s contents. You can write Dump() functions for
your objects, too. Although you won’t normally call these functions yourself, you could do so as
part of your own error handling.

MFC classes inherit Dump() from Cobject, where it is defined like this:

virtual void Dump(CDumpContext& dc) const;

The keyword virtual suggests you should override the method in your derived classes, and
const indicates that Dump() will not modify the object state.

Like trace and assert statements, the Dump() member function disappears in a release build.
This saves users seeing output they can’t deal with and makes a smaller, faster, release version
for you. You have to make this happen yourself for any Dump() function you write, with condi-
tional compilation, as discussed in the “Adding Debug-Only Features” section of Chapter 24.

In the header file, declare Dump() like this:

class CNewClass : public CObject
{
public:
 // other class stuff
 #ifdef _DEBUG
 virtual void Dump(CDumpContext& dc) const
 #endif
 // ...
};

In the implementation file, the definition, which includes a code body, might look like this:

#include “cnewclass.h”

#ifdef _DEBUG
void CNewClass::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc); // Dump parent;
 // perhaps dump individual members, works like cout
 dc << “member: “ << /* member here */ endl;
}

#endif

As you see in the code for the Dump() function, writing the code is much like writing to stan-
dard output with the cout object or serializing to an archive. You are provided with a
CDumpContext object called dc, and you send text and values to that object with the << operator.
If this is unfamiliar to you, read Chapter 7, “Persistence and File I/O.”

Untitled-7 2/19/99, 10:13 AM768

769

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

An Example Using CDumpContext, CFile, and axfDump
The sample application in this section uses the MFC debugging class CDumpContext and the
global axfDump object. The debug window output from this demo and the output CFile code
are in Listing D.1. To run this application yourself, create a console application as described in
Chapter 28, “Future Explorations,” and create an empty C++ source file called Dump.cpp. Enter
this code, build, and run a debug version of the project.

When linking a debug version of this product, if you receive error messages that refer to
_beginthreadex and _endthreadex, you need to change some settings. By default, console
applications are single-threaded, but MFC is multithreaded. By including afx.h and bringing in
MFC, this application is making itself incompatible with the single-threaded default. To fix this,
choose Project Settings and click the C/C++ tab. From the drop-down box at the top of the
dialog box, choose Code Generation. In the drop-down box labeled Use Runtime Library,
choose Debug Multithreaded. (Figure D.15 shows the completed dialog.) Click OK and
rebuild the project. You should usually change the settings for release as well, but because the
calls to Dump() aren’t surrounded by tests of _DEBUG, this code won’t compile a release version
anyway.

Listing D.1 Dump.Cpp—Demonstrating the MFC Debugging Class
CDumpContext and the Output CFile Code

#include <afx.h>
// _DEBUG defined for debug build

class CPeople : public CObject
{
public:
 // constructor
 CPeople(const char * name);
 // destructor
 virtual ~CPeople();
 #ifdef _DEBUG
 virtual void Dump(CDumpContext& dc) const;
 #endif
 private:
 CString * person;
 };

 // constructor
 CPeople::CPeople(const char * name) : person(new CString(name)) {};
 // destructor
 CPeople::~CPeople(){ delete person; }

#ifdef _DEBUG
 void CPeople::Dump(CDumpContext& dc) const
 {
 CObject::Dump(dc);
 dc << person->GetBuffer(person->GetLength() + 1);

continues

Defining a Dump Member Function

Untitled-7 2/19/99, 10:13 AM769

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

770 Appendix D Debugging

Listing D.1 Continued

 }
#endif

int main()
 {
 CPeople person1(“Kate Gregory”);
 CPeople person2(“Clayton Walnum”);
 CPeople person3(“Paul Kimmel”);

 // Use existing afxDump with virtual dump member function
 person1.Dump(afxDump);

 // Instantiate a CFile object
 CFile dumpFile(“dumpout.txt”, CFile::modeCreate |
 CFile::modeWrite);

 if(!dumpFile)
 {
 afxDump << “File open failed.”;
 }
 else
 {
 // Dump with other CDumpContext
 CDumpContext context(&dumpFile);
 person2.Dump(context);
 }

 return 0;
 }

This single file contains a class definition, all the code for the class member functions, and a
main() function to run as a console application. Each of these parts of the file is explained in
the next few paragraphs. The class is a simple wrapper around a CString pointer, which allo-
cates the CString with new in the constructor and deletes it in the destructor. It’s so simple that
it’s actually useless for anything other than demonstrating the Dump() function.

First, the <afx.h> header file is included, which contains the CObject class definition and pro-
vides access to afxDump.

Next, this code defines the class CPeople derived from CObject. Notice the placement of the
override of the virtual Dump() method and the conditional compiler wrap. (Any calls to Dump()
should be wrapped in the same way, or that code will not compile in a release build.)

Following the constructor and destructor comes the code for CPeople::Dump(). Notice how it,
too, is wrapped in conditional compiler directives. The call to CObject::Dump() takes advantage
of the work done by the MFC programmers, dumping information all objects keep.

Finally, the main() function exercises this little class. It creates three instances of the CPeople
class and dumps the first one.

Untitled-7 2/19/99, 10:14 AM770

771

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

D

VII
Part

App

For the second CPeople object, this code creates and opens a CFile object by passing a text
string to the constructor. If the open succeeds, it creates a CDumpContextObject from the file
and passes this context to Dump instead of the usual afxDump().

If you run this program, you’ll see output like that in Figure D.14. The file dumpout.txt will
contain these lines:

a CObject at $71FDDC
Clayton Walnum

FIG. D.14
Using the afxDump
context sends your
output to the Debug
window.

The first line of the output, to both the debug window and the file, came from CObject::Dump()
and gives you the object type and the address. The second line is from your own code and is
simply the CString kept within each CPeople.

FIG. D.15
To use MFC in a
console application,
change to the
multithreaded runtime
library.

Defining a Dump Member Function

Untitled-7 2/19/99, 10:14 AM771

b3/a3/swg#6 SE Using Visual C++6 #1539-2 7.21.98 Ayanna App D LP#3

772 Appendix D Debugging

Now that you’ve seen the basic tools of debugging in action, you’re ready to put them to work
in your own applications. You’ll find errors quickly, understand other people’s code, and see
with your own eyes just how message-routing and other behind-the-scenes magic really occur.
If you find yourself enjoying debugging, don’t worry—no one else has to know!

Untitled-7 2/19/99, 10:14 AM772

773

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

E

VII
Part

App

A P P E N D I X

MFC Macros and Globals

E

In this appendix

Application Information and Management
Functions 774

ClassWizard Comment Delimiters 775

Collection Class Helpers 776

CString Formatting and Message-Box Display 777

Data Types 777

Diagnostic Services 778

Exception Processing 780

Message-Map Macros 781

Runtime Object Model Services 781

Standard Command and Window IDs 782

Untitled-8 2/19/99, 10:15 AM773

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

774 Appendix E MFC Macros and Globals

When you’re writing programs, you must use many types of data and operations again and
again. Sometimes, you have to do something as simple as creating a portable integer data type.
Other times, you need to do something a little more complex, such as extracting a word from a
long word value or storing the position of the mouse pointer. As you might know, when you
compile your program with Visual C++, many constants and variables are already defined. You
can use these in your programs to save time writing code and to make your programs more
portable and more readable for other programmers. In the following tables, you’ll have a look
at the most important of these globally available constants, macros, and variables.

Because there are so many constants, macros, and global variables, it is helpful to divide them
into the following ten categories. The next sections describe each of these categories and the
symbols they define:

■ Application information and management

■ ClassWizard comment delimiters

■ Collection class helpers

■ CString formatting and message-box display

■ Data types

■ Diagnostic services

■ Exception processing

■ Message maps

■ Runtime object model services

■ Standard command and window IDs

Application Information and Management Functions
Because a typical Visual C++ application contains only one application object but many other
objects created from other MFC classes, you frequently need to obtain information about the
application in different places in a program. Visual C++ defines a set of global functions that
return this information to any class in a program. These functions, listed in Table E.1, can be
called from anywhere within an MFC program. For example, you frequently need to get a
pointer to an application’s main window. The following function call accomplishes that task:

CWnd* pWnd = AfxGetMainWnd();

Table E.1 Application Information and Management

Function Description

AfxBeginThread() Creates a new thread (see Chapter 27, “Multitasking with
Windows Threads”)

AfxEndThread() Terminates a thread

AfxGetApp() Gets the application’s CWinApp pointer

Untitled-8 2/19/99, 10:15 AM774

775

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

E

VII
Part

App

AfxGetAppName() Gets the application’s name

AfxGetInstanceHandle() Gets the application’s instance handle

AfxGetMainWnd() Gets a pointer to the application’s main window

AfxGetResourceHandle() Gets the application’s resource handle

AfxGetThread() Gets a pointer to a CWinThread object

AfxRegisterClass() Registers a window class in an MFC DLL

AfxRegisterWndClass() Registers a Windows window class in an MFC application

AfxSetResourceHandle() Sets the instance handle that determines where to load the
application’s default resources

AfxSocketInit() Initializes Windows Sockets (see Chapter 18, “Sockets, MAPI,
and the Internet”)

ClassWizard Comment Delimiters
Visual C++ defines a number of delimiters that ClassWizard uses to keep track of what it’s
doing, as well as to locate specific areas of source code. Although you’ll rarely, if ever, use these
macros yourself, you will see them embedded in your AppWizard applications, so you might
like to know exactly what they do. Table E.2 fills you in.

Table E.2 ClassWizard Delimiters

Delimiter Description

AFX_DATA Starts and ends member variable declarations in header files that are
associated with dialog data exchange

AFX_DATA_INIT Starts and ends dialog data exchange variable initialization in a dialog
class’s constructor

AFX_DATA_MAP Starts and ends dialog data exchange function calls in a dialog class’s
DoDataExchange() function

AFX_DISP Starts and ends Automation declarations in header files

AFX_DISP_MAP Starts and ends Automation mapping in implementation files

AFX_EVENT Starts and ends ActiveX event declarations in header files

AFX_EVENT_MAP Starts and ends ActiveX events in implementation files

AFX_FIELD Starts and ends member variable declarations in header files that are
associated with database record field exchange

Function Description

continues

ClassWizard Comment Delimiters

Untitled-8 2/19/99, 10:16 AM775

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

776 Appendix E MFC Macros and Globals

AFX_FIELD_INIT Starts and ends record field exchange member variable initialization in
a record set class’s constructor

AFX_FIELD_MAP Starts and ends record field exchange function calls in a record set
class’s DoFieldExchange() function

AFX_MSG Starts and ends ClassWizard entries in header files for classes that use
message maps

AFX_MSG_MAP Starts and ends message map entries

AFX_VIRTUAL Starts and ends virtual function overrides in header files

Collection Class Helper Functions
Because certain types of data structures are so commonly used in programming, MFC defines
collection classes that enable you to get these common data structures initialized quickly and
manipulated easily. MFC includes collection classes for arrays, linked lists, and mapping tables.
(See Appendix F, “Useful Classes,” for more on these constructs.) Each of these types of collec-
tions contains elements that represent the individual pieces of data that compose the collection.
To make it easier to access these elements, MFC defines a set of functions created from tem-
plates (see Chapter 26, “Exceptions and Templates,” for more on templates.) Table E.3 shows
the functions, and you provide the implementation for each particular data type.

For example, if you want to keep a sorted list, the functions that insert new items into the list
must be able to compare two Truck objects or two Employee objects to decide where to put a
new Truck or Employee. You implement CompareElements() for the Truck class or Employee
class, and then the collection class code can use this function to decide where to put new addi-
tions to the collection.

Table E.3 Collection Class Helper Functions

Function Description

CompareElements() Checks elements for equality

ConstructElements() Constructs new elements (works similar to a class constructor)

DestructElements() Destroys elements (works similar to a class destructor)

DumpElements() Provides diagnostic output in text form

HashKey() Calculates hashing keys

SerializeElements() Saves or loads elements to or from an archive

Table E.2 Continued

Delimiter Description

Untitled-8 2/19/99, 10:16 AM776

777

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

E

VII
Part

App

CString Formatting and Message-Box Display
If you’ve done much Visual C++ programming, you know that MFC features a special string
class, called CString, that makes string handling under C++ less cumbersome. CString objects
are used extensively throughout MFC programs and are discussed in Appendix F. There are
times when CString is not the right class, though, such as when dealing with strings in a
resource’s string table. These global functions, which replace format characters in string
tables, provide the CString Format() capability for resource strings. There’s also a global
function for displaying a message box.

Table E.4 CString Formatting and Message-Box Functions

Function Description

AfxFormatString1() Replaces the format characters (such as %1) in a string resource
with a given string

AfxFormatString2() Replaces the format characters %1 and %2 in a string resource
with the given strings

AfxMessageBox() Displays a message box

Data Types
The most commonly used constants are those that define a portable set of data types. You’ve
seen tons of these constants (named in all uppercase letters) used in Windows programs. You’ll
recognize many of these from the Windows SDK. Others are included only as part of Visual
C++. You use these constants exactly as you would any other data type. For example, to declare
an unsigned integer variable, you’d write something like this:

UINT flag;

Table E.5 lists the most commonly used data types defined by Visual C++ for Windows 95/98
and NT. Searching in the help index on any one of these types will lead you to a page in the
online help that lists all the data types used in MFC and the Windows SDK.

Table E.5 Commonly Used Data Types

Data Type Description

BOOL Boolean value

BSTR 32-bit pointer to character data

BYTE 8-bit unsigned integer

COLORREF 32-bit color value

DWORD 32-bit unsigned integer

continues

Data Types

Untitled-8 2/19/99, 10:17 AM777

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

778 Appendix E MFC Macros and Globals

LONG 32-bit signed integer

LPARAM 32-bit window-procedure parameter

LPCRECT 32-bit constant RECT structure pointer

LPCSTR 32-bit string-constant pointer

LPSTR 32-bit string pointer

LPVOID 32-bit void pointer

LRESULT 32-bit window-procedure return value

POSITION The position of an element in a collection

UINT 32-bit unsigned integer

WNDPROC 32-bit window-procedure pointer

WORD 16-bit unsigned integer

WPARAM 32-bit window-procedure parameter

Diagnostic Services
When you have written your program, you’re far from finished. Then comes the grueling task
of testing, which means rolling up your sleeves, cranking up your debugger, and weeding out
all the gotchas hiding in your code. Luckily, Visual C++ provides many macros, functions, and
global variables for incorporating diagnostic abilities into your projects. By using these tools,
you can print output to a debugging window, check the integrity of memory blocks, and much
more. Table E.6 lists these valuable diagnostic macros, functions, and global variables. Many
are discussed in Chapter 24, “Improving Your Application’s Performance,” and Appendix D,
“Debugging.”

Table E.6 Diagnostic Macros, Functions, and Global Variables

Symbol Description

AfxCheckMemory() Verifies the integrity of allocated memory.

AfxDoForAllClasses() Calls a given iteration function for all classes that are
derived from CObject and that incorporate runtime type
checking.

AfxDoForAllObjects() Calls a given iteration function for all objects derived from
CObject and allocated with the new operator.

Table E.5 Continued

Data Type Description

Untitled-8 2/19/99, 10:17 AM778

779

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

E

VII
Part

App

afxDump A global CDumpContext object that enables a program to
send information to the debugger window.

AfxDump() Dumps an object’s state during a debugging session.

AfxEnableMemoryTracking() Toggles memory tracking.

AfxIsMemoryBlock() Checks that memory allocation was successful.

AfxIsValidAddress() Checks that a memory address range is valid for the
program.

AfxIsValidString() Checks string pointer validity.

afxMemDF A global variable that controls memory-allocation diagnos-
tics. It can be set to allocMemDF, DelayFreeMemDF, or
checkAlwaysMemDF.

AfxSetAllocHook() Sets a user-defined hook function that is called whenever
memory allocation is performed.

afxTraceEnabled A global variable that enables or disables TRACE output.

afxTraceFlags A global variable that enables the MFC reporting features.

ASSERT Prints a message and exits the program if the ASSERT
expression is FALSE (see Chapter 24).

ASSERT_VALID Validates an object by calling the object’s AssertValid()
function.

DEBUG_NEW Used in place of the new operator to trace memory-leak
problems (see Chapter 23).

TRACE Creates formatted strings for debugging output (see
Chapter 23).

TRACE0 Same as TRACE but requires no arguments in the format
string.

TRACE1 Same as TRACE but requires one argument in the format
string.

TRACE2 Same as TRACE but requires two arguments in the format
string.

TRACE3 Same as TRACE but requires three arguments in the format
string.

VERIFY Like ASSERT, but VERIFY evaluates the ASSERT expression in
both the debug and release versions of MFC. If the
assertion fails, a message is printed and the program is
halted only in the debug version.

Symbol Description

Diagnostic Services

Untitled-8 2/19/99, 10:17 AM779

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

780 Appendix E MFC Macros and Globals

Exception Processing
Exceptions give a program greater control over how errors are handled (see Chapter 26).
Before exceptions were part of the language, MFC developers used macros to achieve the
same results. Now that exceptions are firmly established in Visual C++, a number of functions
make it easier to throw exceptions of various types. These macros and functions are listed in
Table E.7.

Table E.7 Exception Macros and Functions

Symbol Description

AfxAbort() Terminates an application upon a fatal error

AfxThrowArchiveException() Throws an archive exception

AfxThrowDAOException() Throws a CDAOException

AfxThrowDBException() Throws a CDBException

AfxThrowFileException() Throws a file exception

AfxThrowMemoryException() Throws a memory exception

AfxThrowNotSupportedException() Throws a not-supported exception

AfxThrowOleDispatchException() Throws an OLE automation exception

AfxThrowOleException() Throws an OLE exception

AfxThrowResourceException() Throws a resource-not-found exception

AfxThrowUserException() Throws an end user exception

AND_CATCH Begins code that will catch specified exceptions not
caught in the preceding TRY block

AND_CATCH_ALL Begins code that will catch all exceptions not caught
in the preceding TRY block

CATCH Begins code for catching an exception

CATCH_ALL Begins code for catching all exceptions

END_CATCH Ends CATCH or AND_CATCH code blocks

END_CATCH_ALL Ends CATCH_ALL code blocks

THROW Throws a given exception

THROW_LAST Throws the most recent exception to the next
handler

TRY Starts code that will accommodate exception
handling

Untitled-8 2/19/99, 10:18 AM780

781

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

E

VII
Part

App

Message-Map Macros
Windows is an event-driven operating system, which means that every Windows application
must handle a flood of messages that flow between an application and the system. MFC does
away with the clunky switch statements that early Windows programmers had to construct to
handle messages and replaces those statements with a message map. A message map is noth-
ing more than a table that matches a message with its message handler (see Chapter 3, “Mes-
sages and Commands”). To simplify the declaration and definition of these tables, Visual C++
defines a set of message-map macros. Many of these macros, which are listed in Table E.8, will
already be familiar to experienced MFC programmers.

Table E.8 Message-Map Macros

Macro Description

BEGIN_MESSAGE_MAP Begins a message-map definition

DECLARE_MESSAGE_MAP Starts a message-map declaration

END_MESSAGE_MAP Ends a message-map definition

ON_COMMAND Begins a command-message message-map entry

ON_COMMAND_RANGE Begins a command-message message-map entry that
maps multiple messages to a single handler

ON_CONTROL Begins a control-notification message-map entry

ON_CONTROL_RANGE Begins a control-notification message-map entry that
maps multiple control IDs to a single handler

ON_MESSAGE Begins a user-message message-map entry

ON_REGISTERED_MESSAGE Begins a registered user-message message-map entry

ON_UPDATE_COMMAND_UI Begins a command-update message-map entry

ON_UPDATE_COMMAND_UI_RANGE Begins a command-update message-map entry that
maps multiple command-update messages to a single
handler

Runtime Object Model Services
Frequently in your programs, you need access to information about classes at runtime. MFC
supplies a macro for obtaining this type of information in a CRuntimeClass structure. In addi-
tion, the MFC application framework relies on a set of macros to declare and define runtime
abilities (such as object serialization and dynamic object creation). If you’ve used AppWizard at
all, you’ve seen these macros in the generated source-code files. If you’re an advanced MFC
programmer, you might have even used these macros yourself. Table E.9 lists the runtime
macros and their descriptions.

Runtime Object Model Services

Untitled-8 2/19/99, 10:18 AM781

Brands3/Art 3/SWG4 SEU Vis C++ 6 #1539-2 7.21.98 Ayanna APP E LP#3

782 Appendix E MFC Macros and Globals

Table E.9 Runtime Services Macros

Macro File Description

DECLARE_DYNAMIC Class declaration(.h) Enables runtime class informa-
tion access

DECLARE_DYNCREATE Class declaration(.h) Enables the class (derived from
CObject) to be created dynami-
cally and also enables runtime
class information access

DECLARE_OLECREATE Class declaration (.h) Enables object creation with
OLE automation

DECLARE_SERIAL Class declaration (.h) Enables object serialization, as
well as runtime class informa-
tion access

IMPLEMENT_DYNAMIC Class implementation (.cpp) Enables runtime class informa-
tion access

IMPLEMENT_DYNCREATE Class implementation (.cpp) Enables dynamic creation of the
object and runtime information
access

IMPLEMENT_OLECREATE Class implementation (.cpp) Enables object creation with
OLE

IMPLEMENT_SERIAL Class implementation (.cpp) Enables object serialization and
runtime class information
access

RUNTIME_CLASS Returns a CRuntimeClass
structure for the given class

Standard Command and Window IDs
A Windows application user can generate myriad standard messages. For example, whenever
the user selects a menu command from a standard menu like File or Edit, the program sends a
message. Each standard command is represented by an ID. To relieve the programmer of
having to define the dozens of IDs often used in a Windows application, Visual C++ defines
these symbols in a file called AFXRES.H. Some of these IDs have obvious purposes (for ex-
ample, ID_FILE_OPEN), but many others are used internally by MFC for everything from map-
ping standard Windows messages to their handlers, to defining string-table IDs, to assigning
IDs to toolbar and status bar styles.

There are far too many of these identifiers to list here. However, if you’re interested in seeing
them, just open the AFXRES.H file from your Visual C++ installation folder.

Untitled-8 2/19/99, 10:19 AM782

783

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

A P P E N D I X

Useful Classes

F

In this appendix

The Array Classes 784

The List Classes 791

The Map Classes 798

Collection Class Templates 802

The String Class 803

The Time Classes 805

Untitled-9 2/19/99, 10:20 AM783

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

784 Appendix F Useful Classes

MFC includes a lot more than classes for programming the Windows graphical user interface.
It also features many utility classes for handling such things as lists, arrays, times and dates,
and mapped collections. By using these classes, you gain extra power over data in your pro-
grams and simplify many operations involved in using complex data structures such as lists.

For example, because MFC’s array classes can change their size dynamically, you are relieved
of creating oversized arrays in an attempt to ensure that the arrays are large enough for the
application. In this way, you save memory. You don’t have to worry about resizing the arrays
yourself, and you avoid many of the subtle bugs and memory leaks that occur from mistakes in
array-resizing code. The other collection classes provide many other similar conveniences.

The Array Classes
MFC’s array classes enable you to create and manipulate one-dimensional array objects that
can hold virtually any type of data. These array objects work much like the standard arrays that
you’re familiar with using in your programs, except that MFC can enlarge or shrink an array
object dynamically at runtime. This means that you don’t have to be concerned with dimension-
ing your array just right when it’s declared. Because MFC’s arrays can grow dynamically, you
can forget about the memory waste that often occurs with conventional arrays, which must be
dimensioned to hold the maximum number of elements needed in the program, whether or not
you actually use every element.

The array classes include CByteArray, CDWordArray, CObArray, CPtrArray, CUIntArray,
CWordArray, and CStringArray. As you can tell from the classnames, each class is designed to
hold a specific type of data. For example, the CUIntArray, which is used in this section’s ex-
amples, is an array class that can hold unsigned integers. The CPtrArray class, on the other
hand, represents an array of pointers to void, and the CObArray class represents an array of
objects. The array classes are all nearly identical, differing only in the type of data that they
store. When you’ve learned to use one of the array classes, you’ve learned to use them all.
Table F.1 lists the member functions of the array classes and their descriptions.

Table F.1 Member Functions of the Array Classes

Function Description

Add() Appends a value to the end of the array, increasing the size of the array,
as needed.

ElementAt() Gets a reference to an array element’s pointer.

FreeExtra() Releases unused array memory.

GetAt() Gets the value at the specified array index.

GetSize() Gets the number of elements in the array.

GetUpperBound() Gets the array’s upper bound, which is the highest valid index at which
a value can be stored.

InsertAt() Inserts a value at the specified index, shifting existing elements upward,
as necessary, to accommodate the insert.

Untitled-9 2/19/99, 10:20 AM784

785

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

RemoveAll() Removes all the array’s elements.

RemoveAt() Removes the value at the specified index.

SetAt() Places a value at the specified index. Because this function will not
increase the array’s size, the index must be currently valid.

SetAtGrow() Places a value at the specified index, increasing the array’s size, as
needed.

SetSize() Sets the array’s initial size and the amount by which it grows when
needed. By allocating more than one element’s worth of space at a time,
you save time but might waste memory.

Array Templates
Because the only difference between all these array classes is the type of data they hold, they seem
like an obvious use for templates. In fact, they predate the implementation of templates in Visual
C++. There is a vector template in the Standard Template Library, discussed in Chapter 26, “Excep-
tions and Templates,” which holds simple lists of any single data type. Many developers find the MFC
array classes much easier to use than templates. There are also MFC collection templates, discussed
later in this chapter.

Introducing the Array Application
To illustrate how the array classes work, this chapter includes the Array application. When you
run the program, you see the window shown in Figure F.1. The window displays the array’s
current contents. Because the application’s array object (which is an instance of CUIntArray)
starts off with 10 elements, the values for these elements (indexed as 0 through 9) are dis-
played onscreen. The application enables you to change, add, or delete elements in the array
and see the results.

Function Description

FIG. F.1
The Array application
enables you to
experiment with MFC’s
array classes.

The Array Classes

Untitled-9 2/19/99, 10:21 AM785

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

786 Appendix F Useful Classes

You can add an element to the array in several ways. To see these choices, click in the
application’s window. The dialog box shown in Figure F.2 appears. Type an array index in the
Index box and the new value in the Value box. Then select whether you want to set, insert, or
add the element. When you choose Set, the value of the element you specify in the Index field
is changed to the value in the Value field. The Insert operation creates a new array element at
the location specified by the index, pushing succeeding elements forward. Finally, the Add
operation tacks the new element on the end of the array. In this case, the program ignores the
Index field of the dialog box.

Suppose, for example, that you enter 3 in the dialog box’s Index field and 15 in the Value field,
leaving the Set radio button selected. Figure F.3 shows the result: The program has placed the
value 15 in element 3 of the array, overwriting the previous value. Now type 2 in Index, 25 in
Value, select the Insert radio button, and click OK. Figure F.4 shows the result: The program
stuffs a new element in the array, shoving the other elements forward.

FIG. F.2
The Add to Array dialog
box enables you to add
elements to the array.

FIG. F.3
The value 15 has
been placed in array
element 3.

An interesting thing to try—something that really shows how dynamic MFC’s arrays are—is to
set an array element beyond the end of the array. For example, given the program’s state
shown in Figure F.4, if you type 20 in Index and 45 in Value and then choose the Set radio
button, you get the results shown in Figure F.5. Because there was no element 20, the array
class created the new elements that it needed to get to 20. You don’t need to keep track of how
many elements are in the array. Try that with an old-fashioned array.

Untitled-9 2/19/99, 10:21 AM786

787

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

Besides adding new elements to the array, you can also delete elements in one of two ways. To
do this, first right-click in the window. When you do, you see the dialog box shown in Figure
F.6. If you type an index in the Remove field and then click OK, the program deletes the se-
lected element from the array. This has the opposite effect of the Insert command because the
Remove command shortens the array, rather than lengthen it. If you want, you can select the
Remove All option in the dialog box. Then the program deletes all elements from the array,
leaving it empty.

FIG. F.4
The screen now shows
the new array element,
giving 11 elements
in all.

FIG. F.5
The array class has
added the elements
needed to set
element 20.

FIG. F.6
The Remove From Array
dialog box enables you
to delete elements
from the array.

The Array Classes

Untitled-9 2/19/99, 10:21 AM787

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

788 Appendix F Useful Classes

Declaring and Initializing the Array
Now you’d probably like to see how all this array trickery works. It’s really pretty simple. First,
the program declares the array object as a data member of the view class, like this:

CUIntArray array;

Then, in the view class’s constructor, the program initializes the array to 10 elements:

array.SetSize(10, 5);

The SetSize() function takes as parameters the number of elements to give the array initially
and the number of elements by which the array should grow whenever it needs to. You don’t
need to call SetSize() to use the array class. If you don’t, MFC adds elements to the array one
at a time, as needed, which can be slow. Unless you’re doing some heavy processing, though,
you’re not likely to notice any difference in speed. If your application doesn’t often add ele-
ments to its arrays and you are concerned about memory consumption, don’t use SetSize(). If
your application repeatedly adds elements and you have lots of memory available, using
SetSize() to arrange for many elements to be allocated at once will reduce the number of
allocations performed, giving you a faster application.

Adding Elements to the Array
After setting the array size, the program waits for the user to click the left or right mouse but-
tons in the window. When the user does, the program springs into action, displaying the appro-
priate dialog box and processing the values entered in the dialog box. Listing F.1 shows the
Array application’s OnLButtonDown() function, which handles the left mouse button clicks.

Chapter 3, “Messages and Commands,” shows you how to catch mouse clicks and arrange for a
message handler such as OnLButtonDown() to be called.

Listing F.1 CArrayView::OnLButtonDown()

void CArrayView::OnLButtonDown(UINT nFlags, CPoint point)
{
 ArrayAddDlg dialog(this);
 dialog.m_index = 0;
 dialog.m_value = 0;
 dialog.m_radio = 0;
 int result = dialog.DoModal();
 if (result == IDOK)
 {
 if (dialog.m_radio == 0)
 array.SetAtGrow(dialog.m_index, dialog.m_value);
 else if (dialog.m_radio == 1)
 array.InsertAt(dialog.m_index, dialog.m_value, 1);
 else
 array.Add(dialog.m_value);
 Invalidate();
 }
 CView::OnLButtonDown(nFlags, point);
}

T I P

Untitled-9 2/19/99, 10:21 AM788

789

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

This code starts by creating a dialog object and initializing it, as discussed in Chapter 2, “Dia-
logs and Controls.” If the user exits the dialog box by clicking the OK button, the
OnLButtonDown() function checks the value of the dialog box’s m_radio data member. A value
of 0 means that the first radio button (Set) is selected, 1 means that the second button (Insert)
is selected, and 2 means that the third button (Add) is selected.

Chapter 2, “Dialogs and Controls,” discusses displaying dialog boxes and getting values from them.

If the user wants to set an array element, the program calls SetAtGrow(), giving the array
index and the new value as arguments. Unlike the regular SetAt() function, which you can use
only with a currently valid index number, SetAtGrow() will enlarge the array as necessary to
set the specified array element. That’s how the extra array elements were added when you
chose to set element 20.

When the user has selected the Insert radio button, the program calls the InsertAt() function,
giving the array index and new value as arguments. This causes MFC to create a new array
element at the index specified, shoving the other array elements forward. Finally, when the
user has selected the Add option, the program calls the Add() function, which adds a new
element to the end of the array. This function’s single argument is the new value to place in the
added element. The call to Invalidate() forces the window to redraw the data display with the
new information.

Reading Through the Array
So that you can see what’s happening as you add, change, and delete array elements, the Array
application’s OnDraw() function reads through the array, displaying the values that it finds in
each element. Listing F.2 shows the code for this function.

Chapter 5, “Drawing on the Screen,” shows you how to write an OnDraw() function and how it is
called.

Listing F.2 CArrayView::OnDraw()

void CArrayView::OnDraw(CDC* pDC)
{
 CArrayDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // Get the current font’s height.
 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 int fontHeight = textMetric.tmHeight;
 // Get the size of the array.
 int count = array.GetSize();
 int displayPos = 10;

T I P

T I P

continues

The Array Classes

Untitled-9 2/19/99, 10:22 AM789

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

790 Appendix F Useful Classes

 // Display the array data.
 for (int x=0; x<count; ++x)
 {
 UINT value = array.GetAt(x);
 char s[81];
 wsprintf(s, “Element %d contains the value %u.”, x, value);
 pDC->TextOut(10, displayPos, s);
 displayPos += fontHeight;
 }
}

Here, the program first gets the current font’s height so that it can properly space the lines of
text that it displays in the window. It then gets the number of elements in the array by calling
the array object’s GetSize() function. Finally, the program uses the element count to control a
for loop, which calls the array object’s GetAt() member function to get the value of the cur-
rently indexed array element. The program converts this value to a string for display purposes.

Removing Elements from the Array
Because it is a right button click in the window that brings up the Remove from Array dialog
box, it is the program’s OnRButtonDown() function that handles the element-deletion duties.
Listing F.3 shows this function.

Listing F.3 CArrayView::OnRButtonDown()

void CArrayView::OnRButtonDown(UINT nFlags, CPoint point)
{
 ArrayRemoveDlg dialog(this);
 dialog.m_remove = 0;
 dialog.m_removeAll = FALSE;
 int result = dialog.DoModal();
 if (result == IDOK)
 {
 if (dialog.m_removeAll)
 array.RemoveAll();
 else
 array.RemoveAt(dialog.m_remove);
 Invalidate();
 }

 CView::OnRButtonDown(nFlags, point);
}

In this function, after displaying the dialog box, the program checks the value of the dialog
box’s m_removeAll data member. A value of TRUE means that the user has checked this option
and wants to delete all elements from the array. In this case, the program calls the array
object’s RemoveAll() member function. Otherwise, the program calls RemoveAt(), whose

Listing F.2 Continued

Untitled-9 2/19/99, 10:22 AM790

791

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

single argument specifies the index of the element to delete. The call to Invalidate() forces
the window to redraw the data display with the new information.

The List Classes
Lists are like fancy arrays. The MFC list classes use linked lists, which use pointers to link their
elements (called nodes) rather than depend on contiguous memory locations to order values.
Lists are a better data structure to use when you need to be able to insert and delete items
quickly. However, finding items in a list can be slower than finding items in an array because a
list often needs to be traversed sequentially to follow the pointers from one item to the next.

When using lists, you need to know some new vocabulary. Specifically, you need to know that
the head of a list is the first node in the list and the tail of the list is the last node in the list (see
Figure F.7). Each node knows how to reach the next node, the one after it in the list. You’ll see
these terms used often as you explore MFC’s list classes.

MFC provides three list classes that you can use to create your lists. These classes are CObList
(which represents a list of objects), CPtrList (which represents a list of pointers), and
CStringList (which represents a list of strings). Each of these classes has similar member
functions, and the classes differ in the type of data that they can hold in their lists. Table F.2
lists and describes the member functions of the list classes.

Table F.2 Member Functions of the List Classes

Function Description

AddHead() Adds a node to the head of the list, making the node the new head

AddTail() Adds a node to the tail of the list, making the node the new tail

Find() Searches the list sequentially to find the given object pointer and
returns a POSITION value

head

next next next

tail

FIG. F.7
A linked list has a head
and a tail, with the
remaining nodes in
between.

continues

The List Classes

Untitled-9 2/19/99, 10:22 AM791

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

792 Appendix F Useful Classes

FindIndex() Scans the list sequentially, stopping at the node indicated by the
given index, and returns a POSITION value for the node

GetAt() Gets the node at the specified position

GetCount() Gets the number of nodes in the list

GetHead() Gets the list’s head node

GetHeadPosition() Gets the head node’s position

GetNext() Gets the next node in the list when iterating over a list

GetPrev() Gets the previous node in the list when iterating over a list

GetTail() Gets the list’s tail node

GetTailPosition() Gets the tail node’s position

InsertAfter() Inserts a new node after the specified position

InsertBefore() Inserts a new node before the specified position

IsEmpty() Returns TRUE if the list is empty and returns FALSE otherwise

RemoveAll() Removes all nodes from a list

RemoveAt() Removes a single node from a list

RemoveHead() Removes the list’s head node

RemoveTail() Removes the list’s tail node

SetAt() Sets the node at the specified position

List Templates
Linked lists are another good use for templates. There is a list and a deque (double-ended queue) in
the Standard Template Library, discussed in Chapter 26, “Exceptions and Templates.” Many develop-
ers find the MFC list classes much easier to use than templates. There are also MFC collection
templates, discussed later in this chapter.

Introducing the List Application
As you’ve no doubt guessed, now that you know a little about list classes and their member
functions, you’re going to get a chance to see lists in action—in the List application. When you
run the application, you see the window shown in Figure F.8. The window displays the values of
the single node with which the list begins. Each node in the list can hold two different values,
both of which are integers.

Table F.2 Continued

Function Description

Untitled-9 2/19/99, 10:23 AM792

793

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

Using the List application, you can experiment with adding and removing nodes from a list. To
add a node, left-click in the application’s window. You then see the dialog box shown in Figure
F.9. Enter the two values that you want the new node to hold and then click OK. When you do,
the program adds the new node to the tail of the list and displays the new list in the window.
For example, if you enter the values 55 and 65 in the dialog box, you see the display shown in
Figure F.10.

FIG. F.8
The List application
begins with one node in
its list.

You can also delete nodes from the list. To do this, right-click in the window to display the
Remove Node dialog box (see Figure F.11). Using this dialog box, you can choose to remove
the head or tail node. If you exit the dialog box by clicking OK, the program deletes the speci-
fied node and displays the resulting list in the window.

FIG. F.9
A left click in the
window brings up the
Add Node dialog box.

FIG. F.10
Each node you add to
the list can hold two
different values.

The List Classes

Untitled-9 2/19/99, 10:23 AM793

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

794 Appendix F Useful Classes

If you try to delete nodes from an empty list, the List application displays a message box,
warning you of your error. If the application didn’t catch this possible error, the program

could crash when it tries to delete a nonexistent node. ■

Declaring and Initializing the List
Declaring a list is as easy as declaring any other data type. Just include the name of the class
you’re using, followed by the name of the object. For example, the List application declares its
list like this:

CPtrList list;

Here, the program is declaring an object of the CPtrList class. This class holds a linked list of
pointers, which means that the list can reference nearly any type of information.

Although there’s not much you need to do to initialize an empty list, you do need to decide
what type of information will be pointed to by the pointers in the list. That is, you need to de-
clare exactly what a node in the list will look like. The List application declares a node as shown
in Listing F.4.

Listing F.4 CNode Structure

struct CNode
{
 int value1;
 int value2;
};

Here, a node is defined as a structure holding two integer values. However, you can create any
type of data structure you like for your nodes. To add a node to a list, you use the new operator
to create a node structure in memory, and then you add the returned pointer to the pointer list.
The List application begins its list with a single node, which is created in the view class’s con-
structor, as shown in Listing F.5.

Listing F.5 CMyListView Constructor

CMyListView::CMyListView()
{
 CNode* pNode = new CNode;
 pNode->value1 = 11;
 pNode->value2 = 22;
 list.AddTail(pNode);
}

N O T E

FIG. F.11
Right-click in the
window to delete a
node.

Untitled-9 2/19/99, 10:23 AM794

795

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

In Listing F.5, the program first creates a new CNode structure on the heap and then sets the
node’s two members. After initializing the new node, a quick call to the list’s AddTail() mem-
ber function adds the node to the list. Because the list was empty, adding a node to the tail of
the list is the same as adding the node to the head of the list. That is, the program could have
also called AddHead() to add the node. In either case, the new single node is now both the head
and tail of the list.

Adding a Node to the List
Although you can insert nodes at any position in a list, the easiest way to add to a list is to add a
node to the head or tail, making the node the new head or tail. In the List application, you left-
click in the window to bring up the Add Node dialog box, so you’ll want to examine the
OnLButtonDown() function, which looks like Listing F.6.

Listing F.6 CMyListView::OnLButtonDown()

void CMyListView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Create and initialize the dialog box.
 AddNodeDlg dialog;
 dialog.m_value1 = 0;
 dialog.m_value2 = 0;
 // Display the dialog box.
 int result = dialog.DoModal();
 // If the user clicked the OK button...
 if (result == IDOK)
 {
 // Create and initialize the new node.
 CNode* pNode = new CNode;
 pNode->value1 = dialog.m_value1;
 pNode->value2 = dialog.m_value2;
 // Add the node to the list.
 list.AddTail(pNode);
 // Repaint the window.
 Invalidate();
 }
 CView::OnLButtonDown(nFlags, point);
}

In Listing F.6, after displaying the dialog box, the program checks whether the user exited the
dialog with the OK button. If so, the user wants to add a new node to the list. In this case, the
program creates and initializes the new node, as it did previously for the first node that it added
in the view class’s constructor. The program adds the node in the same way, too, by calling the
AddTail(). If you want to modify the List application, one thing you could try is to give the user
a choice between adding the node at the head or the tail of the list, instead of just at the tail.

The List Classes

Untitled-9 2/19/99, 10:23 AM795

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

796 Appendix F Useful Classes

Deleting a Node from the List
Deleting a node from a list can be easy or complicated, depending on where in the list you want
to delete the node. As with adding a node, dealing with nodes other than the head or tail re-
quires that you first locate the node that you want and then get its position in the list. You’ll
learn about node positions in the next section, which demonstrates how to iterate over a list. To
keep things simple, however, this program enables you to delete nodes only from the head or
tail of the list, as shown in Listing F.7.

Listing F.7 CMyListView::OnRButtonDown()

void CMyListView::OnRButtonDown(UINT nFlags, CPoint point)
{
 // Create and initialize the dialog box.
 RemoveNodeDlg dialog;
 dialog.m_radio = 0;
 // Display the dialog box.
 int result = dialog.DoModal();
 // If the user clicked the OK button...
 if (result == IDOK)
 {
 CNode* pNode;
 // Make sure the list isn’t empty.
 if (list.IsEmpty())
 MessageBox(“No nodes to delete.”);
 else
 {
 // Remove the specified node.
 if (dialog.m_radio == 0)
 pNode = (CNode*)list.RemoveHead();
 else
 pNode = (CNode*)list.RemoveTail();
 // Delete the node object and repaint the window.
 delete pNode;
 Invalidate();
 }
 }
 CView::OnRButtonDown(nFlags, point);
}

Here, after displaying the dialog box, the program checks whether the user exited the dialog
box via the OK button. If so, the program must then check whether the user wants to delete a
node from the head or tail of the list. If the Remove Head radio button was checked, the dialog
box’s m_radio data member will be 0. In this case, the program calls the list class’s
RemoveHead() member function. Otherwise, the program calls RemoveTail(). Both of these
functions return a pointer to the object that was removed from the list. Before calling either of
these member functions, however, notice how the program calls IsEmpty() to determine
whether the list contains any nodes. You can’t delete a node from an empty list.

Untitled-9 2/19/99, 10:24 AM796

797

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

Notice that when removing a node from the list, the List application calls delete on the
pointer returned by the list. It’s important to remember that when you remove a node from

a list, the node’s pointer is removed from the list, but the object to which the pointer points is still in
memory, where it stays until you delete it. ■

Iterating Over the List
Often, you’ll want to iterate over (read through) a list. For example, you might want to display
the values in each node of the list, starting from the head of the list and working your way to
the tail. The List application does exactly this in its OnDraw() function, as shown in Listing F.8.

Listing F.8 CMyListView::OnDraw()

void CMyListView::OnDraw(CDC* pDC)
{
 CListDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
// Get the current font’s height.
 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 int fontHeight = textMetric.tmHeight;
 // Initialize values used in the loop.
 POSITION pos = list.GetHeadPosition();
 int displayPosition = 10;
 int index = 0;
 // Iterate over the list, displaying each node’s values.
 while (pos != NULL)
 {
 CNode* pNode = (CNode*)list.GetNext(pos);
 char s[81];
 wsprintf(s, “Node %d contains %d and %d.”,
 index, pNode->value1, pNode->value2);
 pDC->TextOut(10, displayPosition, s);
 displayPosition += fontHeight;
 ++index;
 }
}

In Listing F.8, the program gets the position of the head node by calling the
GetHeadPosition() member function. The position is a value that many of the list class’s mem-
ber functions use to quickly locate nodes in the list. You must have this starting position value
to iterate over the list.

In the while loop, the iteration actually takes place. The program calls the list object’s
GetNext() member function, which requires as its single argument the position of the node to
retrieve. The function returns a pointer to the node and sets the position to the next node in the
list. When the position is NULL, the program has reached the end of the list. In Listing F.8, this
NULL value is the condition that’s used to terminate the while loop.

N O T E

The List Classes

Untitled-9 2/19/99, 10:24 AM797

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

798 Appendix F Useful Classes

Cleaning Up the List
There’s one other time when you need to iterate over a list. That’s when the program is about
to terminate and you need to delete all the objects pointed to by the pointers in the list. The List
application performs this task in the view class’s destructor, as shown in Listing F.9.

Listing F.9 CMyListView Destructor

CMyListView::~CMyListView()
{
 // Iterate over the list, deleting each node.
 while (!list.IsEmpty())
 {
 CNode* pNode = (CNode*)list.RemoveHead();
 delete pNode;
 }
}

The destructor in Listing F.9 iterates over the list in a while loop until the IsEmpty() member
function returns TRUE. Inside the loop, the program removes the head node from the list
(which makes the next node in the list the new head) and deletes the node from memory.
When the list is empty, all the nodes that the program allocated have been deleted.

CAUTION

Don’t forget that you’re responsible for deleting every node that you create with the new operator. If you fail
to delete nodes, you might cause a memory leak. In a small program like this, a few wasted bytes don’t
matter, but in a long-running program adding and deleting hundreds or thousands of list nodes, you could
create serious errors in your program. It’s always good programming practice to delete any objects you
allocate in memory.

Chapter 24, “Improving Your Application’s Performance,” discusses memory management and
preventing memory leaks.

The Map Classes
You can use MFC’s mapped collection classes for creating lookup tables. For example, you
might want to convert digits to the words that represent the numbers. That is, you might want
to use the digit 1 as a key to find the word one. A mapped collection is perfect for this sort of
task. Thanks to the many MFC map classes, you can use various types of data for keys and
values.

The MFC map classes are CMapPtrToPtr, CMapPtrToWord, CMapStringToOb, CMapStringToPtr,
CMapStringToString, CMapWordToOb, and CMapWordToPtr. The first data type in the name is the

T I P

Untitled-9 2/19/99, 10:24 AM798

799

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

key, and the second is the value type. For example, CMapStringToOb uses strings as keys and
objects as values, whereas CMapStringToString, which this section uses in its examples, uses
strings as both keys and values. All the map classes are similar and so have similar member
functions, which are listed and described in Table F.3.

Table F.3 Functions of the Map Classes

Function Description

GetCount() Gets the number of map elements

GetNextAssoc() Gets the next element when iterating over the map

GetStartPosition() Gets the first element’s position

IsEmpty() Returns TRUE if the map is empty and returns FALSE otherwise

Lookup() Finds the value associated with a key

RemoveAll() Removes all the map’s elements

RemoveKey() Removes an element from the map

SetAt() Adds a map element or replaces an element with a matching key

Map Templates
Maps and lookup tables are another good use for templates. There are set, multiset, map, and
multimap templates in the Standard Template Library, discussed in Chapter 26, “Exceptions and
Templates.” Many developers find the MFC map classes much easier to use than templates. There are
also MFC collection templates, discussed later in this chapter.

Introducing the Map Application
This section’s sample program, Map, displays the contents of a map and enables you to retrieve
values from the map by giving the program the appropriate key. When you run the program,
you see the window shown in Figure F.12.

The window displays the contents of the application’s map object, in which digits are used as
keys to access the words that represent the numbers. To retrieve a value from the map, click in
the window. You then see the dialog box shown in Figure F.13. Type the digit that you want to
use for a key and click OK. The program finds the matching value in the map and displays it in
another message box. For example, if you type 8 as the key, you see the message box shown in
Figure F.14. If the key doesn’t exist, the program’s message box tells you so.

The Map Classes

Untitled-9 2/19/99, 10:24 AM799

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

800 Appendix F Useful Classes

FIG. F.12
The Map application
displays the contents
of a map object.

FIG. F.13
The Get Map Value
dialog box enables you
to match a key with the
key’s value in the map.

FIG. F.14
This message box
displays the requested
map value.

Creating and Initializing the Map
The Map application begins with a 10-element map. The map object is declared as a data mem-
ber of the view class, like this:

CMapStringToString map;

This is an object of the CMapStringToString class, which means that the map uses strings as
keys and strings as values.

Declaring the map object doesn’t, of course, fill it with values. You have to do that on your own,
which the Map application does in its view class constructor, shown in Listing F.10.

Listing F.10 CMapView Constructor

CMapView::CMapView()
{
 map.SetAt(“1”, “One”);
 map.SetAt(“2”, “Two”);
 map.SetAt(“3”, “Three”);
 map.SetAt(“4”, “Four”);
 map.SetAt(“5”, “Five”);

Untitled-9 2/19/99, 10:25 AM800

801

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

 map.SetAt(“6”, “Six”);
 map.SetAt(“7”, “Seven”);
 map.SetAt(“8”, “Eight”);
 map.SetAt(“9”, “Nine”);
 map.SetAt(“10”, “Ten”);
}

The SetAt() function takes as parameters the key and the value to associate with the key in the
map. If the key already exists, the function replaces the value associated with the key with the
new value given as the second argument.

Retrieving a Value from the Map
When you click in Map’s window, the Get Map Value dialog box appears, so it’s probably not
surprising that the view class OnLButtonDown() member function comes into play somewhere.
Listing F.11 shows this function.

Listing F.11 CMapView::OnLButtonDown()

void CMapView::OnLButtonDown(UINT nFlags, CPoint point)
{
// Initialize the dialog box.
 GetMapDlg dialog(this);
 dialog.m_key = “”;
 // Display the dialog box.
 int result = dialog.DoModal();
 // If the user exits with the OK button...
 if (result == IDOK)
 {
 // Look for the requested value.
 CString value;
 BOOL found = map.Lookup(dialog.m_key, value);
 if (found)
 MessageBox(value);
 else
 MessageBox(“No matching value.”);
 }
 CView::OnLButtonDown(nFlags, point);
}

In OnLButtonDown(), the program displays the dialog box in the usual way, checking whether
the user exited the dialog box by clicking the OK button. If the user did, the program calls the
map object’s Lookup() member function, using the key that the user entered in the dialog box
as the first argument. The second argument is a reference to the string in which the function
can store the value it retrieves from the map. If the key can’t be found, the Lookup() function
returns FALSE; otherwise, it returns TRUE. The program uses this return value to determine
whether it should display the string value retrieved from the map or a message box indicating
an error.

The Map Classes

Untitled-9 2/19/99, 10:25 AM801

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

802 Appendix F Useful Classes

Iterating Over the Map
To display the keys and values used in the map, the program must iterate over the map, mov-
ing from one entry to the next, retrieving and displaying the information for each map element.
As with the array and list examples, the Map application accomplishes this in its OnDraw()
function, which is shown in Listing F.12.

Listing F.12 CMapView::OnDraw()

void CMapView::OnDraw(CDC* pDC)
{
 CMapDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 TEXTMETRIC textMetric;
 pDC->GetTextMetrics(&textMetric);
 int fontHeight = textMetric.tmHeight;
 int displayPosition = 10;
 POSITION pos = map.GetStartPosition();
 CString key;
 CString value;
 while (pos != NULL)
 {
 map.GetNextAssoc(pos, key, value);
 CString str = “Key ‘“ + key +
 “‘ is associated with the value ‘“ +
 value + “‘“;
 pDC->TextOut(10, displayPosition, str);
 displayPosition += fontHeight;
 }
}

Much of this OnDraw() function is similar to other versions that you’ve seen in this chapter. The
map iteration, however, begins when the program calls the map object’s GetStartPosition()
member function, which returns a position value for the first entry in the map (not necessarily
the first entry that you added to the map). Inside a while loop, the program calls the map
object’s GetNextAssoc() member function, giving the position returned from
GetStartPosition() as the single argument. GetNextAssoc() retrieves the key and value at
the given position and then updates the position to the next element in the map. When the
position value becomes NULL, the program has reached the end of the map.

Collection Class Templates
MFC includes class templates that you can use to create your own special types of collection
classes. (For more information on templates, please refer to the section “Exploring Templates”
in Chapter 26.) Although the subject of templates can be complex, using the collection class

Untitled-9 2/19/99, 10:25 AM802

803

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

templates is easy enough. For example, suppose that you want to create an array class that can
hold structures of the type shown in Listing F.13.

Listing F.13 A Sample Structure

struct MyValues
{
 int value1;
 int value2;
 int value3;
};

The first step is to use the template to create your class, like this:

CArray<MyValues, MyValues&> myValueArray;

Here, CArray is the template you use for creating your own array classes. The template’s two
arguments are the type of data to store in the array and the type of data that the new array
class’s member functions should use as arguments where appropriate. In this case, the type of
data to store in the array is structures of the MyValues type. The second argument specifies
that class member functions should expect references to MyValues structures as arguments,
where needed.

To build your array, you optionally set the array’s initial size:

myValueArray.SetSize(10, 5);

Then you can start adding elements to the array, like this:

MyValues myValues;
myValueArray.Add(myValues);

After you create your array class from the template, you use the array as you do any of MFC’s
array classes, described earlier in this chapter. Other collection class templates you can use are
CList and CMap. This means you can take advantage of all the design work put in by the MFC
team to create an array of Employee objects, or a linked list of Order objects, or a map linking
names to Customer objects.

The String Class
There are few programs that don’t have to deal with text strings of one sort or another. Unfor-
tunately, C++ is infamous for its weak string-handling capabilities, whereas languages such as
BASIC and Pascal have always enjoyed superior power when it comes to these ubiquitous data
types. MFC’s CString class addresses C++’s string problems by providing member functions
that are as handy to use as those found in other languages. Table F.4 lists the commonly used
member functions of the CString class.

The String Class

Untitled-9 2/19/99, 10:25 AM803

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

804 Appendix F Useful Classes

Table F.4 Commonly Used Member Functions of the CString Class

Function Description

Compare() A case-sensitive compare of two strings

CompareNoCase() Not a case-sensitive compare of two strings

Empty() Clears a string

Find() Locates a substring

Format() “Prints” variables in a CString much like the C sprintf function

GetAt() Gets a character at a specified position in the string

GetBuffer() Gets a pointer to the string’s contents

GetLength() Gets the number of characters in the string

IsEmpty() Returns TRUE if the string holds no characters

Left() Gets a string’s left segment

MakeLower() Lowercases a string

MakeReverse() Reverses a string’s contents

MakeUpper() Uppercases a string

Mid() Gets a string’s middle segment

Right() Gets a string’s right segment

SetAt() Sets a character at a specified position in the string

TrimLeft() Removes leading whitespace characters from a string

TrimRight() Removes trailing whitespace characters from a string

Besides the functions listed in the table, the CString class also defines a full set of operators for
dealing with strings. Using these operators, you can do things like concatenate (join together)
strings with the plus sign (+), assign values to a string object with the equal sign (=), access the
string as a C-style string with the LPCTSTR operator, and more.

Creating a string object is quick and easy, like this:

CString str = “This is a test string”;

Of course, there are lots of ways to construct your string object. The previous example is only
one possibility. You can create an empty string object and assign characters to it later, you can
create a string object from an existing string object, and you can even create a string from a
repeating character. The one thing you don’t have to do is decide the size of your string as you
make it. Managing the memory isn’t your problem any more.

Untitled-9 2/19/99, 10:26 AM804

805

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

After you have created the string object, you can call its member functions and manipulate the
string in a number of ways. For example, to convert all the characters in the string to upper-
case, you’d make a function call like this:

str.MakeUpper();

To lengthen a string, use the + or += operators, like this:

CString sentence = “hello “ + str;
sentence += “ there.”

To compare two strings, you’d make a function call like this:

str.Compare(“Test String”);

You can also compare two CString objects:

CString testStr = “Test String”;
str.Compare(testStr);

or neater still:

if (testStr == str)

If you peruse your online documentation, you’ll find that most of the other CString member
functions are equally easy to use.

The Time Classes
If you’ve ever tried to manipulate time values returned from a computer, you’ll be pleased to
learn about MFC’s CTime and CTimeSpan classes, which represent absolute times and elapsed
times, respectively. The use of these classes is straightforward, so there’s no sample program
for this section. However, the following sections get you started with these handy classes.
Before you start working with the time classes, look over Table F.5, which lists the member
functions of the CTime class, and Table F.6, which lists the member functions of the CTimeSpan
class.

Table F.5 Member Functions of the CTime Class

Function Description

Format() Constructs a string representing the time object’s time.

FormatGmt() Constructs a string representing the time object’s GMT (or UTC)
time. This is Greenwich Mean Time.

GetCurrentTime() Creates a CTime object for the current time.

GetDay() Gets the time object’s day as an integer.

GetDayOfWeek() Gets the time object’s day of the week, starting with 1 for Sunday.

continues

The Time Classes

Untitled-9 2/19/99, 10:26 AM805

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

806 Appendix F Useful Classes

GetGmtTm() Gets a time object’s second, minute, hour, day, month, year, day of the
week, and day of the year as a tm structure.

GetHour() Gets the time object’s hour as an integer.

GetLocalTm() Gets a time object’s local time, returning the second, minute, hour,
day, month, year, day of the week, and day of the year in a tm struc-
ture.

GetMinute() Gets the time object’s minutes as an integer.

GetMonth() Gets the time object’s month as an integer.

GetSecond() Gets the time object’s second as an integer.

GetTime() Gets the time object’s time as a time_t value.

GetYear() Gets the time object’s year as an integer.

Table F.6 Member Functions of the CTimeSpan Class

Function Description

Format() Constructs a string representing the time-span object’s time

GetDays() Gets the time-span object’s days

GetHours() Gets the time-span object’s hours for the current day

GetMinutes() Gets the time-span object’s minutes for the current hour

GetSeconds() Gets the time-span object’s seconds for the current minute

GetTotalHours() Gets the time-span objects total hours

GetTotalMinutes() Gets the time-span object’s total minutes

GetTotalSeconds() Gets the time-span object’s total seconds

Using a CTime Object
Creating a CTime object for the current time is a simple matter of calling the GetCurrentTime()
function, like this:

CTime time = CTime::GetCurrentTime();

Because GetCurrentTime() is a static member function of the CTime class, you can call it with-
out actually creating a CTime object. You do, however, have to include the class’s name as part
of the function call, as shown in the preceding code. As you can see, the function returns a

Table F.5 Continued

Function Description

Untitled-9 2/19/99, 10:27 AM806

807

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

CTime object. This object represents the current time. If you wanted to display this time, you
could call on the Format() member function, like this:

CString str = time.Format(“DATE: %A, %B %d, %Y”);

The Format() function takes as its single argument a format string that tells the function how
to create the string representing the time. The previous example creates a string that looks like
this:

DATE: Saturday, April 19, 1998

The format string used with Format() is not unlike the format string used with functions like
the old DOS favorite, printf(), or the Windows conversion function wsprintf(). That is, you
specify the string’s format by including literal characters along with control characters. The
literal characters, such as the “DATE:” and the commas in the previous string example, are
added to the string exactly as you type them, whereas the format codes are replaced with the
appropriate values. For example, the %A in the previous code example will be replaced by the
name of the day, and the %B will be replaced by the name of the month. Although the format-
string concept is the same as that used with printf(), the Format() function has its own set of
format codes, which are listed in Table F.7.

Table F.7 Format Codes for the Format() Function

Code Description

%a Day name, abbreviated (such as Sat for Saturday)

%A Day name, no abbreviation

%b Month name, abbreviated (such as Mar for March)

%B Month name, no abbreviation

%c Localized date and time (for the U.S., that would be something like 03/17/98
12:15:34)

%d Day of the month as a number (01–31)

%H Hour in the 24-hour format (00–23)

%I Hour in the normal 12-hour format (01–12)

%j Day of the year as a number (001–366)

%m Month as a number (01–12)

%M Minute as a number (00–59)

%p Localized a.m./p.m. indicator for 12-hour clock

%S Second as a number (00–59)

%U Week of the year as a number (00–51, considering Sunday to be the first day of the
week)

continues

The Time Classes

Untitled-9 2/19/99, 10:27 AM807

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

808 Appendix F Useful Classes

Table F.7 Continued

Code Description

%w Day of the week as a number (0–6, with Sunday being 0)

%W Week of the year as a number (00–51, considering Monday to be the first day of
the week)

%x Localized date representation

%X Localized time representation

%y Year without the century prefix as a number (00–99)

%Y Year with the century prefix as a decimal number (such as 1998)

%z Name of time zone, abbreviated

%Z Name of time zone, not abbreviated

%% Percent sign

Other CTime member functions such as GetMinute(), GetYear(), and GetMonth() are obvious
in their use. However, you may like an example of using a function like GetLocalTm(), which is
what the following shows:

struct tm* timeStruct;
timeStruct = time.GetLocalTm();

The first line of the previous code declares a pointer to a tm structure. (The tm structure is
defined by Visual C++ and shown in Listing F.14.) The second line sets the pointer to the tm
structure created by the call to GetLocalTm().

Listing F.14 The tm Structure

struct tm {
 int tm_sec; /* seconds after the minute - [0,59] */
 int tm_min; /* minutes after the hour - [0,59] */
 int tm_hour; /* hours since midnight - [0,23] */
 int tm_mday; /* day of the month - [1,31] */
 int tm_mon; /* months since January - [0,11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday - [0,6] */
 int tm_yday; /* days since January 1 - [0,365] */
 int tm_isdst; /* daylight saving time flag */
 };

The CTime class features a number of overloaded constructors, enabling you to create
CTime objects in various ways and using various times. ■

N O T E

Untitled-9 2/19/99, 10:28 AM808

809

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

F

VII
Part

App

Using a CTimeSpan Object
A CTimeSpan object is nothing more complex than the difference between two times. You can
use CTime objects in conjunction with CTimeSpan objects to easily determine the amount of time
that’s elapsed between two absolute times. To do this, first create a CTime object for the current
time. Then, when the time you’re measuring has elapsed, create a second CTime object for the
current time. Subtracting the old time object from the new one gives you a CTimeSpan object
representing the amount of time that has elapsed. The example in Listing F.15 shows how this
process works.

Listing F.15 Calculating a Time Span

CTime startTime = CTime::GetCurrentTime();
 //.
 //. Time elapses...
 //.
CTime endTime = CTime::GetCurrentTime();
CTimeSpan timeSpan = endTime - startTime;

The Time Classes

Untitled-9 2/19/99, 10:28 AM809

Brands3/Art3/SWG4 SEU Visual C++ 6 #1539-2 7.21.98 Ayanna APP F LP#3

810 Appendix F Useful Classes

Untitled-9 2/19/99, 10:28 AM810

811

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Index

Symbols
<< operator, 144

>> operator, 144

32-bit DLLs, 667-669
creating, 664-667
DiskFree DLL, creating,

665-667
exporting functions, 664-665
importing functions, 664-665
library file, 667

3D Controls option
(AppWizard), 17

A
A-keyword footnote, 256

About dialog box (ShowString
application), 167-168

About Visual C++ command
(Help menu), 752

accelerator tables (property
sheets), 736

accelerators (user interfaces),
709

Accept method (CAsyncSocket),
429

accessing databases, 532

Active desktop, removing, 520

Active Document servers,
creating, 367-371

document extensions, 369

Active Documents, 365-367

Active Messaging, 436

Active Template Library (ATL),
492

ActiveX, 290-292
Active Documents, 365-367
Automation servers, 299-300
Component Object Model, 290,

298-299
document-centered

applications, 290-292
interfaces, 298-300

IDispatch, 299-300
IUnknown, 298-299

object embedding,
294-297

containers, 295-296
drag and drop technique,

297
servers, 295-296

object linking, 292-293
containers, 295-296
servers, 295-296

type libraries, 389-391

ActiveX container/server
combination application,
365-367

ActiveX containers,
295-296, 304

ActiveX Control Test Container,
402

adding to Tools menu, 403
AppWizard-generated code,

304, 317-318
CShowStringApp class, 306
CShowStringCntrItem class,

315-318
CShowStringDoc class, 308
CShowStringView class,

308-314
in-place editing, 319-320
menus, 304-307

control test container, 402
adding to Tools menu, 403

deleting objects, 341-342
double clicks, handling, 330
drag and drop, 331

drag sources, 331-332
drop targets, 332-333
function skeletons, 333-335
OnDragDrop() function,

339-341
OnDragEnter() function,

335-337
OnDragLeave() function,

339
OnDragOver() function,

337-339

812

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

drawing multiple items, 326-327
global memory, 336
hit testing, 325-326
moving items, 322-323
resizing items, 322-323
restoring ShowString

functionality, 321
single clicks, handling, 327-330
test container, displaying

property sheets, 415
tracker rectangles,

322-325

ActiveX controls, 300-301
asynchronous properties, 480

BLOBs, 481
CDierollCtrl class,

482-484
CDierollDataPathProperty

class, 482, 486
OnDraw() function, 486-487
<PARAM> tag, 480
ReadyState property,

484-485
ReadyStateChange event,

484-485
ATL control

adding to projects, 493
asynchronous property,

adding, 504-507
attributes, setting,

495-497
Click event, firing, 519
Control Pad, 516-517
creating, 492-494
custom properties, adding,

500-503
Design Mode preparation,

522-523
DoRoll() function,

520-521
drawing, 508-512
event interface, adding

methods, 517-518
events, adding,

517-520
executable size, minimizing,

523-525
IConnectionPoint interface,

518
init safe registration, 522
initializing properties,

503-504

interfaces, 496
naming, 494
property bag persistence,

516
property page, adding,

512-516
ReadyState stock property,

adding, 500
ReadyStateChange event,

firing, 519-520
script safe registration, 522
stock properties,

497-500
testing, 520
threading models,

495-496
Web page use, 525-526

comparing to Java applets,
474-475

container applications, 301
debugging, 487-489
DLL control, 493
downloading CAB files, 467
dual-interface control, 496
embedding

Internet Explorer Web
pages, 466-469

Netscape Navigator Web
pages, 469-470

events, 301
init-safe registration,

470-474
internal data, 399
optimizing, 475-478

Activates When Visible
option, 476

Flicker-Free Activation
option, 478

Unclipped Device Context
option, 477

Windowless Activation
option, 477

optimizing with AppWizard, 479
properties, 399
rolling-die, 394-399

ambient properties, 416-418
BackColor property, 418-420
bitmap icon, creating, 407
building, 394-396
CDierollApp class, 396
CDierollCtrl class,

396-397

CDierollPropPage class,
397-398

colors, 416
designing, 399
DoPropExchange()

function, 400
DoRoll() function,

422-423
dots, displaying,

407-411
Dots property, 412-414
drawing code, 401-404
Ellipse() function, 409
event maps, 397
events, 404
ForeColor property, 418-420
future improvements,

422-423
message map entries,

405-406
OnDraw() function, 401,

408-411, 420-422
parameters, 395
properties, adding, 399-400
property pages, 397
property sheets, 412
PX functions, 400-401
Roll() function,

406-407
runtime licensing, 395
stock properties, 416
testing, 402-404

runtime licensing, 395
script-safe registration, 470-474
Single-Threaded Apartment

model, 496
testing, 487-489

ActiveX Document Objects, 365

ActiveX objects
inside-out activation, 317
outside-in activation, 316

ActiveX servers
Active Document server,

367-371
document extensions, 369

building
CInPlaceFrame class,

351-354
CShowStringApp class,

346-348

ActiveX containers

813

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

CShowStringDoc class,
348-349

CShowStringSrvrItem class,
349-351

CShowStringView class, 349
menus, 345-346
ShowString functionality,

360-364
CLSID, 356-357
menu resource strings, 355-356
Registry, editing, 358
server applications, building,

344
shortcomings, 354-360

Add Event dialog box, 404

Add Function button
(ClassWizard), 70

Add Member Function dialog
box, 173, 406

Add Member Variable dialog
box, 48

Add Node dialog box, 793

Add Property to Interface dialog
box, 501

Add to Array dialog box, 786

Add to Project command
(Project menu), 739

Add Windows Message Handler
dialog box, 70-71

AddBar() function, parameters,
203

AddDocTemplate()
function, 95

adding
check boxes to rebars, 202-204
panes to status bar, 194

command IDs, creating,
195-196

command-update handler,
198-199

default strings, creating,
196-197

indicator array,
196-197

toolbar buttons, 188-192
drawing buttons, 188
message handlers,

189-190
properties, defining, 189-190

Advanced command (Edit
menu), 732

Advanced Options dialog box,
17-19

AFX prefix (MFC functions),
700

AFX ZERO INIT OBJECT
macro, 699

AfxBeginThread() function,
632

AfxOleLockApp() function, 377

aggregation, 689

algorithms, scaffolding (console
applications), 659-660

aliases (namespaces), 629-630

AllocateBuffer() function,
throwing exceptions,
611-614

allocating memory (objects),
687

free store, 688
heap, 688

ambient properties (ActiveX
controls), 399, 416-418

dispids, 417
variable types, 417

anonymous enums, 102

API functions, 698-700

applets (Java), comparing to
ActiveX controls, 474-475

application types, 13

application-centered directory
structure, 291

application-centered thinking,
290-291

applications
ActiveX container/server

combination, 365-367
ActiveX server

Active Document server,
367-371

AppWizard, 344
AppWizard server

boilerplate, 344
building, 344
CInPlaceFrame class,

351-354

CLSID, 356-357
CShowStringApp class,

346-348
CShowStringDoc class,

348-349
CShowStringSrvrItem class,

349-351
CShowStringView class, 349
menu resource strings,

355-356
menus, 344-346
Registry, editing, 358
shortcomings, 354-360
ShowString functionality,

360-364
adding mail support,

433-435
Array application,

785-787
adding elements to arrays,

786-789
deleting elements from

arrays, 787, 790
initializing arrays, 788
reading through arrays,

789-790
code

viewing by class
arrangement,
714-718

viewing by file arrangement,
718

Common sample program,
206-207

view, scrolling,
240-242

console applications, 28
creating, 656-660
making multi-threaded, 659
object-oriented console

applications, 657-659
scaffolding, 659-660
source files, creating,

656-657
container applications, 295-296

ActiveX controls, 301
controller application, building,

387-389
creating, 12

Advanced Options dialog
box, 17-19

classnames, confirming, 19
commenting code, 19

applications

814

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

compound document
support, 15-16

database support, 14
dynamic link libraries, 19
filenames, confirming, 19
frame properties, 18
interface appearance

options, 16-17
interfaces, choosing, 12
resource language settings,

14
statically linked MFC

libraries, 19
test phase, 21-22

dialog-based, see dialog-based
applications

document-centered (ActiveX),
290-292

document/view applications, 82
editing (AppWizard), 28
Employee application

creating, 533-539
database display, creating,

539-542
DoFilter() function, 556
filtering, adding,

550-555
OnMove() function, 549
OnRecordAdd() function,

549
OnRecordDelete() function,

550
OnSortDept() function, 555
records, adding/deleting,

542-548
registering the database,

533-535
sorting, adding,

550-555
File Demo application, 140

building, 141-145
displaying document data,

142
document classes,

140-141
editing document data,

142-143
initializing document data,

141-142
File Demo 2 application

building, 146-150
CMessages class,

146-150

improving performance, 586-596
ASSERT macro,

586-587
debug-only features, 588
memory leaks, sealing,

590-594
optimization, 594-595
profiling, 595-596
TRACE macro, 587-588

information and management
functions, 774-775

Internet client applications,
WinInet classes, 437-438

Internet Query application
designing, 444-445
Finger protocol queries,

458-460
FTP site queries,

453-455
Gopher site queries, 455-457
HTTP site queries,

448-453
Query dialog box, building,

445-447
user interface, building,

445-447
Whois protocol queries,

460-462
List application, 792-794

adding nodes to lists,
793-795

declaring nodes, 794
deleting nodes from lists,

793-797
initializing lists,

794-795
iterating over lists, 797-798

Map application, 799-800
creating maps, 800
initializing maps, 800
iterating over maps, 802
values, retrieving from

maps, 801
MDI applications, 21

boilerplate code
(AppWizard), analyzing,
34-37

messaging-aware, 432
messaging-based, 433
messaging-enabled, 432
multiple document interface,

creating, 186

Paint1 application, 99-100
brushes, 110-113
building, 100
pens, 109-111
starter application,

99-100
switching displays, 102-103
view fonts, changing,

104-107
windows, sizing and

positioning, 107
WM PAINT message,

100-102
print-capable applications,

creating, 122-124
Property Sheet Demo

application, 269-279
associating resources with

classes, 275-276
basic file, creating, 269
property sheet class,

creating, 276-279
resources, adding,

273-274
resources, editing,

270-272
running, 279-280

property sheets, adding,
280-281

Publishing application, 562
application shell, building,

566-568
connecting stored

procedures to C++ code,
575-579

creating stored procedures,
574-575

data connections,
568-570

data source, setting up,
562-566

Query Designer,
570-572

stored procedures, 571-574
Rectangles application,

creating, 87-91
OnDraw() function,

89-90
OnLButtonDown()

function, 90
OnNewDocument()

function, 89
SetModifiedFlag() function,

90

applications

815

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Registry use, 156-157
Scroll application

building, 114-117
decreasing lines (adding

code),
118-120

increasing lines (adding
code), 117

Serialize() function, 115
SDI applications, analyzing

boilerplate code (AppWizard),
29-34

server applications, 296
ShowString application

command help,
programming,
251-252

command messages,
catching, 172-174

Contents file adjustments,
264-265

context help, programming,
253-255

creating, 160
CShowStringApp

class, 67
dialog box class, 170-172,

177
dialog boxes, 166-169,

174-175
displaying strings, 161
document, adding member

variables, 177
help text topics, adding,

259-263
help text, writing,

255-257
How to Modify Text topic,

changing,
263-264

menus, 164-166
OnDraw() function, 180-181
OnToolsOptions() function,

179
placeholder strings,

changing, 257-259
ShowString, see ShowString

application
testing, diagnostic services,

778-779
Thread application

AppWizard settings, 634
building, 633-636
Thread menu, adding, 634

user interfaces, 708
accelerators, 709
ClassView, 714-718
dialog boxes, 709-710
FileView, 718
icons, 710-711
menus, 710-712
string tables, 711
toolbars, 712
version information, 713

Wizard Demo application,
running, 281-283

see also programs

Apply() function, 514-515

AppWizard
3D Controls option, 17
ActiveX container code, 304

CShowStringApp class, 306
CShowStringCntrItem class,

315-318
CShowStringDoc class, 308
CShowStringView class,

308-314
in-place editing,

319-320
menus, 304-307

ActiveX container/server
combination application,
365-367

ActiveX controls, optimizing,
475-479

ActiveX server
Active Document server,

367-371
CInPlaceFrame class,

351-354
CLSID, 356-357
CShowStringApp class,

346-348
CShowStringDoc class,

348-349
CShowStringSrvrItem class,

349-351
CShowStringView class, 349
menu resource strings,

355-356
menus, 344-346
Registry, editing, 358
shortcomings, 354-360

ActiveX server application, 344
analyzing boilerplate code, 29

dialog-based applications,
37-39

MDI applications,
34-37

SDI applications, 29-34
applications

Advanced Options dialog
box, 17-19

classnames, confirming, 19
commenting code, 19
compound document

support, 15-16
creating, 12
database support, 14
dynamic link libraries, 19
editing, 28
filenames, confirming, 19
frame properties, 18
interface appearance

options, 16-17
interfaces, choosing, 12
resource language settings,

14
statically linked MFC

libraries, 19
testing, 21-22

ATL COM project, 26
ATL control, creating, 492-494
Automation Boilerplate, 374

CShowStringApp object,
374-376

CShowStringDoc document
class,
376-377

Context-Sensitive Help option,
249

Custom AppWizard project, 26
custom AppWizards,

601-605
adding to AppWizards list,

603
creating, 602-603

databases, ODBC classes, 533
DevStudio Add-In Wizard

project, 27
dialog-based applications,

creating, 22-25
document/view applications, 82
documents, saving/loading

states, 141
File Demo application

building, 141-145
displaying document data,

142

AppWizard

816

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

editing document data,
142-143

initializing document data,
141-142

Help system support,
249-250

Internet Query application
designing, 444-445
Query dialog box, building,

445-447
user interface, building,

445-447
ISAPI Extension Wizard

project, 27
Makefile project, 27
MAPI support, 433-435
MFC ActiveX ControlWizard

project, 27
MFC AppWizard project (DLL),

27
Paint1 application, creating,

99-100
print-capable applications,

creating, 122-124
project information summary,

87-88
Publishing application, building

application shell, 566-568
rolling-die control

building, 394-396
CDierollApp class, 396
CDierollCtrl class,

396-397
CDierollPropPage class,

397-398
Ellipse() function, 409
event maps, 397
parameters, 395
property pages, 397
PX functions, 400
runtime licensing, 395

Scroll application
building, 114-117
Serialize() function, 115

scrolling windows, creating, 114
ShowString application,

creating, 160
dialog boxes, 166-169,

174-175
displaying strings, 161
menus, 164-166

Thread application
building, 633-636
settings, 634
Thread menu, adding, 634

toolbars, 186
view classes, specifying, 92-93
Win32 Application project, 27
Win32 Console Application

project, 28
Win32 Dynamic Link Library

project, 28
Win32 Static Library project, 28

arguments
Create() function, 216
WaitForSingleObject()

function, 641

Array application, 785-787
adding elements to arrays,

786-789
deleting elements from arrays,

787, 790
initializing arrays, 788
reading through arrays, 789-790

array classes, 784
member functions,

784-785
thread-safe array classes, 644

arrays, indicator array,
196-197

AssertValid() function, 318

associating resources with
classes (Property Sheet Demo
application),
275-276

asynchronous monikers, 481

asynchronous programming,
429

asynchronous properties, 480
adding to ATL control, 504-507
BLOBs, 481
CDierollCtrl class, adding

image property, 482-484
CDierollDataPathProperty

class, 482, 486
OnDraw() function,

486-487
<PARAM> tag, 480
ReadyState property,

484-485
ReadyStateChange event,

484-485

asynchronous sessions
(Internet sessions), 451

asynchronous sockets, 454

AsyncSelect method
(CAsyncSocket), 430

ATL (Active Template Library),
492

ATL COM project (AppWizard),
26

ATL control
adding to projects, 493
attributes

interfaces, 496
threading models,

495-496
attributes, setting,

495-497
Click event, firing, 519
Control Pad, 516-517
creating, 492-494
custom properties

adding, 500-503
asynchronous property,

adding, 504-507
initializing, 503-504

Design Mode preparation,
522-523

DoRoll() function,
520-521

drawing, 508-512
event interface, adding

methods, 517-518
events, adding, 517-520
executable size, minimizing,

523-525
IConnectionPoint interface, 518
init safe registration, 522
interfaces, 496
naming, 494
property bag persistence, 516
property page, adding, 512-516
ReadyStateChange event, firing,

519-520
script safe registration, 522
stock properties, 497

Object Wizard code, 498-500
ReadyState, adding, 500

testing, 520
threading models,

495-496
Web page use, 525-526

AppWizard

817

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Attach method
CAsyncSocket, 430
CSocket, 431

attributes, 560
ATL control, 495-497

interfaces, 496
threading models,

495-496
<OBJECT> tag, CODEBASE,

467
<PARAM> tag, 480

auto-pr managed pointer,
625-626

Autocomplete, 733

Autocompletion feature, 51

automatic pointers (memory
leaks), 592-594

Automation Boilerplate
(AppWizard), 374

CShowStringApp object, 374-
376

CShowStringDoc document
class, 376-377

Automation controller, 299

Automation properties
(ShowString application),
377-382

Automation servers,
299-300, 374

ActiveX interfaces, IUnknown,
299-300

building controller applications,
387

axfDump object, 769-772

B
BackColor property (rolling-die

control), 418-420

base classes, 684

Batch Build command (Build
menu), 743

Batch Build dialog box, 743

BeginPaint () function, 101

beginthreadex, 769

Bind method (CAsyncSocket),
430

bitmap icons, creating rolling-
die control, 407

BLOBs (binary large objects),
481

blocking, 429

boilerplate code, 12
analyzing (AppWizard), 29

dialog-based applications,
37-39

MDI applications,
34-37

SDI applications, 29-34

boilerplates, 26

Bookmarks command (Edit
menu), 732

Bookmarks dialog box, 732

BOOL data type, 777

bottlenecks, finding,
595-596

breakpoints, 758
setting, 760
variable values, examining,

761-764
yellow arrow, 761

Breakpoints command (Edit
menu), 733

Breakpoints dialog box, 733

browse code footnote, 257

Browse dialog box, 744

Browse Info tab (Project
Settings dialog box), 741

brushes, 110-113
hatch style, 112

BSTR data type, 777

buddy edit control, 213

Build command (Build menu),
742

Build menu, 742-743

Build Mini-bar toolbar, 755

build tag footnote, 257

Button control, 46

button editor, 188

button template, 188

buttons
Add Function (ClassWizard), 70
graying (command updating),

74-76
CCmdUI object, 75-76
CWhoisView object, 76

radio buttons, 58-59
InitInstance() function, 58
OnInitDialog() function, 58

toolbar buttons
adding, 188-192
deleting, 186-188
drawing, 188
message handlers,

189-190
properties, defining, 189-190

wizard buttons
responding to, 285
setting, 284

BYTE data type, 777

C
C++ code, connecting to stored

procedures, 575-579

c-style window class, 694

C/C++ tab (Project Settings
dialog box), 740

CAB files
downloading ActiveX controls,

467
Web page example, 469

Call Stack window, 763

CancelBlockingCal method
(CSocket), 431

CApp1Doc class, header file,
82-84

CApp1View class, header file,
84-86

captions (menu items), 711

CArchive objects, creating,
153-154

Cascade command (Window
menu), 749

cascading menus (Visual
SourceSafe), 583-584

cascading menus

818

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

CAsyncSocket member
functions (Winsock),
429-431

catch block (exceptions),
608-610

multiple, using with try blocks,
615-617

placing, 611-615

CATCH macro (exceptions),
617

catching commands with
ClassWizard, 76-77

catching messages
with ClassWizard, 69

Add Windows Message
Handler dialog box, 70-71

classes, 72
Tabbed dialog box,

69-70
with MFC code, 69

CButton class, 701

CCmdTarget class, 701

CCmdUI object, command
updating, 75-76

CCountArray class, 644-645

CCountArray2 class, 648-650

CCtrlView class, 92

CDaoRecordView class, 92

CDatabase class, 533

CDierollApp class (rolling-die
control), 396

CDierollCtrl class
image property, adding, 482-484
rolling-die control,

396-397

CDierollDataPathProperty
class, 482, 486

CDierollPropPage class (rolling-
die control),
397-398

CDumpContext class,
769-772

CEditView class, 92

centering, adding (help text
topics), 262-263

CEvent constructor, 640

CFile class, 151-153
file mode flags, 152-153
member functions,

151-152

CFirstSDIApp class
constructor, 31
header file, 29-30

CFormView class, 92

Character Map utility, 13

character sets, international
software development issues,
670-671

CHARFORMAT structure (rich
edit control), 235-236

ChatSrvr program (sockets),
432

Chatter program (sockets), 432

Check box control, 46

check boxes, adding to Options
dialog box (ShowString
application), 176

CHtmlView class, 92

CInPlaceFrame class (ActiveX
server), 351-354

CInternetSession constructor,
parameters, 449-450

class keyword, 618

class templates, creating,
620-624

instantiating objects,
621-624

multiple parameters, passing,
623

classes, 678-679, 701-702
array classes, 784-787

adding elements,
786-789

deleting elements,
787, 790

initializing arrays, 788
member functions, 784-785
reading through arrays,

789-790
associating with resources

(Property Sheet Demo
application), 275-276

base classes, 684
CApp1Doc class, header file,

82-84

CApp1View class, header file,
84-86

catching messages, 72
CButton, 701
CCmdTarget, 701
CCountArray class,

644-645
CCountArray2, 648-650
CDatabase, 533
CDierollApp (rolling-die

control), 396
CDierollCtrl

event maps, 397
image property, adding,

482-484
property pages, 397
rolling-die control, 396-397

CDierollDataPathProperty, 482,
486

CDierollPropPage (rolling-die
control), 397-398

CDumpContext, 769-772
CFile, 151-153

file mode flags,
152-153

member functions, 151-152
CInPlaceFrame (ActiveX

server), 351-354
CMessages, 146-150

editing, 149-150
implementation file, 148-149
saving/loading strings,

145-146
Serialize() function, 148-150

CObject, 701
collection class templates,

802-803
CPrintInfo class members, 134
CRecordset, 533
CRecordView, 533
CShowStringApp

ActiveX container code, 306
ActiveX server,

346-348
message maps, 67

CShowStringCntrItem (ActiveX
container code), 315-318

CShowStringDoc
ActiveX container code, 308
ActiveX server,

348-349
CShowStringDoc document

class, 376-377

CAsyncSocket member functions

819

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

CShowStringSrvrItem (ActiveX
server), 349-351

CShowStringView
ActiveX container code,

308-314
ActiveX server, 349

CSomeResource, 651-652
CStatusBar, methods, 194
CString class, 144
CToolBar class, member

functions, 191-193
CWinApp class, 157
CWnd, 698-702
DAO, comparing to ODBC,

556-558
derived classes, 684
dialog box classes,

44, 50-59
ClassWizard code,

analyzing, 53
creating, 47-49
displaying dialog boxes,

50-52
list box control, 54-57
radio buttons, 58-59
ShowString application,

170-172, 177
document class, 82-84

OnNewDocument()
function, 84

Rectangles application,
creating, 87-89

Serialize() function, 84
document classes,

140-141
persistence, 141
saving/loading states, 141

in-place frame class (ActiveX
server),
351-354

ISAPI, 439
list classes, 791-794

adding nodes to lists,
793-795

declaring nodes, 794
deleting nodes from lists,

793-797
initializing lists,

794-795
iterating over lists, 797-798
linked lists, 791
member functions, 791-792

map classes, 798-800
creating maps, 800
initializing maps, 800
iterating over maps, 802
member functions, 799
values, retrieving from

maps, 801
MFC class inheritance tree, 701
ODBC, 533

comparing to DAO, 556-558
persistent class

CMessages class,
146-150

creating, 145-150
File Demo 2 application,

146-150
saving/loading strings,

145-146
Serialize() function, 148-149

property sheet class, creating
(Property Sheet Demo
application), 276-279

serializing member variables,
146

string classes, 803
CString, 777, 804
CTime object, 806-808
CTimeSpan object, 809
string objects, creating/

manipulating,
804-805

subclasses, 684
superclasses, 684
thread-safe array classes, 644
time classes, 805

CTime member functions,
805-806

CTimeSpan member
functions, 806

view classes, 84-87, 91-93
GetDocument() function, 86
MFC class hierarchy, 93
printing functions, 133
Rectangles application,

creating, 89-91
window class, 694

c-style window class, 694
WNDCLASS structure, 695
WNDCLASSA structure, 694

WinInet, 437-438
Finger protocol queries,

458-460

FTP sites, querying, 453-455
Gopher sites, querying,

455-457
HTTP sites, querying,

448-453
Whois protocol queries,

460-462
word class, 694

classnames, confirming
applications, creating, 19
dialog-based applications,

creating, 24

ClassView, 714-718
class shortcut menu commands,

715-716
function shortcut menu

commands, 716-717
InitInstance() function, 50
variable shortcut menu

commands, 717-718

ClassView window, 277

ClassWizard
Automation page, 378
catching commands, 76-77
command updating, 76-77
custom properties, adding to

rolling-die control, 399-400
delimiters, 775-776
dialog box classes

creating, 47-49, 170-172
member variables, adding

(ShowString application),
177

events, adding to controls,
404-405

Member Variables tab, 48
message maps, creating, 69

Add Windows Message
Handler dialog box, 70-71

classes, 72
Tabbed dialog box,

69-70
recordset definitions, editing,

576

ClassWizard command (View
menu), 733

ClassWizard dialog box, 90

Clean command (Build menu),
743

Click event, 404

Click event

820

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

adding to controls,
404-405

ATL control, 519

client interfaces (MAPI), 435
Active Messaging, 436
Common Messaging Calls,

435-436
Extended MAPI, 436

Clipboard formats, 334

CListView class, 92

Close All command (Window
menu), 748

Close command
File menu, 724
Window menu, 748

Close method (CAsyncSocket),
430

Close Source Browser File
command (Tools menu), 744

Close Workspace command
(File menu), 724

CLSIDs
ActiveX server, 356-357
embedding ActiveX controls,

466

CMC (Common Messaging
Calls), 435-436

CMessages class, 146-150
editing, 149-150
implementation file,

148-149
Serialize() function,

148-150
strings, saving/loading, 145-146

cnt file extension (Help
systems), 248

CObject class, 701

code
adding comments

applications, 19
dialog-based applications, 23

boilerplate code, 12
analyzing (AppWizard),

29-34
bottlenecks, finding, 595-596
C++ code, connecting to stored

procedures, 575-579

drawing code, rolling-die
control, 401-404

editing (Visual editor), 719
shortcut menu,

721-722
syntax coloring, 720
text blocks, 720-721
typing modes, 719-720

inline code, 679-680
optimizing, 594-595
reusable code, 598
reusing (inheritance), 683-684

overriding functions, 685
pointers, 686-687
polymorphism,

686-687
protected access, 685

viewing
arranged by class,

714-718
arranged by file, 718

code listings
Accidental Destruction, 691
author_ytd results (@sales =

4000), 575
author_ytd, the New Stored

Procedure, 574
BankAccount Constructor, 681
BankAccount with Inline Code,

679
BankAccount’s Withdraw()

Function, 680
Basic Form of a Function

Template, 618
Calculating a Time Span, 809
CArrayView OnDraw(), 789
CArrayView

OnLButtonDown(), 788
CArrayView

OnRButtonDown(), 790
Causing Memory Leaks,

590-591
CCOUNTARRAY2.H -

CCountArray2 Class Header
File, 649

CDieRoll DoRoll(), 521
CDieRoll OnDraw() - Draw a

Number, 510
CDieRoll OnDraw() - Draw a

Solid Background, 509
CDieRoll OnDraw() - Draw

Dots, 510

CDieRoll OnDraw() - Use the
Bitmap, 508

CDieRoll OnLButtonDown(),
519

CDieRoll Roll(), 504
CDieRoll(), 505
CDierollPropPage

DoDataExchange(), 398
CEmployeeView DoFilter(),

555
CEmployeeView OnMove(),

548
CEmployeeView

OnRecordAdd(), 547
CEmployeeView

OnRecordDelete(), 548
CEmployeeView

OnSortDepartment(), 553
CEmployeeView OnSortId(),

553
CEmployeeView

OnSortName(), 554
CFirstMDIApp InitInstance()

function, 36
CFirstSDIApp InitInstance()

function, 31
Changes to TryFinger(), 462
Changing Document’s Data,

143
CHARFORMAT Structure,

Defined by MFC, 235
CheckingAccount and

SavingsAccount, 684
CMainFrame

OnFileChangestring(), 200
CMainFrame

PreCreateWindow() function,
108

CMapView Constructor, 800
CMapView OnDraw(), 802
CMapView OnLButtonDown(),

801
CMessages Class

Implementation File, 148-149
CMyListView Constructor, 794
CMyListView Destructor, 798
CMyListView OnDraw(), 797
CMyListView

OnLButtonDown(), 795
CMyListView

OnRButtonDown(), 796
CMyScrollView OnDraw()

function, 116

Click event

821

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

CMyScrollView
OnLButtonDown() function,
118

CMyScrollView
OnRButtonDown() function,
118

CNode Structure, 794
CntrItem.cpp - Constructor, 322
CntrItem.cpp -

CShowStringCntrItem
OnActivate(), 316

CntrItem.cpp -
CShowStringCntrItem
OnChange(), 315

CntrItem.cpp -
CShowStringCntrItem
OnChangeItemPosition(),
317

CntrItem.cpp -
CShowStringCntrItem
OnDeactivateUI(), 317

CntrItem.cpp -
CShowStringCntrItem
OnGetItemPosition(), 316

CntrItem.cpp -
CShowStringCntrItem
Serialize(), 318, 323

Command definitions, 436
CommonView.cpp -

CCommonView
CreateProgressBar(), 208

CommonView.cpp -
CCommonView
CreateRichEdit(), 233

CommonView.cpp -
CCommonView
CreateTrackBar(), 211

CommonView.cpp -
CCommonView
CreateUpDownCtrl(), 213

CommonView.cpp -
CCommonView OnHScroll(),
212

CommonView.cpp - Changing
Paragraph Formats, 236

CommonView.h - Declaring the
Controls, 207

COUNTARRAY.CPP -
CCountArray Class
Implementation File, 645

COUNTARRAY.H -
CCountArray Class Header
File, 644

COUNTARRAY2.CPP -
CCountArray2 Class
Implementation File, 649

CPage1 OnSetActive(), 284
CPaint1View OnDraw()

function, 102
CPaint1View

OnLButtonDown() function,
103

CPaint1View ShowBrushes()
function, 111

CPaint1View ShowFonts()
function, 105

CPaint1View ShowPens()
function, 109

CPropsheetView OnDraw(),
278

CPropsheetView
OnPropsheet(), 279

CPublishingSet
GetDefaultSQL() from
AppWizard, 575

CPublishingSet
GetDefaultSQL() to Call Your
Stored Procedure, 575

CQueryDlg OnQuery(), 448
CQueryDlg TryFinger(),

459-460
CQueryDlg TryFinger()

Excerpt, 459
CQueryDlg TryFTPSite(), 454
CQueryDlg TryGopherSite(),

455-456
CQueryDlg TryURL(),

449, 452
CQueryDlg TryWhois(),

461-462
CREATESTRUCT structure,

108
CRecsDoc OnNewDocument(),

89
CRecsView OnDraw(), 89
CRecsView OnLButtonDown(),

90
CScrollDoc Serialize()

function, 116
CShowStringSrvrItem

OnDraw(), 362-363
CShowStringView

OnLButtonDown() -
Implementing a Drag Source,
331

CThreadView
OnThreadended(), 640

CToolView OnCircle(), 191
CView OnPaint() function, 101
CWizView OnFileWizard(),

283-284
CWnd CreateEx() from

WINCORE.CPP, 699-700
Declaring the BankAccount

Class, 678
Defining a Class Template, 621
Defining a Function Outside of

the Namespace Definition,
628

Defining a Namespace, 627
Defining an Unnamed

Namespace, 629
dialog16.h - Main Header file,

37
DieRoll.cpp - CDieRoll

OnData(), 507
DieRoll.cpp - get_Image() and

put_Image(), 505
DieRoll.h - Property Map, 516
dieroll.htm, 525
DierollCtl.cpp - Adjusting Xunit

and Yunit, 411
DierollCtl.cpp - CDierollCtrl

CDierollCtrl(), 485
DierollCtl.cpp - CDierollCtrl

CDierollCtrlFactory
UpdateRegistry(), 473

DierollCtl.cpp - CDierollCtrl
DoPropExchange(), 400

DierollCtl.cpp - CDierollCtrl
OnDraw(), 401, 408-409, 413,
421

DierollCtl.cpp - CDierollCtrl
OnResetState(), 484

DierollCtl.cpp - CDierollCtrl
Roll(), 406

DierollCtl.cpp - Completed Get
and Set Functions, 484

DierollCtl.cpp - Dispatch Map,
420

DierollCtl.cpp - Get and Set
Functions, 483

DierollCtl.cpp - New Functions
to Mark the Control as Safe,
471

DierollCtl.cpp - Property Pages,
419-420

code listings

822

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

DierollDataPathProperty.cpp -
New Code for OnDraw(), 487

DierollDataPathProperty.cpp -
OnDataAvailable(), 486

DierollPpg.cpp -
CDierollPropPage
CDierollPropPage(), 398

DierollPpg.cpp -
CDierollPropPageFactory
Update Registry(), 398

DieRollPPG.h - CDieRollPPG
Apply(), 515

DieRollPPG.h - CDieRollPPG
OnInitDialog(), 513

DieRollPPG.h - Message Map,
513

DieRollPPG.h - The
OnChanged Functions, 514

DiskFree.cpp, 666
DiskFree.h, 665
Displaying the Document’s

Data, 142
Dump.Cpp, 769-770
Editing the Data Strings, 150
Empty Message-Response

Function, 191
EXCEPTION1.CPP - Simple

Exception Handling, 609
EXCEPTION2.CPP - Creating

an Exception Class, 610
EXCEPTION3.CPP - Catching

Exceptions Outside of the
Throwing Function, 611

EXCEPTION4.CPP - Unwinding
the Stack, 613

EXCEPTION6.CPP - Using
Multiple Catch Blocks, 616

Excerpt from DieRoll.cpp - get
and set Functions, 502

Excerpt from DieRoll.h -
Constructor, 503

Excerpt from DieRoll.h in the
DieRollControl Project -
Inheritance, 498

Excerpt from DieRollControl.h -
COM Map, 498

Excerpt from DieRollControl.idl
- Stock Properties, 500

Excerpt from DierollCtl.cpp -
Event Map, 397

Excerpt from DierollCtl.cpp -
Property Pages, 397

Excerpt from DierollCtl.cpp -
Setting Activates When
Visible, 476

Excerpt from DierollCtl.h -
Event Map, 397

Excerpt from ShowString.cpp -
Checking How Application
was Launched, 348

Excerpt from ShowString.cpp -
CLSID, 346

Excerpt from ShowString.cpp -
Initializing Libraries, 347

Excerpt from ShowString.cpp -
Library Initialization, 306

Excerpt from ShowString.cpp -
Message Map Additions, 308

Excerpt from ShowString.cpp -
Registering Running MDI
Applications, 347

Excerpt from
ShowStringView.h -
m_pSelection, 309

Excerpt from winuser.h -
Defining Message Names, 62

Expanded Indicator Array, 198
fatdie.html - Using <OBJECT>,

466
fatdie2.html - Using <OBJECT>

and <EMBED>, 470
FILEVIEW.CPP - Document

Class Serialize() Function,
143

FirstDialog.cpp - InitInstance()
function, 39

FirstMDI.h - Main Header File
for the FirstMDI Application,
35

FirstSDI.h - Main Header File
for the FirstSDI Application,
29

Form1.frm - Visual Basic Code,
388

Four Filtering Functions, 554
Header File for the CApp1Doc

Class, 83-84
Header File for the CApplView

Class, 85-86
HelloWorld.cpp, 657
HelloWorld.cpp - With Objects,

658
IDispatch, Defined, 300
Indicator Array, 197

Inheritance and Pointers, 686
Initializing an Application’s

Document, 94
Initializing the Document’s

Data, 142
IPFrame.cpp - CInPlaceFrame

OnCreate(), 352
IPFrame.cpp - CInPlaceFrame

OnCreateControlBars(), 353
IPFrame.cpp - CInPlaceFrame

PreCreateWindow(), 353
IUnknown, Defined, 298
Lines to Add to OnDraw()

function, 119
LST14_07.TXT, 554
LST27_14.TXT - New Code for

the OnStartthread()
Function, 653

LV_COLUMN Structure,
Defined by MFC, 220

LV_ITEM Structure, Defined by
MFC, 222

Message Map, 198-199
Message Map from Chapter 8’s

showstring.cpp, 66
Message Map from

showstring.h, 65
Message-Posting

ThreadProc(), 639
Microsoft’s WINUSER.H

Implementing Unicode
Support, 671

Namespace Alias, 630
Nesting Namespace Definitions,

628
New ThreadProc() function,

638
One Possible Way to Save the

New Class’s Strings, 145
OPTIONSDIALOG.CPP -

Implementation File for
COptionsDialog, 171

OPTIONSDIALOG.H - Header
File for COptionsDialog, 171

Output from DumpBin, 660-664
Possible OnPrint() with

Headers and Footers, 136
Possible OnPrint() Without

OnDraw(), 136
print1View.cpp - CPrint1View

OnBeginPrinting(), 130
print1View.cpp - CPrint1View

OnDraw(), 128

code listings

823

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

print1View.cpp - CPrint1View
OnLButtonDown(), 127

print1View.cpp - CPrint1View
OnPrepareDC(), 132

print1View.cpp - CPrint1View
OnPreparePrinting() as
generated by AppWizard, 134

print1View.cpp - CPrint1View
OnRButtonDown(), 128

Resolving Scope with the using
Keyword, 629

Responding to Wizard Buttons,
285

Rethrowing Exceptions, 614
Sample Structure, 803
Scaled-Down Version of the

auto_ptr Class, 593
SDI.CPP - Lines to add at the

end of CSdiApp
InitInstance(), 51

SDIDIALOG.CPP - CSdiDialog
OnCancel(), 57

SDIDIALOG.CPP - CSdiDialog
OnInitDialog(), 54

SDIDIALOG.CPP - CSdiDialog
OnOK(), 56

SDIDIALOG.CPP - Lines to add
to CSdiApp InitInstance(), 58

Serializing the Data Object, 150
ShowString View.cpp -

Constructor, 309
ShowString.cpp - CLSID, 375
ShowString.cpp - Excerpt from

ShowStringApp
InitInstance(), 355

ShowString.cpp - How the App
Was Launched,
375, 385

ShowString.cpp - Initializing
Libraries, 375

ShowString.cpp - Message Map,
162

ShowString.odl - ShowString
Type Library, 390

ShowStringDoc.cpp -
Constructor, 377

ShowStringDoc.cpp -
CShowStringDoc
OnGetEmbeddedItem(), 349

ShowStringDoc.cpp -
CShowStringDoc
OnNewDocument(),
162, 382

ShowStringDoc.cpp -
CShowStringDoc
RefreshWindow(), 386

ShowStringDoc.cpp -
CShowStringDoc Serialize(),
161, 383

ShowStringDoc.cpp - Dispatch
Map, 376

ShowStringDoc.cpp - Get and
Set Functions for the
Centering Flags, 382

ShowStringDoc.cpp - IID, 376
ShowStringDoc.cpp - Message

Map for CShowStringDoc, 173
ShowStringDoc.cpp -

Notification, Get, and Set
Functions, 381

ShowStringDoc.cpp -
OnDraw() Additions After
DrawText() Call, 180

ShowStringDoc.cpp -
OnDraw() Additions Before
DrawText() Call, 180

ShowStringDoc.cpp -
OnNewDocument(), 178

ShowStringDoc.cpp -
OnToolsOptions(),
174, 179

ShowStringDoc.cpp -
Serialize(), 178

ShowStringDoc.h -
CShowStringDoc Member
Variables, 178

ShowStringDoc.h - Dispatch
Map, 380

ShowStringDoc.h - Message
Map for CShowStringDoc, 173

ShowStringDoc.h - Public
Access Functions, 384

ShowStringView.cpp - Adjust
Item Dimensions, 340

ShowStringView.cpp - Adjust
the Focus Rectangle, 338

ShowStringView.cpp - Can the
Object be Dropped?, 335

ShowStringView.cpp - CATCH
Block, 313

ShowStringView.cpp - Create a
New Item, 312

ShowStringView.cpp -
CShowStringView
IsSelected(), 311

ShowStringView.cpp -
CShowStringView
OnCancelEditCntr(), 314

ShowStringView.cpp -
CShowStringView
OnCreate(), 333

ShowStringView.cpp -
CShowStringView
OnDragEnter(), 335

ShowStringView.cpp -
CShowStringView OnDraw(),
162, 309, 361-362, 383

ShowStringView.cpp -
CShowStringView
OnEditClear(), 342

ShowStringView.cpp -
CShowStringView
OnInitialUpdate(), 310

ShowStringView.cpp -
CShowStringView
OnInsertObject(), 311

ShowStringView.cpp -
CShowStringView
OnLButtonDblClk(), 330

ShowStringView.cpp -
CShowStringView
OnLButtonDown(), 328

ShowStringView.cpp -
CShowStringView
OnSetCursor(), 329

ShowStringView.cpp -
CShowStringView
OnSetFocus(), 314

ShowStringView.cpp -
CShowStringView OnSize(),
314

ShowStringView.cpp -
CShowStringView
SetSelection(), 328

ShowStringView.cpp -
CShowStringView
SetupTracker(), 324

ShowStringView.cpp -
Determine the Drop Effect,
337

ShowStringView.cpp - Display
the Insert Object Dialog Box,
312

ShowStringView.cpp -
Initializing the Inserted Item,
312

ShowStringView.cpp - Lines in
OnDraw() to Replace, 326

code listings

824

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

ShowStringView.cpp - New
Lines in OnDraw(), 327

ShowStringView.cpp - Paste the
Data Object, 340

ShowStringView.cpp -
Removing the Focus
Rectangle, 340

ShowStringView.cpp - Set
dragsize and dragoffset, 336

ShowStringView.cpp -
ShowStringView
OnDragLeave(), 339

ShowStringView.cpp - Structure
of OnDrop(), 339

ShowStringView.cpp - Update
Selection and Views, 313

SOMERESOURCE.CPP, 652
SOMERESOURCE.H, 651
SrvrItem.cpp -

CShowStringSrvrItem
OnDraw(), 350

SrvrItem.cpp -
CShowStringSrvrItem
OnGetExtent(), 351

SrvrItem.cpp -
CShowStringSrvrItem
Serialize(), 350

TEMPLATE1.CPP - Using a
Typical Function Template,
618

TEMPLATE2.CPP - Using a
Specific Replacement
Function, 620

TEMPLATE3.CPP - Using a
Class Template, 621

TestDiskFree.cpp, 668
ThreadProc(), 642
ThreadProc1(),

ThreadProc2(), and
ThreadProc3(), 652

ThreadView.cpp -
ThreadProc(), 635

tm Structure, 808
TVINSERTSTRUCT Structure,

Defined by MFC, 230
TVITEM Structure, Defined by

MFC, 229
Two BankAccount

Constructors, 683
Typical WinMain() Routine, 63
Typical WndProc() Routine, 64
Using BankAccount Objects,

679

Using Multiple Parameters with
a Class Template, 623

Using Specific Data Types as
Parameters in a Class
Template, 624

WNDCLASSA Structure from
WINUSER, 694

WriteThreadProc() and
ReadThreadProc(), 646

CODEBASE attribute
(<OBJECT> tag), 467

COleDBRecordView class, 92

collection class, helper
functions, 776

collection class templates,
802-803

COLORREF data type, 777

colors
rolling-die control, 416

ambient properties, 416-418
BackColor property, 418-420
DoRoll() function,

422-423
ForeColor property, 418-420
OnDraw() function, 420-422
stock properties, 416

syntax coloring, 720

COM (Component Object
Model), 290, 298-299

ActiveX interfaces,
298-299

IUnknown, 298-299
COM objects, components, 582

Combo box control, 46

command help, 248
programming Help systems,

251-252

command IDs
buttons

associating with message-
handler function, 189-190

defining, 189
status bar, 195-196

command messages, catching
(ShowString application),
172-174

command updating, 74-76
CCmdUI object, 75-76

member functions, 75

continuous-update approach, 75
CWhoisView object, 76
update-on-demand approach, 75
with ClassWizard, 76-77

command-line parameters,
ProcessShellCommand()
function, 33

command-update handler,
status bar panes, 198-199

commands, 73-74
Build menu, 742-743
catching with ClassWizard,

76-77
command routing, 74
Edit menu

Advanced command, 732
Bookmarks command, 732
Breakpoints command, 733
Complete Word command,

733
Copy command, 726
Cut command, 726
Delete command, 726
Find command,

727-729
Find in Files command,

729-730
Go To command, 731
List Members command,

733
Parameter Info command,

733
Paste command, 726
Redo command, 726
Replace command, 730-731
Select All command, 726
Type Info command, 733
Undo command, 725

File menu
Close, 724
Close Workspace, 724
Exit command, 725
New, 723
Open, 723
Open Workspace, 724
Page Setup command,

724-725
Print command, 725
Recent Files command, 725
Save, 724
Save All, 724
Save As, 724
Save Workspace, 724

code listings

825

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Help menu, 751-752
Insert menu, 737-738
Project menu

Add to Project command,
739

Dependencies command,
739

Set Active Project command,
738

Settings command, 739-742
Source Control command,

739
Property Sheet command,

adding to File menu, 271
resource IDs, 74
standard commands, 782
Start Thread, 634
Stop Thread, 636
Tools menu

Close Source Browser File
command, 744

Customize command, 745
Macro command, 747
Options command, 746-747
Play Quick Macro

command, 747
Record Quick Macro

command, 747
Source Browser command,

744
View menu

ClassWizard command, 733
Debug Windows command,

735
Full Screen command, 735
Output command, 735
Properties command, 735
Resource Includes

command, 734
Resource Symbols

command, 734
ScriptWizard command, 733
Workspace command, 735

Window menu
Cascade command, 749
Close All command, 748
Close command, 748
Docking View command,

748
New Window command, 747
Next command, 749
Previous command, 749

Tile Horizontally command,
749

Tile Vertically command,
749

Window Split command, 748
Windows command, 750

Commands pane (Customize
dialog box), 745

CommandToIndex() function
(CToolBar class), 192

CommandToIndex() method
(CStatusBar class), 194

comment delimiters
(ClassWizard), 775-776

comments, adding to code
applications, 19
dialog-based applications, 23

COMMIT keyword (SQL
statements), 561

common controls
Common sample program,

206-207
view, scrolling, 240-242

date picker, 238-239
styles, 238

image list, 214-216
Create() function, 216
creating, 215-216
initializing, 216-217

IP address, 238
list view, 217-227

columns, creating, 220-221
CreateListView() function,

219-223
creating, 219-220
items, creating, 221-223
LV COLUMN structure,

220-221
LV ITEM structure, 222
notifications, 225-226
OnNotify() function,

225-226
styles, 219-220
view buttons, creating,

223-225
Windows Explorer, 217-219

month calendar, 240
progress bar, 208-210

CreateProgressBar()
function, 208

creating, 208-209
initializing, 209
timer updates, 209-210

rich edit, 233-237
character formatting,

235-236
CHARFORMAT structure,

235-236
command buttons, creating,

235-237
creating, 233-234
initializing, 234
OnULine() function,

235-236
paragraph formatting,

236-237
styles, 234

slider, 210-213
CreateTrackbar() function,

211
creating, 211
initializing, 212
OnHScroll() function,

212-213
styles, 211

tree view, 227-232
CreateTreeView() function,

228-229
creating, 228
items, creating, 229-232
notifications, 232
OnNotify() function, 232
styles, 229
TVINSERTSTRUCT

structure, 230
TVITEM structure, 229-231
Windows Explorer, 228

up-down, 213-214
CreateUpDownCtrl()

function, 213
creating, 213-214
styles, 214

Common Messaging Calls
(CMC), 435-436

Common sample program,
206-207

view, scrolling, 240-242

communications, threads,
636-643

event objects, 640-643
global variables, 636-638
user-defined messages, 639-640

communications

826

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

CompareElements() function,
776

Compile command (Build
menu), 742

compilers, warning levels,
588-589

Complete Word command (Edit
menu), 733

component files (Help
systems), 248

Component Gallery
exploring, 601
reuse support, 598-602

components, adding,
599-600

projects, using components
in, 600

Component Object Model
(COM), 290, 298-299

ActiveX interfaces,
298-299

components, 301, 582

compound documents, 292
AppWizard support, 15-16

compound files, 16

concatenate, 804

configuration files (Help
systems), 248

Configurations command (Build
menu), 743

Configurations dialog box, 743

Connect method
(CAsyncSocket), 430

Connection Point Wizard, 518

connection settings (Internet),
450

connection-based sockets, 428

connections
data connections, Publishing

application, 568-570
record views, connecting to

recordset variables, 577-578
stored procedures, connecting

to C++ code, 575-579

console applications, 28
creating, 656-660

multi-threaded console
applications, 659

scaffolding, 659-660
source files, 656-657

object-oriented console
applications, 657-659

constants, data types,
777-778

ConstructElements() function,
776

constructor (container item
classes), 322

constructors, 681-682
CEvent, 640
CFirstSDIApp class, 31
CInternetSession parameters,

449-450
CWnd, 699

consumers (OLE DB
applications), 558

container applications (ActiveX
controls), 301

containers, see ActiveX
containers

containment, 689

Contents command (Help
menu), 751

Contents file (Help systems),
264-265

context help, 248
programming Help systems,

253-255
WM CONTEXTMENU

message, 253
WM HELP message, 253

Context-Sensitive Help option
(AppWizard), 249

Contextual user assistance
(Help systems), 246

continuous-update approach
(command updating), 75

control bars, 351

Control Developer Kit, 301

Control Pad
ATL controls, 516-517
downloading, 516
Web site, 467

control test container, 402
adding to Tools menu, 403

controller application, building
in VB, 387-389

controls
ActiveX, see ActiveX controls
ATL control

adding to projects, 493
asynchronous property,

adding, 504-507
attributes, setting,

495-497
Click event, firing, 519
Control Pad, 516-517
creating, 492-494
custom properties, adding,

500-503
Design Mode preparation,

522-523
DoRoll() function,

520-521
drawing, 508-512
event interface, adding

methods, 517-518
events, adding,

517-520
executable size, minimizing,

523-525
IConnectionPoint interface,

518
init safe registration, 522
initializing properties,

503-504
interfaces, 496
naming, 494
property bag persistence,

516
property page, adding,

512-516
ReadyState stock property,

adding, 500
ReadyStateChange event,

firing, 519-520
script safe registration, 522
stock properties,

497-500
testing, 520
threading models,

495-496
Web page use, 525-526

CompareElements() function

827

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Button control, 46
Check box control, 46

adding to rebars,
202-204

Combo box control, 46
Common sample program,

206-207
view, scrolling,

240-242
data types, 49
date picker, 238-239

styles, 238
dialog boxes, 44
DLL control, 493
dual-interface control, 496
Edit box control, 46
IDs, defining, 46
image list controls,

214-216
Create() function, 216
creating, 215-216
initializing, 216-217

internal data, 399
IP address, 238
list box control, 46, 54-57

CStrings, adding, 55
event handlers, adding,

56-57
InitInstance() function, 57
OnInitDialog() function,
54-55

list view control, 217-227
columns, creating,

220-221
CreateListView() function,

219-223
creating, 219-220
items, creating,

221-223
LV COLUMN structure,

220-221
LV ITEM structure, 222
notifications, 225-226
OnNotify() function,

225-226
styles, 219-220
view buttons, creating,

223-225
Windows Explorer, 217-219

member variables, connecting,
48

month calendar, 240
Multithreaded Apartment

model, 496
OCX controls, 300-301
OLE Custom Controls, 300
progress bar control,

208-210
CreateProgressBar()

function, 208
creating, 208-209
initializing, 209
timer updates, 209-210

Radio button control, 46
rich edit control, 233-237

character formatting,
235-236

CHARFORMAT structure,
235-236

command buttons, creating,
235-237

creating, 233-234
initializing, 234
OnULine() function,

235-236
paragraph formatting,

236-237
styles, 234

rolling-die control,
394-399

ambient properties, 416-418
BackColor property, 418-420
bitmap icon, creating, 407
building, 394-396
CDierollApp class, 396
CDierollCtrl class, 396-397
CDierollPropPage class,

397-398
colors, 416
designing, 399
DoPropExchange()

function, 400
DoRoll() function,

422-423
dots, displaying,

407-411
Dots property, 412-414
drawing code, 401-404
Ellipse() function, 409
event maps, 397
events, 404
ForeColor property, 418-420

future improvements,
422-423

message map entries,
405-406

OnDraw() function, 401,
408-411, 420-422

parameters, 395
properties, adding, 399-400
property pages, 397
property sheets, 412
PX functions, 400-401
Roll() function,

406-407
runtime licensing, 395
stock properties, 416
testing, 402-404

runtime licensing, 395
Single-Threaded Apartment

model,
495-496

slider control, 210-213
CreateTrackbar() function,

211
creating, 211
initializing, 212
OnHScroll() function,

212-213
styles, 211

Static text control, 46
tree view control, 227-232

CreateTreeView() function,
228-229

creating, 228
items, creating,

229-232
notifications, 232
OnNotify() function, 232
styles, 229
TVINSERTSTRUCT

structure, 230
TVITEM structure,

229-231
Windows Explorer, 228

up-down control, 213-214
CreateUpDownCtrl()

function, 213
creating, 213-214
styles, 214

VBX controls, 301

Copy command (Edit menu),
726

Copy command

828

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

copy constructors, 691

CPrintInfo class members, 134

Create method
CAsyncSocket, 430
CSocket, 431

Create New Class dialog box,
170

Create New Data Source dialog
box, 534

Create() function, 698, 701
arguments, 216
CToolBar class, 192

Create() method (CStatusBar
class), 194

CreateEx() function, 699

CreateFontIndirect() function,
106

CreateListView() function,
219-223

CreateLocater() function,
parameters, 456-457

CreateProgressBar() function,
208

CREATESTRUCT structure,
107-109

CreateTrackbar() function, 211

CreateTreeView() function,
228-229

CreateUpDownCtrl() function,
213

CreateWindow() function,
697-699

parameters, 697-698

CRecordset class, 533

CRecordView class, 92, 533

CRichEditView class, 92-93

critical sections (thread
synchronization), 643-648

critical-section objects,
creating, 643

CScrollView class, 92

CShowString View class, 312

CShowStringApp class
ActiveX container code, 306
ActiveX server, 346-348
message maps, 67

CShowStringApp object,
374-376

CShowStringCntrItem class,
315-318

CShowStringDoc class
ActiveX container code, 308
ActiveX server, 348-349

CShowStringDoc document
class, 376-377

CShowStringSrvrItem class,
349-351

CShowStringView class
ActiveX container code, 308-314

CShowStringView class, 313
IsSelected(), 311
OnCancelEditCntr()

function, 314
OnInitialUpdate() function,

310
OnInsertObject(), 311-313
OnSetFocus() function, 313
OnSize() function, 314

ActiveX server, 349

CSingleLock objects, creating,
649

CSocket methods (Winsock),
431-432

CSomeResource class,
 651-652

CStatusBar class, methods,
194

CString class, 144, 803
member functions, 804

CStrings
adding to dialog box classes, 55
formatting functions, 777
message-box functions, 777

CTime class
CTime object, 806-808

Format() function format
codes, 807-808

CTimeSpan object, 809
member functions, 805-806

CTimeSpan class, member
functions, 806

CToolBar class, member
functions, 191-193

CTreeView class, 92

Custom AppWizard project
(AppWizard), 26

custom AppWizards,
601-605

adding to AppWizards list, 603
creating, 602-603

custom interfaces (ATL
control), 496

custom properties, 399
adding to ATL controls, 500
ATL controls, 501-503

Customize command (Tools
menu), 745

Customize dialog box, 745

Cut command (Edit menu),
726

CView class, 92

CWhoisView object, command
updating, 76

CWinApp class, 157

CWnd class, 698-702

CWnd constructor, 699

D
DAO classes, comparing to

OBDC, 556-558

data connections (Publishing
application), 568-570

DataView, 570
Query toolbar, 569-570

data source name (Publishing
application), 562-566

data sources (Publishing
application), 562-566

data types, 777-778
controls, 49

Database Designer, editing
databases, 579-580

Database Options dialog box,
537

database support (AppWizard),
14

copy constructors

829

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

databases, 579
Database Designer, editing

databases,
579-580

DeptStore.mdb file, 534
diagrams, 580-581
flat databases, 530
ODBC classes, 533
ODBC database programs

basic Employee application,
535-539

creating, 533
database display, creating,

539-542
DoFilter() function, 556
filtering, adding, 550-555
OnMove() function, 549
OnRecordAdd() function,

549
OnRecordDelete() function,

550
OnSortDept() function, 555
records, adding/deleting,

542-548
registering the database,

533-535
sorting, adding, 550-555

pubs, 562
relational databases, 531-532

accessing, 532
keys, 531
SQL scripting language, 532
tables, 532

SQL, see SQL databases
tables, 531, 560

records, adding/deleting,
542

DataView, 570-571, 579
database diagrams, 580-581
editing databases, 579-580

date picker control, 238-239
styles, 238

DblClick event, 404

DC (device contexts), 98-99
paint DCs, 101

DDE (Dynamic Data Exchange),
290

DDV functions, 53

DDX functions, 53

debug builds (memory leaks),
591-592

Debug menu, 759-760

Debug toolbar, 763

Debug Windows command
(View menu), 735

debug-only features
(performance improvement),
588

debugging, 758
ActiveX controls, 487-489
breakpoints, 758

setting, 760
variable values, examining,

761-764
Breakpoints command (Edit

menu), 733
Dump() function, 769-772

axfDump object,
769-772

CDumpContext class,
769-772

defining, 768
MFC Tracer utility, 767
user interface, 758

breakpoints, setting, 760
Call Stack window, 763
Debug toolbar, 763
Disassembly window, 767
Edit and Continue feature,

764-766
Memory window, 766
menu items, 759
QuickWatch window, 762
Registers window, 766
variable values, examining,

761-764
Variable window, 762
Watch window, 762

yellow arrow, 761

DECLARE DYNCREATE macro,
94-95

DECLARE SERIAL() macro,
149

declaring
arrays (Array application), 788
lists (List application), 794
nodes, 794

default status bar, 195

default strings (status bar
panes), 196-197

default toolbar, 186

defining
Dump() function, 768
IDs, 46
message names, 62
namespaces, 627-628
user-messages, 639

Delete command (Edit menu),
726

DELETE keyword (SQL
statements), 561

delete operator
memory leaks, 590-592
releasing memory, 688

deleting
elements from arrays, 787, 790
nodes from lists, 793-797
objects from ActiveX

containers, 341-342
toolbar buttons, 186-188

delimiters (ClassWizard),
775-776

Dependencies command
(Project menu), 739

DeptStore.mdb file, 534

derived classes, 684

descriptions (buttons), defining,
189

design, reusing (inheritance),
683-684

overriding functions, 685
pointers, 686-687
polymorphism, 686-687
protected access, 685

Design Mode, preparing ATL
controls, 522-523

DestructElements() function,
776

destructors, 687
pointer interaction, 690
running accidentally, 691
view class destructor, iterating

over lists, 798

destructors

830

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Detach method
(CAsyncSocket), 430

Developer Studio
Component Gallery

components, adding,
599-600

exploring, 601
projects, using components

in, 600
reuse support, 598, 601-602

console applications, creating,
656

ResourceView window, 270

device contexts (DC), 98-99
paint DCs, 101

device independent bitmap
(DIB), 334

DevStudio Add-In Wizard
project (AppWizard), 27

diagnostic services, 778-779

diagrams (database diagrams),
580-581

dialog box classes, 44, 50-59
ClassWizard code, analyzing, 53
creating, 47-49
displaying dialog boxes, 50-52
list box control, 54-57

CStrings, adding, 55
event handlers, adding,

56-57
InitInstance() function, 57
OnInitDialog() function,

54-55
member variables, connecting

to controls, 48
radio buttons, 58-59

InitInstance() function, 58
OnInitDialog() function, 58

ShowString application, 170-172
member variables, adding,

177

dialog box editor, 44

dialog box resources, 44
creating, 44-46

dialog boxes, 44
About (ShowString),

167-168
Add Event, 404
Add Member Function, 173, 406

Add Member Variable, 48
Add Node, 793
Add Property to Interface, 501
Add to Array, 786
Add Windows Message

Handler (ClassWizard), 70-71
Advanced Options, 17-19
Batch Build, 743
Bookmarks, 732
Breakpoints, 733
Browse, 744
building in resource editor,

46-47
ClassWizard, 90
Configurations, 743
Create New Class, 170
Create New Data Source, 534
Customize, 745
Database Options, 537
Edit Contents Tab Entry,

264-265
Find, 727-729

regular expressions, 728-729
Find in Files, 729-730

Advanced button, 730
Get Map Value, 800
Go To, 731
Help Keyboard, 751
Help Topics, 245-246, 265
IDs, defining, 46
Insert Files into Project, 739
Insert Object, 306, 354, 359
Insert Resource, 45, 737
Invoke Methods, 422
Macro, 747
modeless dialog boxes, 50
New, 12, 723
New Class, 47, 553, 737
New Project Information, 87-88,

115, 122, 493, 539, 603-605,
633

New Symbol, 196
New Virtual Override

(ClassWizard), 71
New Windows Message and

Event Handlers, 54
ODBC Data Source

Administrator, 534
ODBC Microsoft Access 97

Setup, 535
Open, 723
Options, 746-747, 765

Editor tab, 746
Workspace tab, 747

Options (ShowString), 168-169
changing, 175-177
check boxes, adding, 176
radio buttons, adding, 175

Page Setup, 724-725
Paste Special, 297
Print, 725
Project Information, 269
Project Settings, 589, 667,

739-742
Browse Info tab, 741
C/C++ tab, 740
General tab, 740
Link tab, 741
Resources tab, 741

Properties, 45, 166
property sheets, see property

sheets
Query (Internet Query

application), building, 445-447
QuickWatch, 762
Remove From Array, 787
Replace, 730-731
Resource Includes, 734
Resource Symbols,

196, 734
Select Data Source, 569
Select Database Tables, 537,

567
Set Active Project

Configuration, 524, 743
ShowString application, 166-169

About dialog box,
167-168

displaying dialog boxes,
174-175

Options dialog box, 168-169,
175-177

ShowString applications,
Options dialog box, 176

String Properties, 197
Tabbed (ClassWizard), 69-70

Add Function button, 70
user interfaces, 709-710
Windows, 750

dialog-based applications, 13
boilerplate code (AppWizard),

analyzing, 37-39
creating, 22-25

classnames, confirming, 24
commenting code, 23

Detach method

831

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

dynamic link libraries, 23
filenames, confirming, 24

DIB (device independent
bitmap), 334

dice control, see rolling-die
control

direct-access properties, 378

directories, 291

Disassembly window, 767

DiskFree utility, 665

dispatch maps, 376, 397

dispids, 417

displaying
dialog boxes, classes, 50-52
document data, 142
Help, 245-246
windows (ShowString

application), 385-386
wizards, 283-284

DLL control, 493

DLLs (dynamic link libraries),
19, 660-669

32-bit DLLs, 667-669
creating, 664-667
DiskFree DLL, creating,

665-667
exporting functions, 664-665
importing functions, 664-665
library file, 667

DumpBin utility, 660-663
extensions (ISAPI), 438

creating, 439-441
filters (ISAPI), 438

creating, 439-441

docking toolbars, 187, 753

Docking View command
(Window menu), 748

document classes, 82-84,
140-141

OnNewDocument() function,
84

persistence, 141
Rectangles application

creating, 87-89
OnNewDocument()

function, 89
saving/loading states, 141
Serialize() function, 84

document extensions (Active
Document servers), 369

document pointers, 86

document templates, 94-95

document-centered
applications, 290-292

document-centered directory
structure, 291

document/view architecture, 82

documents
Active Documents, 365-367
compound document support

(AppWizard), 15-16
compound documents, 292
data, initializing, 141-142
displaying data, 142
editing data, 142-143
embedding objects, 294-296

containers, 295-296
drag and drop technique,

297
servers, 295-296

HTML document icons, drag
and drop techniques, 297

initializing, InitInstance()
method, 94

linking objects, 292-296
containers, 295-296
servers, 295-296

nested documents, creating,
365-367

printing, 122-124
CPrintInfo class members,

134
functions of a view class, 133
multiple pages, 126-131
setting the origin, 131-133

ShowString application, adding
member variables, 177

storage, 141
Word, opening in Visual Studio,

256

DoDataExchange()
function, 53

DoDragDrop() function, 332

DoFilter() function (ODBC
database program), 556

domains, querying, 444
Finger protocol, 458-460
FTP sites, 453-455

Gopher sites, 455-457
HTTP sites, 448-453
Whois protocol, 460-462

DoModal() function, 50, 281

DoPreparePrinting() function,
135

DoPropExchange() function
(ActiveX controls), 400

DoPropExchange() method
(ActiveX controls), 400

DoRoll() function
ATL control, 520-521
rolling-die control,

422-423

Dots property (rolling-die
control), 412-414

DoUpdate() function (CCmdUI
object), 75

downloading
ActiveX controls, CAB files, 467
Control Pad, 516

drag and drop technique
ActiveX containers, 331

drag sources, 331-332
drop targets, 332-333
function skeletons, 333-335
OnDragDrop() function,

339-341
OnDragEnter() function,

335-337
OnDragLeave() function,

339
OnDragOver() function,

337-339
object embedding, 297

drag sources, implementing,
331-332

drawing
ATL controls, 508-512
multiple items (ActiveX

containers), 326-327
toolbar buttons, 188

drawing code, rolling-die
control, 401-404

DrawText() function,
180-181

drop targets
implementing, 332-333
registering views as, 333

drop targets

832

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

DSN (data source name),
Publishing application,
562-566

dual interfaces (ATL control),
496

dual-interface control, 496

Dump() function, 769-772
CDumpContext class, 769-772
defining, 768

DumpBin utility, 660-663

DumpElements() function,
776

DWORD data type, 777

Dynamic Data Exchange (DDE),
290

dynamic link libraries (DLLs),
19, 660-669

32-bit DLLs, 667-669
creating, 664-667
DiskFree DLL, creating,

665-667
exporting functions, 664-665
importing functions, 664-665
library file, 667

DumpBin utility, 660-663
extensions (ISAPI), 438

creating, 439-441
filters (ISAPI), 438

creating, 439-441

dynamic objects, 689-690

E
Edit and Continue feature

(debugging), 764-766

Edit box control, 46

Edit Contents Tab Entry dialog
box, 264-265

Edit menu, 725
Advanced command, 732
Bookmarks command, 732
Breakpoints command, 733
Complete Word command, 733
Copy command, 726
Cut command, 726
Delete command, 726
Find command, 727-729
Find in Files command, 729-730
Go To command, 731

List Members command, 733
Parameter Info command, 733
Paste command, 726
Redo command, 726
Replace command, 730-731
Select All command, 726
Type Info command, 733
Undo command, 725

editing
applications (AppWizard), 28
CMessages class, 149-150
code (Visual editor), 719

shortcut menu, 721-722
syntax coloring, 720
text blocks, 720-721
typing modes, 719-720

document data, 142-143
in-place editing

ActiveX containers, 319-320
ActiveX menus, 304

recordset definitions, 576
Registry (ActiveX server), 358
resources (Property Sheet

Demo application),
270-272

Editor tab (Options dialog box),
746

editors
button editor, 188
dialog box editor, 44
menu editor, 543
Registry editor,

154-155, 358
string table editor, 196
toolbar editor, 187
Visual Studio editor, 719

Insert mode, 719
Overstrike mode, 719
shortcut menu,

721-722
syntax coloring, 720
text blocks, 720-721
typing modes, 719-720

Ellipse() function (rolling-die
control), 409

<EMBED> tag, 469-470

embedding
ActiveX controls

Internet Explorer Web
pages, 466-469

Netscape Navigator Web
pages, 469-470

objects, 294-296
containers, 295-296
drag and drop technique,

297
servers, 295-296

Employee application
creating, 533-539

database display, 539-542
DoFilter() function, 556
filtering, adding, 550-555
OnMove() function, 549
OnRecordAdd() function,

549
OnRecordDelete() function,

550
OnSortDept() function, 555
records, adding/deleting,

542-548
registering the database,

533-535
sorting, adding,

550-555

Enable() function (CCmdUI
object), 75

EndPaint() function, 101

endthreadex, 769

Enterprise Edition (Visual C++),
560

entities, 560

enums, anonymous enums,
102

Error event, 404

error messages
beginthreadex, 769
endthreadex, 769
Output view, 719

error-handling (exceptions),
608

catch block, 608-617
exception-handling, 609-610
handling multiple types, 615-617
macro mechanism, 617
objects, 610-611
throw statement, 608
throwing, 611-615
try block, 608-610, 615-617

DSN

833

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

errors
linker errors (ATL controls),

524
preventing

ASSERT macro, 586-587
debug-only features, 588
memory leaks, sealing,

590-591
optimization, 594-595
profiling, 595-596
TRACE macro, 587-588

escapement (text), 105

event handlers, adding to dialog
boxes, 56-57

event interface (ATL control),
adding methods, 517-518

event maps, 397

event objects, 640
thread communication, 640-643

event procedures, 65

events
ActiveX controls, 301, 404
adding to controls,

404-405
ATL controls, 517-520

Click event
adding to controls, 404-405
ATL control, 519

ReadyStateChange,
484-485, 519-520

exceptions, 608, 780
catch block, 608-610

multiple, using with try
blocks, 615-617

placing, 611-615
handling, 609-610

multiple types, 615-617
macro mechanism, 617
objects, 610-611
throw statement, 608
throwing, 611-615
try block, 608-610

using with multiple catch
blocks, 615-617

EXEC keyword (SQL
statements), 561

executable size (ATL controls),
minimizing, 523-525

Execute command (Build
menu), 743

Exit command (File menu),
725

exporting functions (32-bit
DLLs), 664-665

exposing properties
(ShowString application),
377-382

Extended MAPI, 436

Extended properties (ActiveX
controls), 399

extensions (ISAPI), 438
creating, 439-441

F
fields, 560

LOGFONT structure, 104-105

File As Text command (Insert
menu), 738

File Demo 2 application,
building, 146-150

File Demo application, 140
building, 141-145

displaying document data,
142

editing document data,
142-143

initializing document data,
141-142

document classes, 140-141
saving/loading states, 141

file extensions
OCX, 300
reg, 358

File menu, 722-725
adding Send item (MAPI),

433-435
Close command, 724
Close Workspace command,

724
Exit command, 725
New command, 723
Open command, 723
Open Workspace command,

724
Page Setup command, 724-725

Print command, 725
Property Sheet command,

adding, 271
Recent Files command, 725
Recent Workspaces command,

725
Save All command, 724
Save As command, 724
Save command, 724
Save Workspace command, 724

file mode flags (CFile class),
152-153

filenames
applications, creating, 19
dialog-based applications,

creating, 24

files
CAB files

downloading ActiveX
controls, 467

Web page example, 469
component files (Help

systems), 248
compound files, 16
Contents (Help systems),

264-265
DeptStore.mdb, 534
header files, 680

CFirstSDIApp class, 29-30
FileView, 718

Help files, 248-249
Help Topic IDs, 248

implementation files, 680
LIB file (dynamic link libraries),

667
library file (dynamic link

libraries), 667
Most Recently Used (MRU),

157
project files, 708
project workspace files, 708
Property Sheet Demo

application, creating basic
files, 269

reading directly (CFile class),
150, 153

Registry files, 358
source files

console applications,
656-657

FileView, 718
property sheets, 736

files

834

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

workspace options file, 708
writing directly, 150-153

CFile class, 151-153

FileView, 718

filtering (database records),
550-555

filters (ISAPI), 438
creating, 439-441

Find command (Edit menu),
727-729

Find dialog box, 727-729
regular expressions, 728-729

Find in Files command (Edit
menu), 729-730

Find in Files dialog box,
729-730

Advanced button, 730

flags, file mode flags (CFile
class), 152-153

flat databases, 530

floating toolbars, 187

focus rectangles, 334
removing (ActiveX containers),

340

fonts, view fonts, 104-107

footnote types, 256-257

forceinline keyword, 680

ForeColor property (rolling-die
control), 418-420

format codes, 807-808

Format() function, 807-808

formatting functions (CString),
777

frame windows, 95

frames, properties, 18

free store, 688

Free Threading Model
(controls), 496

free() function, 688

FromHandle method
CAsyncSocket, 430
CSocket, 431

ftg file extension (Help
systems), 248

FTP sites, querying, 453-455

fts file extension (Help
systems), 248

Full Screen command (View
menu), 735

full text search files (Help
systems), 248

full text search group list (Help
systems), 248

function skeletons, setting up,
333-335

function templates, creating,
618-620

Min() function example,
618-619

functions, 679-681
ActiveX interfaces, 298-299

IDispatch, 299-300
IUnknown, 298-299

AddBar(), parameters, 203
AddDocTemplate(), 95
AfxBeginThread(), 632
AfxOleLockApp(), 377
AllocateBuffer(), throwing

exceptions, 611-614
API functions, 698-700
application information and

management, 774-775
Apply(), 514-515
array classes member

functions, 784-785
AssertValid(), 318
Automation servers,

299-300
BeginPaint(), 101
blocking (sockets), 429
CAsyncSocket member

functions (Winsock), 429-431
CFile class member functions,

151-152
Collection class helper

functions, 776
CommandToIndex()

(CToolBar class), 192
CompareElements(), 776
ConstructElements(), 776
constructors, 681-682
copy constructors, 691
Create(), 698, 701

arguments, 216
CToolBar class, 192

CreateEx(), 699
CreateFontIndirect(), 106
CreateListView() (list view

control), 219-223
CreateLocater(), 456-457
CreateProgressBar() (progress

bar control), 208
CreateTrackbar() (slider

control), 211
CreateTreeView() (tree view

control), 228-229
CreateUpDownCtrl() (up-down

control), 213
CreateWindow(), 697-699

parameters, 697-698
CString class member

functions, 804
CTime class member functions,

805-806
CTimeSpan class member

functions, 806
CToolBar class member

functions, 191-193
DDV functions, 53
DDX functions, 53
DestructElements(), 776
diagnostic functions, 778-779
DoDataExchange(), 53
DoDragDrop(), 332
DoFilter() (ODBC database

program), 556
DoModal(), 50, 281
DoPreparePrinting(), 135
DoPropExchange() (ActiveX

controls), 400
DoRoll()

ATL control, 520-521
rolling-die control, 422-423

DoUpdate() function (CCmdUI
object), 75

DrawText(), 180-181
Dump(), 769-772

axfDump object, 769-772
CDumpContext class,

769-772
defining, 768

DumpElements(), 776
Ellipse() (rolling-die control),

409
Enable() function (CCmdUI

object), 75
EndPaint(), 101
exception functions, 780

files

835

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

exporting, 32-bit DLLs, 664-665
Format(), 807-808
formatting functions (CString),

777
free(), 688
Get, 380-382

ATL control custom
properties, 502-503

CDierollCtrl class, 483
Image property, 505-506

GetButtonInfo() (CToolBar
class), 192

GetButtonStyle() (CToolBar
class), 192

GetButtonText() (CToolBar
class), 192

GetDeviceCaps(), 130
GetDiskFreeSpace(), 665
GetDocument(), 86
GetEmbeddedItem() (ActiveX

server), 348
GetItemID() (CToolBar class),

192
GetItemRect() (CToolBar

class), 192
GetReadyState(), 481
GetToolBarCtrl() (CToolBar

class), 192
HashKey(), 776
helper functions, hit testing,

325-326
importing, 32-bit DLLs, 664-665
InitInstance(), 70

ActiveX server, 346-347, 355
ClassView, 50
dialog-based applications,

38-39
list box control, 57
MDI applications, 36-37
radio buttons, 58
SDI applications, 31-33

inline code, 679-680
inline functions, 680-681
Invalidate(), 112
IsSelected(), 311
list classes member functions,

791-792
LoadBitmap() (CToolBar

class), 192
LoadToolBar() (CToolBar

class), 192
Lock(), 644, 651
malloc(), 687-688

map classes member functions,
799

message-box functions
(CString), 777

message-catching functions
(ShowString application),
172-174

message-handler, associating
with button command IDs,
189-190

message-handling functions, 65
MessageBox(), 635
MFC functions (AFX prefix),

700
Min(), function templates,

618-619
naming, 682-683
Notification, 380
objects, 676
OnActivate(), 316
OnAppAbout(), 33, 70
OnBeginPrinting(),

129, 133
OnCancelEditCntr(), 314
OnChange(), 315
OnChangeItemPosition(), 317
OnCircle(), 191
OnCreate(), 333, 642-643

ActiveX server, 352
rebars, 202

OnCreateControlBars()
(ActiveX server), 352-353

OnData(), 507
OnDeactivateUI(), 317
OnDragDrop(), 339-341
OnDragEnter(), 335-337
OnDragLeave(), 339
OnDragOver(), 337-339
OnDraw(), 102, 128, 133, 142,

382-384, 789-790, 797, 802
ActiveX server, 350-351,

361-363
asynchronous properties,

486-487
ATL controls, 508-512
changing, 180-181
drawing multiple container

items, 326-327
rebars, 204
Rectangles application, 89-90
rolling-die control, 401,

408-411, 420-422
Scroll application,

116-117

OnEndPrinting(), 134
OnFileChangeString(), 200
OnFileNew(), 161
OnFileWizard, 283-284
OnGetExtent() (ActiveX

server), 351
OnGetItemPosition(), 316
OnHelpInfo(), 253-254
OnHScroll() (slider control),

212-213
OnInitDialog(), 513-514

list box control, 54-55
radio buttons, 58

OnInitialUpdate(), 310
OnInsertObject(), 311-313
OnLButtonDown(), 103, 126,

328, 788-789, 795, 801
Rectangles application, 90

OnMove() (ODBC database
program), 549

OnNewDocument(), 84, 141,
162, 178

Rectangles application, 89
OnNotify(), 225-226

tree view control, 232
OnOK(), 53
OnPaint(), 101
OnPrepareDC(), 134-135

overriding, 131-133
OnPreparePrinting(),

134-135
OnPrint(), 134-135
OnPropsheet(), 278-279
OnQuery(), 448
OnRButtonDown(),

127, 790, 796
OnRecordAdd() (ODBC

database program), 549
OnRecordDelete() (ODBC

database program), 550
OnSetActive(), 284
OnSetFocus(), 313
OnSize(), 314
OnSortDept() (ODBC database

program), 555
OnStartthread(), 653
OnStartthread() function, 635
OnStopthread() function, 637
OnToolsOptions(),

174-175
changing, 179

OnULine() (rich edit control),
235-236

functions

836

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

OnUpdateEditPaste(), 76
OnWndMsg(), 74
OpenURL(), 451
overloading, 682-683
overriding, 685
PostMessage(), 639, 669
PreCreateWindow(),

107-109
ActiveX server, 353

printing functions of a view
class, 133

private functions, 679
ProcessShellCommand(),

command-line parameters, 33
property-exchange functions,

400-401
put, Image property, 505-506
PX, 400-401
QueryInterface, 298
ReadThreadProc(), 647
Rectangle(), 112
RefreshWindow(), 386
Roll(), 503

rolling-die control, 406-407
SDK functions, 700
SelectObject(), 106
Send(), 429
SendMessage(), 669
Serialize(), 84, 115, 143, 178

ActiveX server, 350
CArchive objects, 153-154
persistent objects, 148-149

Serialize() function
(CMessages class), 150

SerializeElements(), 776
Set, 380-382

CDierollCtrl class, 483
SetArray(), 647
SetBitmap() (CToolBar class),

193
SetButtonInfo() (CToolBar

class), 193
SetButtons() (CToolBar class),

193
SetButtonStyle() (CToolBar

class), 193
SetButtonText() (CToolBar

class), 193
SetCheck() function (CCmdUI

object), 75

SetCursor(), 329-330
SetEvent(), 640
SetHeight() (CToolBar class),

193
SetModifiedFlag(), 143

Rectangles application, 90
SetRadio() function (CCmdUI

object), 75
SetRegistryKey(), 157
SetSelection(), 328-329
SetSize(), 788
SetSizes() (CToolBar class),

193
SetText() function (CCmdUI

object), 75
SetupTracker() function,

323-324
SetWizardButtons(), 284
ShowBrushes(), 110-113
ShowFonts(), 105-106
ShowPens(), 109-111
ShowWindow(), 385-388
signatures, 682
StepIt() (progress bar control),

210
strcpy(), 681
TextOut(), 107
ThreadProc(), 635,

639-641, 646, 652
TranslateMessage(), 64
TryFinger(), 458-462
TryFTPSite(), 453-454
TryGopherSite(), 455-456
TryURL(), 448-452
TryWhois(), 461-462
Unlock(), 644, 651
UseResource(), 651
virtual functions, 68

implementing
(ClassWizard), 71

WaitForSingleObject(), 641
WindowProc(), message maps,

67-68
WinHelp(), 255
Withdraw() function, 680
WndProc(), 64-65
WriteThreadProc(), 647
see also methods

G
General tab (Project Settings

dialog box), 740

generating messages, 669

Get function, 380-382
ATL control custom properties,

502-503
CDierollCtrl class, 483
Image property, 505-506

Get Map Value dialog box, 800

GetButtonInfo() function
(CToolBar class), 192

GetButtonStyle() function
(CToolBar class), 192

GetButtonText() function
(CToolBar class), 192

GetDeviceCaps() function, 130

GetDiskFreeSpace() function,
665

GetDocument() function, 86

GetEmbeddedItem() function
(ActiveX server), 348

GetItemID() function
(CToolBar class), 192

GetItemID() method
(CStatusBar class), 194

GetItemRect() function
(CToolBar class), 192

GetItemRect() method
(CStatusBar class), 194

GetLastError method
(CAsyncSocket), 430

GetPaneInfo() method
(CStatusBar class), 194

GetPaneStyle() method
(CStatusBar class), 194

GetPaneText() method
(CStatusBar class), 194

GetPeerName method
(CAsyncSocket), 430

GetReadyState() function, 481

GetSockName method
(CAsyncSocket), 430

functions

837

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

GetSockOpt method
(CAsyncSocket), 430

GetStatusBarCtrl() method
(CStatusBar class), 194

GetToolBarCtrl() function
(CToolBar class), 192

gid file extension (Help
systems), 248

global memory, 336

global variables
diagnostic global variables,
778-779
thread communication, 636-638

Go To command (Edit menu),
731

Go To dialog box, 731

Gopher protocol
Finger queries, sending,

458-460
Whois queries, sending,

460-462

Gopher sites, querying,
455-457

graphical user interfaces, 44

graying buttons/menus
(command updating),
74-76

CCmdUI object, 75-76
member functions, 75

CWhoisView object, 76

H
h file extension (Help systems),

248

handle maps, 67

handles (Windows programs),
698

handling
double clicks (ActiveX

containers), 330
exceptions, 609-610

multiple types,
615-617

files directly, 150-153
CFile class, 151-153

messages, 62
single clicks (ActiveX

containers), 327-330

HashKey() function, 776

hatch style (brushes), 112

header files, 680
CApp1Doc class, 82-84
CApp1View class, 84-86
CFirstSDIApp class, 29-30
DLLs, 665
FileView, 718
Help systems, 248

heads (linked lists), 791

heap, 688

Help files, 248-249
Help Topic IDs, 248

Help Keyboard dialog box, 751

Help Mapping files (Help
systems), 248

Help menu, 751-752

Help Project files (Help
systems), 248

Help systems, 244
AppWizard support,

249-250
command help, 248
component files, 248
context help, 248
Contextual user assistance, 246
displaying, 245-246
Help files, 248-249
Help Topic IDs, 248
HTML Help systems, 245
opening, 244
planning, 250-251

Help Topics, 250
programming, 247-248

command help, 251-252
Contents file adjustments,

264-265
context help, 253-255
help text topics, adding,

259-263
help text, writing, 255-257
How to Modify Text topic,

changing, 263-264
placeholder strings,

changing, 257-259
WM COMMAND message,

247

WM CONTEXTMENU
message, 247-248, 253

WM HELP message, 247,
253

Reference Help, 247
Task-oriented Help, 247
wizards, 247

help text
adding topics, 259-263

centering, 262-263
Options dialog controls,

261-262
Tools Options topic, 261
Tools topic, 260

How to Modify Text topic,
changing, 263-264

placeholder strings, changing,
257-259

writing, 255-257
footnotes, 256

Help topic ID footnote, 256

Help Topic IDs, 248

Help Topics, planning Help
systems, 250

Help Topics dialog box,
245-246, 265

Help window, 245-246

Help Workshop, Contents file
adjustments, 264-265

helper functions (Collection
class), 776

hit testing (ActiveX containers),
325-326

hm file extension (Help
systems), 248

How to Modify Text topic,
changing (help text),
263-264

hpj file extension (Help
systems), 248

HTML (HyperText Markup
Language)

Control Pad (ATL controls),
516-517

<EMBED> tag, embedding
ActiveX controls, 469-470

HTML

838

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

<OBJECT> tag
CODEBASE attribute, 467
embedding ActiveX

controls, 466-470
<PARAM> tag, 480

HTML document icons, drag
and drop technique, 297

HTML Help systems, 245

HTML Help Workshop, 245

HTTP sites, querying,
448-453

Hungarian Notation, 696-697

I
IConnectionPoint interface

(ATL control), 518

icons
bitmap icon, creating rolling-die

control, 407
drag and drop technique, 297
user interfaces, 710-711

IDE (integrated development
environment), 706

IDispatch interface, 299-300,
496

IDR SHOWSTTYPE menu
(ActiveX containers),
304-305

IDR SHOWSTTYPE SRVR EMB
menu (ActiveX server), 345

IDR SHOWSTTYPE SRVR IP
menu (ActiveX server),
344-345

IDs
control IDs, defining, 46
dialog box IDs, defining, 46
Window IDs, 782

image list control, 214-216
creating, 215-216

Create() function, 216
initializing, 216-217

image property
adding to CDierollCtrl class,

482-484
get function, 505-506
put function, 505-506

images, scaling printed images,
124-126

IMPLEMENT DYNCREATE
macro, 94-95

IMPLEMENT SERIAL() macro,
149

implementation files, 680
CMessages class, 148-149

importing functions (32-bit
DLLs), 664-665

in-place editing
ActiveX containers, 319-320
ActiveX menus, 304

in-place frame class (ActiveX
server), 351-354

Index command (Help menu),
751

indexes (Help systems), 265

indicator array, adding status
bar panes, 196-197

INFINITE constant, 641

information hiding (objects),
677-678

inheritance, 683-684
MFC class inheritance tree, 701
overriding functions, 685
pointers, 686

upcasts, 686-687
polymorphism, 686-687
protected access, 685

init safe registration
ActiveX controls, 470-474
ATL controls, 522

initializing
arrays (Array application), 788
ATL control properties, 503-504
document data, 141-142
documents, InitInstance()

method, 94
image list control,

216-217
lists (List application), 794-795
maps, 800
objects, 681-682
progress bar control, 209
rich edit control, 234
slider control, 212
strings (ShowString

application), 161-162

InitInstance() function, 70
ActiveX server,

346-347, 355
ClassView, 50
dialog-based applications, 38-39
list box control, 57
MDI applications, 36-37
radio buttons, 58
SDI applications, 31-33

InitInstance() method, 94
ActiveX container code, 306

inline code, 679-680

inline functions, 680-681

inline keyword, 680

Insert Files into Project dialog
box, 739

INSERT keyword (SQL
statements), 561

Insert menu, 737-738

Insert mode (Visual Studio
editor), 719

Insert Object dialog box,
306, 354, 359

Insert Resource dialog box, 45,
737

inside-out activation (ActiveX
objects), 317

installation programs (version
information), 713

installing Visual SourceSafe,
583

instantiating objects (class
templates), 621-624

integrated development
environment (IDE), 706

interface appearance options
(AppWizard), 16-17

interface maps, 376

interfaces, 13
ActiveX interfaces, 298-300

IDispatch, 299-300
IUnknown, 298-299

appearance options,
16-17

ATL controls, 496
event interface, adding

methods, 517-518
IConnectionPoint interface,

518

HTML

839

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

client interfaces (MAPI), 435
Active Messaging, 436
Common Messaging Calls,

435-436
Extended MAPI, 436

debugging, 758
Call Stack window, 763
Debug toolbar, 763
Disassembly window, 767
Edit and Continue feature,

764-766
Memory window, 766
menu items, 759
QuickWatch window, 762
Registers window, 766
setting breakpoints, 760
variable values, examining,

761-764
Variable window, 762
Watch window, 762

IDispatch interface, 496
Internet Query application,

445-447
IPointerInactive, optimizing

ActiveX controls, 478
user interface, see user interface

internal data, 399

international software
development issues,
670-672

Internet, 428
connection settings, 450

Internet ActiveX controls
asynchronous properties, 480

BLOBs, 481
CDierollCtrl class, 482-484
CDierollDataPathProperty

class, 482, 486
OnDraw() function, 486-487
<PARAM> tag, 480
ReadyState property,

484-485
ReadyStateChange event,

484-485
debugging, 487-489
downloading, CAB files, 467
embedding

Internet Explorer Web
pages, 466-469

Netscape Navigator Web
pages, 469-470

init-safe registration,
470-474

optimizing, 475-478
Activates When Visible

option, 476
Flicker-Free Activation

option, 478
Unclipped Device Context

option, 477
Windowless Activation

option, 477
with AppWizard, 479

script-safe registration, 470-474
testing, 487-489

Internet client applications
(WinInet classes), 437-438

Internet Explorer
Active Documents, 367-371
ActiveX controls, debugging,

487-488
Web pages, embedding ActiveX

controls, 466-469

Internet Query application
designing, 444-445
Finger protocol queries, 458-460
FTP site queries, 453-455
Gopher site queries, 455-457
HTTP site queries, 448-453
Query dialog box, building,

445-447
user interface, building, 445-447
Whois protocol queries, 460-462

Internet Server API, see ISAPI

Internet sessions,
asynchronous sessions, 451

Invalidate() function, 112

inventing messages, 670

Invoke Methods dialog box,
422

IOCtl method (CAsyncSocket),
430

IP address control, 238

IP addresses, 428

IPointerInactive interface,
optimizing ActiveX controls,
478

ISAPI (Internet Server API),
438-441

classes, 439
Extension Wizard, 439-441
extensions, 438

creating, 439-441
filters, 438

creating, 439-441

ISAPI Extension Wizard project
(AppWizard), 27

IsBlocking method (CSocket),
431

IsSelected() function, 311

iterating over
lists, 797

view class destructor, 798
maps, 802

IUnknown interface, 298-299

J-K
Java applets, comparing to

ActiveX controls, 474-475

keyboard accelerators, resource
IDs, 167

Keyboard Map command (Help
menu), 751

keyboard shortcuts, 709-710

KeyDown event, 404

KeyPress event, 404

keys
databases, 531
predefined keys (Registry),

155-156

KeyUp event, 404

keywords
class, 618
forceinline, 680
inline, 680
namespace, 627
private keyword, 678
public keyword, 678
SQL statements, 561
template, 618
using, 629

keywords footnote, 256

keywords footnote

840

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

L
language settings,

resources, 14

LIB file (dynamic link
libraries), 667

libraries, MFC libraries, 19

library file (dynamic link
libraries), 667

licensing, runtime licensing,
395

Link tab (Project Settings dialog
box), 741

linked lists, 791
heads, 791
nodes, 791

adding, 793
deleting, 793-794

tails, 791

linker errors (ATL controls),
524

linking objects, 292-296
containers, 295-296
servers, 295-296

List application, 792-794
adding nodes to lists,

793-795
declaring nodes, 794
deleting nodes from lists,

793-797
initializing lists, 794-795
iterating over lists, 797

view class destructor, 798

list box controls, 46, 54-57
CStrings, adding, 55
event handlers, adding, 56-57
InitInstance() function, 57
OnInitDialog() function, 54-55

list classes, 791
iterating over lists, 797

view class destructor, 798
linked lists, 791
List application, 792-794

adding nodes to lists,
793-795

declaring nodes, 794
deleting nodes from lists,

793-797
initializing lists, 794-795
iterating over lists, 797-798

member functions, 791-792
nodes

adding to lists, 793-795
declaring, 794
deleting from lists, 793-797

List Members command (Edit
menu), 733

list view control, 217-227
columns

CreateListView() function,
221

creating, 220-221
LV COLUMN structure,

220-221
creating, 219-220
items

CreateListView() function,
223

creating, 221-223
LV ITEM structure, 222

notifications, 225-226
OnNotify() function, 225-226
styles, 219-220
view buttons, creating, 223-225
Windows Explorer, 217-219

Listen method (CAsyncSocket),
430

LoadBitmap() function
(CToolBar class), 192

loading
document states, 141
strings, persistent classes,

145-146

LoadToolBar() function
(CToolBar class), 192

Lock() function, 644, 651

LOGFONT structure, fields,
104-105

logic errors, detecting with
ASSERT macro, 586-587

logical units, 104

LONG data type, 778

loops (message loops)
TranslateMessage() function,

64
WinMain() routine, 63
WndProc() function,

64-65

LPARAM data type, 778

LPARAM parameter, 639

LPCRECT data type, 778

LPCSTR data type, 778

LPSTR data type, 778

LPVOID data type, 778

LRESULT data type, 778

LV COLUMN structure (list
view control), 220-221

LV ITEM structure (list view
control), 222

M
m paneString member variable,

199

m rect member variable
(container items), 322

Macro command (Tools menu),
747

Macro dialog box, 747

macro entry footnote, 257

macros
AFX ZERO INIT OBJECT, 699
ASSERT, detecting logic errors,

586-587
DECLARE DYNCREATE,

94-95
DECLARE SERIAL() macro,

149
diagnostic macros, 778-779
exception macros, 780
exception mechanisms, 617
IMPLEMENT DYNCREATE,

94-95
IMPLEMENT SERIAL(), 149
message map macros, 66-67,

781
preprocessor macros (DLLs),

665
RUNTIME CLASS, 94
runtime services macros,

781-782
TRACE, isolating bad code,

587-588

mail support, adding to
applications, 433-435

language settings

841

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Makefile project (AppWizard),
27

malloc() function, 687-688

managed pointers, 615
auto-pr, 625-626

Map application, 799-800
creating maps, 800
initializing maps, 800
iterating over maps, 802
map values, retrieving, 801

map classes, 798-799
member functions, 799

MAPI (Messaging API),
432-437

client interfaces, 435
Active Messaging, 436
Common Messaging Calls,

435-436
Extended MAPI, 436

Win95 Logo requirements,
433-435

MAPIDemo, 433

mapping modes,
104, 124-126

maps
creating, 800
dispatch maps, 376, 397
event maps, 397
initializing, 800
interface maps, 376
iterating over, 802
message maps, 65-68, 397

macros, 66-67
polymorphism, 68
virtual functions, 68
WindowProc() function,

67-68
values, retrieving, 801

mask members
LV COLUMN structure, 221
LV ITEM structure, 222
TVITEM structure, 230

MDI applications, 21
boilerplate code (AppWizard),

analyzing, 34-37

member functions (Winsock),
CAsyncSocket, 429-431

member variables
adding to dialog box class

(ShowString application), 177
adding to documents

(ShowString application), 177
connecting to controls, 48
displaying strings (ShowString

application), 161
m paneString, 199

Member Variables tab
(ClassWizard), 48

memory
global memory, 336
objects, 687-691

allocating memory, 687
destructor/pointer

interaction, 690
dynamic objects, 689-690
pointers as member

variables, 688-689
releasing memory, 688
running destructors

accidentally, 691

memory leaks, 590-591
automatic pointers, 592-594
common causes, 590-591
delete operator (debug

version), 591-592
new operator (debug version),

591-592

Memory window, 766

menu editor, 543

menu items, resource IDs, 165

menus, 722
ActiveX container code, 304-307
ActiveX server, 344-346
Build menu, 742-743
captions, 711
ClassView shortcut menus

classes, 715-716
functions, 716-717
variables, 717-718

Debug, 759-760
debugging interface, 759
Edit menu, 725

Advanced command, 732
Bookmarks command, 732
Breakpoints command, 733
Complete Word command,

733

Copy command, 726
Cut command, 726
Delete command, 726
Find command,

727-729
Find in Files command,

729-730
Go To command, 731
List Members command,

733
Parameter Info command,

733
Paste command, 726
Redo command, 726
Replace command, 730-731
Select All command, 726
Type Info command, 733
Undo command, 725

File menu, 722-725
Close command, 724
Close Workspace command,

724
Exit command, 725
New command, 723
Open command, 723
Open Workspace command,

724
Page Setup command,

724-725
Print command, 725
Property Sheet command,

adding, 271
Recent Files command, 725
Recent Workspaces

command, 725
Save All command, 724
Save As command, 724
Save command, 724
Save Workspace command,

724
graying (command updating),

74-76
CCmdUI object, 75-76
CWhoisView object, 76

Help menu, 751-752
Insert menu, 737-738
Project menu, 738

Add to Project command,
739

Dependencies command,
739

Set Active Project command,
738

menus

842

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Settings command, 739-742
Source Control command,

739
prompts, 711
Resource IDs, 711
shortcut menus (Visual Studio

editor), 721-722
ShowString application, 164-166
Thread menu, adding to Thread

application, 634
Tools menu, 744

Close Source Browser File
command, 744

Customize command, 745
Macro command, 747
Options command, 746-747
Play Quick Macro

command, 747
Record Quick Macro

command, 747
Source Browser command,

744
user interfaces, 710-712
View menu, 733

ClassWizard command, 733
Debug Windows command,

735
Full Screen command, 735
Output command, 735
Properties command, 735
Resource Includes

command, 734
Resource Symbols

command, 734
ScriptWizard command, 733
Workspace command, 735

Visual SourceSafe cascading
menu, 583-584

Window menu, 747
Cascade command, 749
Close All command, 748
Close command, 748
Docking View command,

748
New Window command, 747
Next command, 749
Previous command, 749
Tile Horizontally command,

749
Tile Vertically command,

749

Window Split command, 748
Windows command, 750

message maps, 65-68, 397,
781

creating with ClassWizard, 69
Add Windows Message

Handler dialog box, 70-71
classes, 72
Tabbed dialog box, 69-70

macros, 66-67
polymorphism, 68
rolling-die control, 405-406
virtual functions, 68
WindowProc() function, 67-68

message-box functions
(CString), 777

message-handling
functions, 65

associating with button
command IDs, 189-190

message-map macros, 781

MessageBox() function, 635

messages, 62-63
catching

with ClassWizard, 69-72
with MFC code, 69

command updating with
ClassWizard, 76-77

commands, 73-74
catching with ClassWizard,

76-77
command routing, 74
resource IDs, 74

generating, 669
handling, 62
inventing, 670
loops

TranslateMessage()
function, 64

WinMain() routine, 63
WndProc() function, 64-65

names, 72-73
defining, 62
prefixes, 72-73
window types, 72-73

routing, 62
sending, 669-670
WM COMMAND, 247
WM CONTEXTMENU,

247-248

programming context help,
253

WM HELP, 247
programming context help,

253
WM PAINT, 100-102

Messaging API, see MAPI

messaging applications, 432

messaging services, 432

messaging-aware applications,
432

messaging-based applications,
433

messaging-enabled
applications, 432

methods
adding to event interface (ATL

control), 517-518
Automation servers, 299
CSocket methods (Winsock),

431-432
CStatusBar class, 194
DoPropExchange(), 400
InitInstance(), 94

ActiveX container code, 306
see also functions

MFC (Microsoft Foundation
Classes), 676

printing, 122-124, 133-137
CPrintInfo class members,

134
functions of a view class, 133

Winsock, 429-432
CAsyncSocket member

functions, 429-431
CSocket methods,

431-432

MFC ActiveX ControlWizard
project (AppWizard), 27

MFC applications
painting

OnPaint() function, 101
WM PAINT message,

100-102
Registry use, 156-157

MFC AppWizard project
(AppWizard), 27

MFC class hierarchy, view
classes, 93

menus

843

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

MFC functions, AFX prefix, 700

MFC libraries, 19

MFC Tracer utility, 767

MFC’s document/view
architecture, 82

Microsoft Control Pad
ATL controls, 516-517
Web site, 467

Microsoft Developer Studio,
creating console applications,
656

Microsoft Internet Explorer,
Active Documents, 367-371

Microsoft Office Binder, 367

Microsoft on the Web command
(Help menu), 752

Microsoft Transaction Server
(MTS), 582

Microsoft Web site, 449, 453,
475, 516, 582

Min() function, 618-619

minimizing executable size
(ATL controls), 523-525

MM LOENGLISH mapping
mode, 125

MM TEXT mapping mode, 124

modeless dialog boxes, 50

monikers, 481

month calendar control, 240

Most Recently Used (MRU),
157

mouse
double clicks, handling in

ActiveX containers, 330
drag and drop, 331

drag sources, 331-332
drop targets, 332-333
function skeletons, 333-335
OnDragDrop() function,

339-341
OnDragEnter() function,

335-337
OnDragLeave() function,

339
OnDragOver() function,

337-339

single clicks, handling in
ActiveX containers, 327-330

MouseDown event, 404

MouseMove event, 404

MouseUp event, 404

moving ActiveX container
items, 322-323

MRU (Most Recently Used),
157

MTA (Multithreaded Apartment
model), 496

MTS (Microsoft Transaction
Server), 582

multi-threaded console
applications, creating, 659

multiple document
interface, 13

applications, creating, 186

multiple document interface
applications, 21

boilerplate code (AppWizard),
analyzing, 34-37

multitasking, 632

mutexes (thread
synchronization), 648-650

MyException object, 610

N
namespace keyword, 627

namespaces, 627-630
aliases, 629-630
defining, 627-628
nesting definitions,

628-629
unnamed namespaces, 629

naming
ATL controls, 494
functions, 682-683
messages, 72-73

defining message names, 62
prefixes, 72-73
window types, 72-73

naming conventions, Hungarian
Notation, 696-697

NCompass Labs Web site, 469

nested documents, creating,
365-367

nesting namespace definitions,
628-629

Netscape Navigator
ScriptActive plug-in, 469
Web pages, embedding ActiveX

controls, 469-470

New ATL Object command
(Insert menu), 738

New Class command (Insert
menu), 737

New Class dialog box,
47, 553, 737

New command (File menu),
723

New dialog box, 12, 723

New Form command (Insert
menu), 737

new operator
allocating memory, 688
memory leaks, 590-592

New Project Information dialog
box, 87-88, 115, 122, 493,
539, 603-605, 633

New Symbol dialog box, 196

New Virtual Override dialog box
(ClassWizard), 71

New Window command
(Window menu), 747

New Windows Message and
Event Handlers dialog
box, 54

newline character, 451

Next command (Window
menu), 749

nodes, 791
adding to lists, 793-795
declaring, 794
deleting from lists, 793-797

nonblocking sessions (Internet
sessions), 451

nonblocking sessions

844

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Notification function, 380

notifications
command routing, 74
list view control, 225-226
tree view control, 232

O
object linking and embedding

(OLE), 290
embedding objects, 294-296

containers, 295-296
drag and drop technique,

297
servers, 295-296

linking objects, 292-293
containers, 295-296
servers, 295-296

Object Wizard (ATL controls)
adding to projects, 493-494
attributes, setting, 495-497
interfaces, 496
stock properties, 497-500
threading models, 495-496

object-oriented console
applications, writing,
657-659

<OBJECT> tag
CODEBASE attribute, 467
embedding ActiveX controls,

466-470

objects, 676
Active Messaging, 436
ActiveX

inside-out activation, 317
outside-in activation, 316

advantages, 677-678
axfDump, 769-772
CArchive objects, creating,

153-154
CCmdUI, command updating,

75-76
classes, 678-679

base classes, 684
derived classes, 684
subclasses, 684
superclasses, 684

COM objects, components, 582
critical-section objects, creating,

643

CShowStringApp, 374-376
CSingleLock object, creating,

649
CTime object, 806-808

Format() function format
codes, 807-808

CTimeSpan object, 809
CWhoisView, command

updating, 76
deleting (ActiveX containers),

341-342
destructors, 687

pointer interaction, 690
running accidentally, 691

dynamic objects, 689-690
embedding, 294-296

containers, 295-296
drag and drop technique,

297
servers, 295-296

event objects, 640
thread communication,

640-643
exception objects,

610-611
functions, 679-681

constructors, 681-682
copy constructors, 691
inline code, 679-680
inline functions, 680-681
naming, 682-683
overloading, 682-683
overriding, 685
private functions, 679
signatures, 682

information hiding, 677-678
initializing, 681-682
instantiating, class templates,

621-624
linking, 292-293

containers, 295-296
servers, 295-296

memory, 687-691
allocating, 687
destructor/pointer

interaction, 690
dynamic objects, 689-690
pointers as member

variables, 688-689
releasing, 688
running destructors

accidentally, 691

MyException, 610
persistence, 140
semaphore objects, creating,

650
string objects

creating, 804
manipulating, 805

OCX controls, 300-301

ODBC classes, 533
comparing to DAO, 556-558

ODBC Data Source
Administrator dialog box, 534

ODBC database program,
creating, 533

basic Employee application,
535-539

database display, 539-542
DoFilter() function, 556
filtering, adding, 550-555
OnMove() function, 549
OnRecordAdd() function, 549
OnRecordDelete() function,

550
OnSortDept() function, 555
records, adding/deleting,

542-548
registering the database,

533-535
sorting, adding, 550-555

ODBC Microsoft Access 97
Setup dialog box, 535

Office Binder, 367

OLE (object linking and
embedding), 290

embedding objects, 294-296
containers, 295-296
drag and drop technique,

297
servers, 295-296

linking objects, 292-293
containers, 295-296
servers, 295-296

OLE Custom Controls, 300

OLE DB, 558

OnAccept method
(CAsyncSocket), 430

OnActivate() function, 316

OnAppAbout() function,
33, 70

Notification function

845

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

OnBeginPrinting() function,
129, 133

OnCancelEditCntr() function,
314

OnChange() function, 315

OnChangeItemPosition()
function, 317

OnCircle() function, 191

OnClose method
(CAsyncSocket), 430

OnConnect method
(CAsyncSocket), 430

OnCreate() function, 333,
642-643

ActiveX server, 352
rebars, 202

OnCreateControlBars()
function (ActiveX server),
352-353

OnData() function, 507

OnDeactivateUI() function,
317

OnDragDrop() function,
339-341

OnDragEnter() function,
335-337

OnDragLeave() function, 339

OnDragOver() function,
337-339

OnDraw() function, 102, 128,
133, 142, 382-384,
789-790, 797, 802

ActiveX server, 350-351, 361-363
asynchronous properties,

486-487
ATL controls, 508-512
changing, 180-181
drawing multiple container

items, 326-327
rebars, 204
Rectangles application, 89-90
rolling-die control, 401, 408-411,

420-422
Scroll application, 116-117

OnEndPrinting() function, 134

OnFileChangeString() function,
200

OnFileNew() function, 161

OnFileWizard() function,
283-284

OnGetExtent() function
(ActiveX server), 351

OnGetItemPosition() function,
316

OnHelpInfo() function,
253-254

OnHScroll() function (slider
control), 212-213

OnInitDialog() function,
513-514

list box control, 54-55
radio buttons, 58

OnInitialUpdate() function,
310

OnInsertObject() function,
311-313

OnLButtonDown() function,
103, 126, 328, 788-789,
795, 801

Rectangles application, 90

online Help, see Help systems

OnMessagePending method
(CSocket), 431

OnMove() function (ODBC
database program), 549

OnNewDocument() function,
84, 141, 162, 178

Rectangles application, 89

OnNotify() function,
225-226

tree view control, 232

OnOK() function, 53

OnOutOfBandData method
(CAsyncSocket), 430

OnPaint() function, 101

OnPrepareDC() function,
134-135

overriding, 131-133

OnPreparePrinting() function,
134-135

OnPrint() function, 134-135

OnPropsheet() function,
278-279

OnQuery() function, 448

OnRButtonDown() function,
127, 790, 796

OnReceive method
(CAsyncSocket), 430

OnRecordAdd() function
(ODBC database program),
549

OnRecordDelete() function
(ODBC database program),
550

OnSend method
(CAsyncSocket), 431

OnSetActive() function, 284

OnSetFocus() function, 313

OnSize() function, 314

OnSortDept() function (ODBC
database program), 555

OnStartthread() function, 635,
653

OnStopthread() function, 637

OnToolsOptions() function,
174-175

changing, 179

OnULine() function (rich edit
control), 235-236

OnUpdateEditPaste() function,
76

OnWndMsg() function, 74

Open command (File menu),
723

Open dialog box, 723

Open Workspace command
(File menu), 724

opening
Help, 244
Word documents in Visual

Studio, 256

OpenURL() function, 451

operators
<<, 144
>>, 144
CString class, 804
delete operator

memory leaks, 590-592
releasing memory, 688

operators

846

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

new operator
allocating memory, 688
memory leaks, 590-592

optimization, 594-595

optimizing ActiveX controls,
475-479

Activates When Visible option,
476

asynchronous properties, 480
Flicker-Free Activation option,

478
Unclipped Device Context

option, 477
Windowless Activation option,

477

Options command (Tools
menu), 746-747

Options dialog box,
746-747, 765

Editor tab, 746
ShowString application, 168-169

changing, 175-177
check boxes, adding, 176
radio buttons, adding, 175

Workspace tab, 747

Options dialog controls, adding
(help text topics), 261-262

Options Properties sheet, 268

orientation (text), 105

Output command (View menu),
735

Output view, 719

outside-in activation (ActiveX
objects), 316

overloading functions,
682-683

overriding functions, 685

Overstrike mode (Visual Studio
editor), 719

P
Page Setup command (File

menu), 724-725

Page Setup dialog box,
724-725

paint DCs, 101

Paint1 application, 99-100
building, 100

brushes, 110-113
pens, 109-111
switching displays, 102-103
view fonts, changing,

104-107
windows, sizing and

positioning, 107
WM PAINT message,

100-102
starter application, 99-100

painting
OnPaint() function, 101
WM PAINT message,

100-102

panes (status bars), 194-195
adding, 194

command IDs, creating,
195-196

command-update handler,
198-199

default strings, creating,
196-197

indicator array, 196-197

<PARAM> tag, 480

Parameter Info command (Edit
menu), 733

parameters
AddBar() function, 203
CInternetSession constructor,

449-450
class template, passing multiple

parameters, 623
command-line parameters,

ProcessShellCommand()
function, 33

CreateLocater() function,
456-457

CreateWindow() function,
697-698

LPARAM, 639
rolling-die control (ActiveX),

395
stored procedures, 573-574
templates, 618
WPARAM, 639

Paste command (Edit menu),
726

Paste Special dialog box, 297

pens, 109-111
styles, 110

performance improvement
techniques, 586-596

ASSERT macro, 586-587
debug-only features, 588
memory leaks

automatic pointers, 592-594
common causes, 590-591
delete operator, 591-592
new operator, 591-592
sealing, 590-591

optimization, 594-595
profiling, 595-596
TRACE macro, isolating bad

code, 587-588

persistence, 140
DoPropExchange() method,

400
property bag persistence (ATL

control), 516

persistent classes
creating, 145-150

CMessages class, 146-150
File Demo 2 application,

146-150
Serialize() function, 148-149

strings, saving/loading, 145-146

placeholder strings, changing,
257-259

planning Help systems,
250-251

Help Topics, 250

Play Quick Macro command
(Tools menu), 747

plug-ins (ScriptActive), 469

pointers, 686-687
as member variables (object

memory), 688-689
automatic pointers (memory

leaks), 592-594
destructor interaction, 690
document pointers, 86
managed pointers, 615

auto-pr, 625-626
memory leaks, 591
upcasts, 686-687

polling, 62

polymorphism, 68, 686-687

operators

847

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

pop-up Help topic windows,
246

port numbers, 428

POSITION data type, 778

positioning windows, 107-109

PostMessage() function,
639, 669

PreCreateWindow() function,
107-109

ActiveX server, 353

predefined keys (Registry),
155-156

preprocessor macros (DLLs),
665

Previous command (Window
menu), 749

primary verb (container items),
330

Print command (File menu),
725

Print dialog box, 725

print-capable applications,
creating, 122-124

printing, 122-124
CPrintInfo class members, 134
functions of a view class, 133
images, scaling, 124-126
mapping modes, 124-126
multiple pages, 126-131
setting the origin, 131-133

priority constants (threads),
632

private functions, 679

private keyword, 678

processes, 632

ProcessShellCommand()
function, command-line
parameters, 33

profiling, 595-596

programming (Windows)
c-style window class, 694
handles, 698
window creation, 695-698
WNDCLASS structure, 695
WNDCLASSA structure, 694

programming Help, 247-248
command help, 251-252
Contents file adjustments,

264-265
context help, 253-255

WM CONTEXTMENU
message, 253

WM HELP message, 253
help text

adding topics, 259-263
footnotes, 256
How to Modify Text topic,

changing, 263-264
placeholder strings,

changing, 257-259
writing, 255-257

WM COMMAND message, 247
WM CONTEXTMENU

message, 247-248
WM HELP message, 247

programs
ODBC database

basic Employee application,
535-539

creating, 533
database display, creating,

539-542
DoFilter() function, 556
filtering, adding, 550-555
OnMove() function, 549
OnRecordAdd() function,

549
OnRecordDelete() function,

550
OnSortDept() function, 555
records, adding/deleting,

542-548
registering the database,

533-535
sorting, adding,

550-555
see also applications

progress bar control,
208-210

creating, 208-209
CreateProgressBar()

function, 208
initializing, 209
timer updates, 209-210

project files, 708

Project Information dialog box,
269

Project menu, 738
Add to Project command, 739
Dependencies command, 739
Set Active Project command,

738
Settings command, 739-742
Source Control command, 739

Project Settings dialog box,
589, 667, 739-742

Browse Info tab, 741
C/C++ tab, 740
General tab, 740
Link tab, 741
Resources tab, 741

project workspace files, 708

projects, 706
Component Gallery

components, 600

prompts (menu items), 711

properties, 374
ActiveX controls, 399
ambient properties, 399

ActiveX controls, 416-418
dispids, 417
variable types, 417

asynchronous, 480
adding to ATL control,

504-507
BLOBs, 481
CDierollCtrl class, 482-484
CDierollDataPathProperty

class, 482, 486
OnDraw() function, 486-487
<PARAM> tag, 480
ReadyState property,

484-485
ReadyStateChange event,

484-485
Automation servers, 299
BackColor (rolling-die control),

418-420
custom properties, 399

adding to ATL controls,
500-503

direct-access properties, 378
exposing (ShowString

application), 377-382

properties

848

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Extended properties (ActiveX
controls), 399

ForeColor (rolling-die control),
418-420

frames, 18
image

adding to CDierollCtrl class,
482-484

get function, 505-506
put function, 505-506

initializing (ATL control),
503-504

ReadyState, 484-485
rolling-die control, 399-400
stock properties, 399

ActiveX controls, 416
ATL control, 497-500
ReadyState, adding to ATL

controls, 500
toolbar buttons, 189-190
see also variables

Properties command (View
menu), 735

Properties dialog box,
45, 166

property bag persistence (ATL
control), 516

property pages, 268
adding to ATL controls, 512-516
rolling-die control, 397

Property Sheet command,
adding to File menu, 271

property sheets, 268, 735
accelerator tables, 736
adding to applications, 280-281
building, 413-414
changing into wizards, 281-285

displaying wizards, 283-284
responding to wizard

buttons, 285
setting wizard buttons, 284
Wizard Demo application,

running, 281-283
wizard pages, creating, 283

connecting to properties,
414-415

demo application,
269-279

adding resources,
273-274

associating resources with
classes, 275-276

basic files, creating, 269
editing resources, 270-272
property sheet class,

creating, 276-279
running, 279-280

displaying in test container, 415
rolling-die control, 412

ambient properties, 416-418
BackColor property, 418-420
colors, 416
DoRoll() function, 422-423
Dots property, 412-414
ForeColor property, 418-420
OnDraw() function, 420-422
stock properties, 416

source files, 736

property-exchange functions,
400-401

protected access, 685

protocols
Finger, querying with Gopher,

458-460
FTP sites, querying, 453-455
Gopher sites, querying, 455-457
HTTP sites, querying, 448-453
Whois, querying with Gopher,

460-462

providers (OLE DB
applications), 558

public keyword, 678

Publishing application, 562
application shell, building,

566-568
data connections, 568-570

DataView, 570
Query toolbar, 569-570

data source, setting up, 562-566
Query Designer, 570-572
stored procedures, 571-574

connecting to C++ code,
575-579

creating, 574-575
parameters, 573-574
running, 573

pubs database, 562

put function (Image property),
505-506

PX functions, 400-401

Q
queries, 560

SQL queries, creating, 570-572

Query application
designing, 444-445
Finger protocol queries, 458-460
FTP site queries, 453-455
Gopher site queries, 455-457
HTTP site queries, 448-453
Query dialog box, building,

445-447
user interface, building, 445-447
Whois protocol queries, 460-462

Query Designer, 570-572

Query dialog box (Internet
Query application), building,
446-447

Query toolbar, 569-570

querying
Finger protocol, 458-460
FTP sites, 453-455
Gopher sites, 455-457
HTTP sites, 448-453
Whois protocol, 460-462

QueryInterface() function, 298

QuickWatch window, 762

R
Radio button control, 46

radio buttons, 58-59
adding to Options dialog box

(ShowString application), 175
InitInstance() function, 58
OnInitDialog() function, 58

reading files directly, 150
CFile class, 153

reading through arrays,
789-790

Readme command (Help
menu), 751

ReadThreadProc() function,
647

ReadyState property, 484-485

ReadyStateChange event,
484-485

ATL control, 519-520

properties

849

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

rebars, 201-204
check box control, adding,

202-204

Rebuild All command (Build
menu), 742

Receive method
(CAsyncSocket), 431

ReceiveFrom method
(CAsyncSocket), 431

Recent Files command (File
menu), 725

Recent Workspaces command
(File menu), 725

Record Quick Macro command
(Tools menu), 747

record views, connecting to
recordset variables,
577-578

records, 560
adding to database tables, 542
deleting from database tables,

542

recordsets
definitions, editing, 576
member variables, connecting

to record views, 577-578

Rectangle() function, 112

Rectangles application,
creating, 87-91

OnDraw() function, 89-90
OnLButtonDown() function, 90
OnNewDocument() function,

89
SetModifiedFlag() function, 90

Redo command (Edit menu),
726

Reference Help, 247

RefreshWindow() function,
386

reg file extension, 358

Registers window, 766

Registry, 154
editing (ActiveX server), 358
predefined keys, 155-156
Registry editor, 154-155, 358
sample applications, 157-158
set up, 154-155
using in MFC applications,

156-157

regular expressions, find and
replace operations,
728-729

relational databases,
531-532

accessing, 532
keys, 531
SQL scripting language, 532
tables, 531-532, 560

releasing memory (objects),
688

Remote Connection command
(Build menu), 743

Remove From Array dialog box,
787

Replace command (Edit menu),
730-731

Replace dialog box, 730-731

resizing ActiveX container
items, 322-323

Resource command (Insert
menu), 737

Resource Copy command
(Insert menu), 738

resource editor dialog boxes,
building, 46-47

resource IDs
command messages, 74
commands, 76-77
keyboard accelerators, 167
menu items, 165, 711

Resource Includes command
(View menu), 734

Resource Includes dialog box,
734

Resource Symbols command
(View menu), 734

Resource Symbols dialog box,
196, 734

resources
dialog box resources,

44-46
language settings, 14
Property Sheet Demo

application
adding resources, 273-274

associating resources with
classes, 275-276

editing resources, 270-272

Resources tab (Project Settings
dialog box), 741

ResourceView tab (Workspace
window), 708

ResourceView window
(Developer Studio), 270

responding to wizard buttons,
285

return character, 451

reusable code, 598

reuse, 598
Component Gallery, 598,

601-602
components, adding,

599-600
exploring, 601
projects, using components

in, 600

reusing code (inheritance),
683-684

overriding functions, 685
pointers, 686

upcasts, 686-687
polymorphism, 686-687
protected access, 685

revision control systems,
583-584

rich edit control, 233-237
character formatting, 235-236
CHARFORMAT structure,

235-236
command buttons, creating,

235-237
creating, 233-234
initializing, 234
OnULine() function, 235-236
paragraph formatting, 236-237
styles, 234

Rich Text Format files (Help
systems), 248

Roll() function, 503
rolling-die control,

406-407

ROLLBACK keyword (SQL
statements), 561

ROLLBACK keyword

850

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

rolling-die control, 394-399
bitmap icon, creating, 407
building, 394-396
CDierollApp class, 396
CDierollCtrl class, 396-397

event maps, 397
property pages, 397

CDierollPropPage class,
397-398

designing, 399
dots

centering, 411
displaying, 407-411

drawing code, 401-404
Ellipse() function, 409
events, 404

adding, 404-405
future improvements, 422-423
message map entries,

405-406
OnDraw() function,

401, 408-411
parameters, 395
properties

adding, 399-400
DoPropExchange()

function, 400
PX functions, 400-401

property sheets, 412
ambient properties, 416-418
BackColor property, 418-420
building, 413-414
colors, 416
connecting to properties,

414-415
displaying in test container,

415
DoRoll() function,

422-423
Dots property, 412-414
ForeColor property, 418-420
OnDraw() function, 420-422
stock properties, 416

Roll() function, 406-407
runtime licensing, 395
testing, 402-404

routines, WinMain(), 63

routing messages, 62

rtf file extension (Help
systems), 248

running
destructors accidentally, 691
Property Sheet Demo

application, 279-280
stored procedures, 573
Wizard Demo application,

281-283

RUNTIME CLASS macro, 94

runtime licensing, 395

runtime services macros,
781-782

S
Save All command (File menu),

724

Save As command (File menu),
724

Save command (File menu),
724

Save Workspace command (File
menu), 724

saving
document states, 141
strings (persistent classes),

145-146

scaffolding (console
applications), 659-660

scaling printed images,
124-126

scope resolution, namespaces,
627-630

aliases, 629-630
defining, 627-628
nesting definitions, 628-629
unnamed namespaces, 629

scope resolution operator, 680

script safe registration
ActiveX controls, 470-474
ATL controls, 522

ScriptActive plug-in, 469

ScriptWizard command (View
menu), 733

Scroll application
adding code, 117-120

to decrease lines, 118-120
to increase lines, 117

building, 114-117
Serialize() function, 115

scrolling views, 240-242

scrolling windows, 113-114

SDI applications, analyzing
boilerplate code (AppWizard),
29-34

SDK functions, 700

sealing memory leaks,
590-594

Search command (Help menu),
751

searching
Find dialog box, 727-729

regular expressions, 728-729
Find in Files dialog box, 729-730

Advanced button, 730
Go To dialog box, 731
Replace dialog box, 730-731

Select All command (Edit
menu), 726

Select Data Source dialog box,
569

Select Database Tables dialog
box, 537, 567

SELECT keyword (SQL
statements), 561

SelectObject() function, 106

semaphore objects, creating,
650

semaphores (thread
synchronization), 650-654

Send item, adding to File menu
(MAPI), 433-435

Send method (CAsyncSocket),
431

Send() function, 429

sending messages, 669-670

SendMessage() function, 669

SendTo method
(CAsyncSocket), 431

serialization, displaying strings
(ShowString application), 161

rolling-die control

851

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Serialize() function, 84, 115,
143, 178

ActiveX server, 350
CArchive objects, 153-154
CMessages class, 150
persistent objects, 148-149

SerializeElements() function,
776

serializing class member
variables, 146

servers, 295-296
ActiveX server

Active Document server,
367-371

CInPlaceFrame class,
351-354

CLSID, 356-357
container/server

combination application,
365-367

CShowStringApp class,
346-348

CShowStringDoc class,
348-349

CShowStringSrvrItem class,
349-351

CShowStringView class, 349
menu resource strings,

355-356
menus, 345-346
Registry, editing, 358
shortcomings, 354-360
ShowString functionality,

360-364
ActiveX server applications, 344
Automation servers,

299-300, 374
IDispatch interface, 299-300

Microsoft Transaction Server,
582

SQL Server, see SQL Server

Set Active Configuration
command (Build menu), 743

Set Active Project command
(Project menu), 738

Set Active Project Configuration
dialog box, 524, 743

Set function, 380-382
CDierollCtrl class, 483

SetArray() function, 647

SetBitmap() function
(CToolBar class), 193

SetButtonInfo() function
(CToolBar class), 193

SetButtons() function
(CToolBar class), 193

SetButtonStyle() function
(CToolBar class), 193

SetButtonText() function
(CToolBar class), 193

SetCheck() function (CCmdUI
object), 75

SetCursor() function, 329-330

SetEvent() function, 640

SetHeight() function (CToolBar
class), 193

SetIndicators() method
(CStatusBar class), 194

SetModifiedFlag() function,
143

Rectangles application, 90

SetPaneInfo() method
(CStatusBar class), 194

SetPaneStyle() method
(CStatusBar class), 194

SetPaneText() method
(CStatusBar class), 194

SetRadio() function (CCmdUI
object), 75

SetRegistryKey() function, 157

SetSelection() function,
328-329

SetSize() function, 788

SetSizes() function (CToolBar
class), 193

SetSockOpt method
(CAsyncSocket), 431

SetText() function (CCmdUI
object), 75

setting wizard buttons, 284

Settings command (Project
menu), 739-742

SetupTracker() function,
323-324

SetWizardButtons() function,
284

shared application memory,
336

shortcut menus
ClassView

class shortcut menu,
715-716

function shortcut menu,
716-717

variable shortcut menu,
717-718

Visual Studio editor,
721-722

shortcuts, keyboard shortcuts,
709-710

ShowBrushes() function,
110-113

ShowFonts() function,
105-106

ShowPens() function,
109-111

ShowString application
ActiveX containers, 304

AppWizard-generated code,
304

CShowStringApp class, 306
CShowStringCntrItem class,

315-318
CShowStringDoc class, 308
CShowStringView class,

308-314
deleting objects, 341-342
drag and drop, 331
drawing multiple items,

326-327
handling double clicks, 330
handling single clicks,

327-330
hit testing, 325-326
in-place editing,

319-320
menus, 304-307
moving items, 322-323
resizing items, 322-323
tracker rectangles,

322-325
catching command messages,

172-174

ShowString application

852

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

command help, programming,
251-252

container/server combination,
365-367

Contents file adjustments,
264-265

context help
programming, 253-255
WM CONTEXTMENU

message, 253
WM HELP message, 253

creating, 160
CShowStringApp class,

message maps, 67
designing, 374
dialog box class, 170-172

member variables, adding,
177

dialog boxes, 166-169
About dialog box,

167-168
displaying, 174-175
Options dialog box, 168-169,

175-177
displaying strings, 161

getting strings onscreen,
162-163

initializing strings, 161-162
member variables, 161
serialization, 161

document, adding member
variables, 177

help text
adding topics, 259-263
footnotes, 256
How to Modify Text topic,

changing, 263-264
placeholder strings,

changing, 257-259
writing, 255-257

menus, 164-166
OnDraw() function, changing,

180-181
OnToolsOptions() function,

changing, 179
restoring functionality, 321
server capabilities

Active Document server,
367-371

adding, 344
AppWizard, 344
AppWizard server

boilerplate, 344

CInPlaceFrame class,
351-354

CLSID, 356-357
CShowStringApp class,

346-348
CShowStringDoc class,

348-349
CShowStringSrvrItem class,

349-351
CShowStringView class, 349
menu resource strings,

355-356
menus, 344-346
Registry, editing, 358
shortcomings, 354-360
ShowString functionality,

adding, 360-364

ShowString applications,
designing

CShowStringApp object,
374-376

CShowStringDoc document
class, 376-377

direct-access properties, 378
OnDraw() function, 382-384
properties, exposing, 377-382
window, displaying, 385-386

ShowString Automation server,
building controller
applications, 387

ShowWindow() function,
385-388

ShutDown method
(CAsyncSocket), 431

signatures (functions), 682

single document interface
(SDI), 13

applications, analyzing
boilerplate code (AppWizard),
29-34

Single-Threaded Apartment
model (STA), 495-496

sizing windows, 107-109

slider control, 210-213
creating, 211

CreateTrackbar() function,
211

initializing, 212
OnHScroll() function,

212-213
styles, 211

sockets
ChatSrvr program, 432
Chatter program, 432
connection-based, 428
Windows sockets, 428-432

connection-based, 428
Winsock, 428-432

software, international
development issues, 670-672

sorting database records,
550-555

Source Browser command
(Tools menu), 744

Source Control command
(Project menu), 739

source files
console applications, 656-657
FileView, 718
property sheets, 736

spreadsheets (Excel), linking to
Word documents, 293

Spy++ utility, 660

SQL (Structured Query
Language), 560-561

accessing databases, 532

SQL databases, 561-562, 579
Database Designer, editing

databases, 579-580
diagrams, 580-581
stored procedures, 561-562

SQL Server (Publishing
application), 562

application shell, building,
566-568

connecting stored procedures
to C++ code, 575-579

creating stored procedures,
574-575

data connections, 568-570
data source, setting up, 562-566
Query Designer, 570-572
stored procedures, 571-574

SQL statements, 561
stored procedures, 561-562

STA (Single-Threaded
Apartment model),
495-496

stack pointers, 592

ShowString application

853

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

stack unwinding, 592-593

stacks, 592

standard commands, 782

Standard Template Library
(STL), 625-626

Standard toolbar, 753-754

Stardust Labs Winsock
Resource Page Web site, 428

Start Thread command, 634

state members (LV COLUMN
structure), 222

stateMask members (LV
COLUMN structure), 222

statements
ASSERT, 586-587
SQL, 561

keywords, 561
stored procedures, 561-562

throw, exceptions, 608
TRACE, 587-588

states (documents), saving/
loading, 141

Static text control, 46

status bars, 193-202
appearance, setting, 199-202
command IDs, creating, 196
CStatusBar class methods, 194
default, 195
panes, 194-195

adding, 194
command IDs, creating, 195
command-update handler,

creating, 198-199
default strings, creating,

196-197
indicator array, 196-197

setting up, 200

StepIt() function (progress bar
control), 210

stock events (ActiveX controls),
404

stock properties, 399
ActiveX controls, 416
ATL controls, 497

Object Wizard code, 498-500
ReadyState, adding to ATL

controls, 500

Stop Thread command, 636

storage, documents, 141

stored procedures, 561-562,
571-574

connecting to C++ code, 575-579
creating, 574-575
parameters, 573-574
running, 573

strcpy() function, 681

string classes, 803
CString

formatting functions, 777
member functions, 804
message-box functions, 777

string objects
creating, 804
manipulating, 805

String Properties dialog box,
197

string table editor, 196

string tables, user interfaces,
711

strings
CMessages class data strings,

editing, 149-150
default strings (status bar

panes), 196-197
displaying (ShowString

application), 161
getting strings onscreen,

162-163
initializing strings, 161-162
member variables, 161
serialization, 161

document storage, 141
menu resource strings (ActiveX

server), 355-356
placeholder strings, changing,

257-259
saving/loading (persistent

classes), 145-146

Structured Query Language
(SQL), 560-561

accessing databases, 532

structures
CHARFORMAT, 235-236
CREATESTRUCT, 107-109
LOGFONT, fields, 104-105
LV COLUMN, 220-221
LV ITEM, 222

TVINSERTSTRUCT, 230
TVITEM, 229-231

styles
date picker control, 238
list view control, 219-220
month calendar control, 240
rich edit control, 234
slider control, 211
tree view control, 229
up-down control, 214

subclasses, 684

superclasses, 684

syntax coloring, 720

T
Tabbed dialog box

(ClassWizard), 69-70
Add Function button, 70

table of contents files (Help
systems), 248

tables, 560
accelerator tables, property

sheets, 736
databases, 531

records, adding/deleting,
542

relational databases, 532
string tables, user interfaces,

711

tails (linked lists), 791

Task-oriented Help, 247

Technical Support command
(Help menu), 752

template keyword, 618

templates, 618
Active Template Library, 492
button template, 188
class templates, creating,

620-624
instantiating objects, 621-624
multiple parameters,

passing, 623
collection class templates,

802-803
document templates, 94-95
function templates

creating, 618-620

templates

854

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Min() function example,
618-619

parameters, 618
Standard Template Library,

625-626

test contain, displaying property
sheets, 415

test harnesses, 659

testing
ActiveX controls, 402-404,

487-489
applications created with

AppWizard, 21-22
ATL control, 520
diagnostic services, 778-779

text
escapement, 105
help text

adding topics, 259-263
footnotes, 256
How to Modify Text topic,

changing, 263-264
placeholder strings,

changing, 257-259
writing, 255-257

orientation, 105
searching

Find dialog box, 727-729
Find in Files dialog box,

729-730
Go To dialog box, 731
Replace dialog box, 730-731

text blocks, editing code,
720-721

TextOut() function, 107

Thread application, building,
633-636

AppWizard settings, 634
Thread menu, adding, 634

thread synchronization,
643-654

critical sections, 643-648
mutexes, 648-650
semaphores, 650-654

thread-safe array classes, 644

threading, 454
ATL control model,

495-496

ThreadProc() function, 635,
639-641, 646, 652

threads, 632
communication, 636-643

event objects, 640-643
global variables,

636-638
user-defined messages,

639-640
priority constants, 632
UI threads, 632
worker threads, 632

THROW macro (exceptions),
617

throw statement, exceptions,
608

throwing exceptions,
611-615

Tile Horizontally command
(Window menu), 749

Tile Vertically command
(Window menu), 749

time class
CTime member functions,

805-806
CTime object, 806-808

Format() function format
codes, 807-808

CTimeSpan member functions,
806

CTimeSpan object, 809

time classes, 805

timer updates (progress bar
control), 209-210

Tip of the Day command (Help
menu), 752

toolbar editor, 187

toolbars, 186, 752, 755
Build Mini-bar toolbar, 755
buttons

adding, 188-192
deleting, 186-188
drawing, 188
message handlers, 189-190
properties, defining, 189-190

CToolBar class member
functions, 191-193

Debug, 763
default, 186
docked toolbars, 753
docking, 187

floating toolbars, 187
Query toolbar, 569-570
rebars, 201-204

check box controls, adding,
202-204

Standard toolbar, 753-754
user interfaces, 712

Toolbars tab (Customize dialog
box), 745

Tools menu, 744
Close Source Browser File

command, 744
Customize command, 745
Macro command, 747
Options command,

746-747
Play Quick Macro command,

747
Record Quick Macro command,

747
Source Browser command, 744

Tools Options topic, adding
(help text topics), 261

Tools topic, adding (help text
topics), 260

ToolTips (buttons), defining,
189

topic title footnote, 256

Tracer utility, 767

trackbar control, 210-213
creating, 211
initializing, 212
OnHScroll() function, 212-213

tracker rectangles (ActiveX
containers), 322-325

transactions, 582

TranslateMessage()
function, 64

tree view control, 227-232
creating, 228

CreateTreeView() function,
228-229

items
creating, 229-232
TVINSERTSTRUCT

structure, 230
TVITEM structure,

229-231

templates

855

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

notifications, 232
OnNotify() function, 232
styles, 229
Windows Explorer, 228

try block (exceptions),
608-610

using with multiple catch
blocks, 615-617

TRY macro (exceptions), 617

TryFinger() function, 458-462

TryFTPSite() function,
453-454

TryGopherSite() function,
455-456

TryURL() function, 448-452

TryWhois() function, 461-462

tuples, 560

TVINSERTSTRUCT structure
(tree view control), 230

TVITEM structure (tree view
control), 229-231

Type Info command (Edit
menu), 733

type libraries, 389-391

U
UI threads, 632

UINT data type, 778

Undo command (Edit menu),
725

Unicode, 671-672

Unlock() function, 644, 651

unnamed enums, 102

unnamed namespaces, 629

up-down control, 213-214
CreateUpDownCtrl() function,

213
styles, 214

upcasts (pointers), 686-687

UPDATE keyword (SQL
statements), 561

update-on-demand approach
(command updating), 75

updating commands, 74-76
CCmdUI object, 75-76

member functions, 75
continuous-update approach, 75
CWhoisView object, 76
update-on-demand approach, 75
with ClassWizard, 76-77

Use Extension Help command
(Help menu), 751

user interface (Visual Studio),
706-708

accelerators, 709
ClassView, 714-718

class shortcut menu
commands, 715-716

function shortcut menu
commands, 716-717

variable shortcut menu
commands, 717-718

dialog boxes, 709-710
FileView, 718
icons, 710-711
Internet Query application,

445-447
menus, 710-712, 722

Build menu, 742-744
captions, 711
Edit menu, 725-733
File menu, 722-725
Help menu, 751-752
Insert menu, 737-738
Project menu, 738-742
prompts, 711
Resource IDs, 711
Tools menu, 744-747
View menu, 733-736
Window menu, 747-751

Output view, 719
rebars, 201-204

check box controls, adding,
202-204

status bars, 193-202
appearance, setting, 199-202
command IDs, creating,

195-196
command-update handler,

creating, 198-199
CStatusBar class methods,

194
default, 195

default strings, creating,
196-197

indicator array, 196-197
panes, 194-195
setting up, 200

string tables, 711
toolbars, 186, 712, 752, 755

adding buttons, 188-192
Build Mini-bar toolbar, 755
CToolBar class member

functions, 191-193
default, 186
deleting buttons, 186-188
docked toolbars, 753
docking, 187
floating toolbars, 187
Standard toolbar, 753-754

version information, 713
views, choosing, 706-708
Workspace window, 707

user-defined messages (thread
communication), 639-640

user-messages, defining, 639

UseResource() function, 651

using keyword, 629

utilities
Character Map, 13
DiskFree, 665
DumpBin, 660-663
MFC Tracer, 767
Spy++, 660

V
values

adding to rolling-die control,
399-400

retrieving from maps, 801

variable types (ambient
properties), 417

variable values, examining
(debugging), 761-764

Variable window, 762

variables
adding to dialog box class

(ShowString application), 177
adding to documents

(ShowString application), 177

variables

856

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

class member variables,
serializing, 146

global variables, diagnostic
global variables, 778-779

member variables
displaying strings

(ShowString application),
161

m paneString, 199
objects, 676
see also properties

VBX controls, 301

version information, 713

view class, 84-87
GetDocument()

function, 86
printing functions, 133
Rectangles application

creating, 89-91
OnDraw() function, 89-90
OnLButtonDown()

function, 90
SetModifiedFlag() function,

90

view class destructor, iterating
over lists, 798

view classes, 91-93
MFC class hierarchy, 93

View menu, 733
ClassWizard command, 733
Debug Windows command, 735
Full Screen command, 735
Output command, 735
Properties command, 735
Resource Includes command,

734
Resource Symbols command,

734
ScriptWizard command, 733
Workspace command, 735

views
changing (user interface),

706-708
DataView, 570-571, 579

database diagrams, 580-581
editing databases,

579-580
registering as drop targets, 333
scrolling, 240-242

virtual functions, 68
implementing (ClassWizard),

71
OnNewDocument(), 84
Serialize(), 84

Visual Basic, building a
controller application,
387-389

Visual C++ Enterprise Edition,
560

Visual SourceSafe, 583-584
installing, 583

Visual Studio
integrated development

environment, 706
menus, 722

Build menu, 742-744
Edit menu, 725-733
File menu, 722-725
Help menu, 751-752
Insert menu, 737-738
Project menu, 738-742
Tools menu, 744-747
View menu, 733-736
Window menu, 747-751

toolbars, 752, 755
Build Mini-bar toolbar, 755
docked toolbars, 753
Standard toolbar, 753-754

user interface, 708
accelerators, 709
ClassView, 714-718
dialog boxes, 709-710
FileView, 718
icons, 710-711
menus, 710-712
Output view, 719
string tables, 711
toolbars, 712
version information, 713
views, choosing, 706-708
Workspace window, 707

Word documents, opening, 256

Visual Studio editor, 719
Insert mode, 719
Overstrike mode, 719
shortcut menu, 721-722
syntax coloring, 720
text blocks, 720-721
typing modes, 719-720

W
WaitForSingleObject()

function, 641

warning levels (compilers),
588-589

Watch window, 762

Web pages
ATL controls, 525-526
Internet Explorer, embedding

ActiveX controls, 466-469
Netscape Navigator, embedding

ActiveX controls, 469-470

Web sites
Microsoft, 449, 453, 475, 516,

582
Microsoft Control Pad, 467
Microsoft Transaction Server,

582
NCompass Labs, 469
Stardust Labs Winsock

Resource Page, 428

Win32 Application project
(AppWizard), 27

Win32 Console Application
project (AppWizard), 28

Win32 Dynamic Link Library
project (AppWizard), 28

Win32 Static Library project
(AppWizard), 28

window class, 694
c-style window class, 694
WNDCLASS structure,

members, 695
WNDCLASSA structure, 694

Window IDs, 782

Window menu, 747
Cascade command, 749
Close All command, 748
Close command, 748
Docking View command, 748
New Window command, 747
Next command, 749
Previous command, 749
Tile Horizontally command, 749
Tile Vertically command, 749
Window Split command, 748
Windows command, 750

variables

857

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

window type footnote, 257

WindowProc() function,
message maps, 67-68

windows
Call Stack, 763
ClassView, 277
creating (Windows

programming), 695-698
CreateWindow() function,

697-698
Hungarian Notation, 696-697

Disassembly, 767
displaying (ShowString

application), 385-386
frame windows, 95
Help, 245-246
Memory, 766
messages, 62
pop-up Help topic windows, 246
positioning, 107-109
QuickWatch, 762
Registers, 766
ResourceView window

(Developer Studio), 270
scrolling windows, 113-114
sizing, 107-109
types (message names), 72-73
Variable, 762
Watch, 762
Workspace window, 707

ResourceView tab, 708

Windows 95 common controls,
see common controls

Windows 95 Logo program
(MAPI), 433-435

Windows applications, 12
Advanced Options dialog box,

17-19
classnames, confirming, 19
commenting code, 19
compound document support,

15-16
database support, 14
dialog-based applications,

creating, 22-25
dynamic link libraries, 19
editing (AppWizard), 28
filenames, confirming, 19
frame properties, 18
interface appearance options,

16-17

interfaces, choosing, 12
resource language settings, 14
statically linked MFC libraries,

19
test phase, 21-22

Windows command (Window
menu), 750

Windows dialog box, 750

Windows Explorer
list view control, 217-219
tree view control, 228

Windows programming
handles, 698
window class, 694

c-style window class, 694
WNDCLASS structure, 695
WNDCLASSA structure, 694

window creation, 695-698
CreateWindow() function,

697-698
Hungarian Notation, 696-697

Windows sockets, 428-432
ChatSrvr program, 432
Chatter program, 432
connection-based, 428
Winsock, 428

CAsyncSocket member
functions, 429-431

CSocket methods, 431-432
MFC, 429-432

WinHelp() function, 255

WinInet classes, 437-438
Finger protocol queries, 458-460
FTP sites, querying, 453-455
Gopher sites, querying, 455-457
HTTP sites, querying, 448-453
Whois protocol queries, 460-462

WinMain() routine, 63

Winsock, 428
MFC, 429-432

CAsyncSocket member
functions, 429-431

CSocket methods, 431-432

Withdraw() function, 680

Wizard Demo application,
running, 281-283

wizards, 268
buttons

responding to, 285
setting, 284

changing property sheets to,
281-285

displaying wizards, 283-284
responding to wizard

buttons, 285
setting wizard buttons, 284
Wizard Demo application,

running, 281-283
wizard pages, creating, 283

displaying, 283-284
Help systems, 247
pages, creating, 283

WM COMMAND message, 247

WM CONTEXTMENU message,
247-248

programming context help, 253

WM HELP message, 247
programming context help, 253

WM PAINT message, 100-102

WNDCLASS structure,
members, 695

WNDCLASSA structure, 694

WNDPROC data type, 778

WndProc() function, 64-65

word class, 694

WORD data type, 778

Word documents, opening in
Visual Studio, 256

worker threads, 632

Workspace command (View
menu), 735

workspace options file, 708

Workspace tab (Options dialog
box), 747

Workspace window, 707
ResourceView tab, 708

workspaces, 706

WPARAM data type, 778

WPARAM parameter, 639

wrinkles (docked toolbars),
753

WriteThreadProc() function,
647

WriteThreadProc() function

858

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

writing files directly,
150-153

CFile class, 151-153
file mode flags,

152-153
member functions, 151-152

X-Y-Z
yellow arrow (debugging), 761

writing files directly

859

P?/V? Using #xxxx-x 6.19.97 Ruth Template index LP#1

Index Level One at Bottom of This Page

b3/a3/swg#4 SE Using Visual C++6 #1539-2 7.20.98 Ayanna IFC LP#3

New in this edition!!

Special Edition Using Visual C++6 has been the industry leader in providing comprehensive cover-

age of the Visual C++ and MFC features for software developers. In this edition, we have added

the latest information on advancements in Windows software development—including ActiveX

and the Internet—to the already extensive Visual C++ and MFC coverage. This edition is com-

pletely updated for version 6.0 of Visual C++. Here are some changes to look for:

New Appendix: C++ Review and Object-Oriented Concepts:

■ Working with Objects

■ Reusing Code and Design with Inheritance

■ Managing Memory

New Common Controls:

■ IP Address Control

■ Date Picker

■ Month Calendar

■ Rebars

New Features:

■ Autocomplete

■ Edit and Continue

■ New ATL Wizards

■ New View Classes

All the instructions have been revised to reflect the rearranged menus and new dialog boxes in

Visual C++ 6.0.

All the sample code and applications have been completely tested under version 6.0. The code is

available on the companion Web site at http://www.mcp.com/info.

Hope you enjoy the book,

Kate Gregory

Untitled-12 2/19/99, 10:43 AM2

b3/a3/swg#4 SEU Visual C++6 #1539-2 7.22.98 Ayanna IBC LP#3

Quick Jump Table
The following is a quick reference to help you locate some of the more important topics in the book.

Active Documents 365
ActiveX Controls 300
ActiveX Controls, Faster 475
ActiveX vs. Java Applets 474
AppWizard’s Code 29
AppWizards, Custom 601
Array Classes 784
Asynchronous Properties 480
Automation 299
CArchive Objects 153
ClassWizard Comment
Delimiters 775
Code by Class 714
Code by File 718
Code Editing 719
Collection Class Helpers 776
Collection Class Templates 802
Command Help 251
Command Updates,
Understanding 74
Commands 669
Commands, Understanding 73
Component Gallery 598
Component Object Model 298
Console Applications 26,

656
Containers and Servers 295
Context Sensitive Help 253
Control Pad 516
Controls, Adding
Properties to 497
Controls, Drawing 508
CString Formatting 777
CWnd 698
DAO 556
Data Types 777
Date Picker Control 238
Debugging Commands and
Windows 758
Debugging Vocabulary 758
Debug-Only Features 588
Device Contexts 98
Diagnostic Services 778
Dialog Box Appearance
Options 175
Dialog Box Resource 44
Dialog-Based Application 22
DLLs 26
Document Class 82
Document Templates 93
Drag and Drop 331

Dump Member Function 768
Dynamic Link Libraries 660
Errors, Finding 586
Events, Adding 517
Exception Handling 608
Exception Processing 780
Executable Size 523
Frame Windows 93
FTP Sites 453
Gopher Sites 455
Help Text 255
Help Types 244
HTTP Sites 448
Image List Control 214
Inheritance 683
init Safe 522
Interface Elements 708
Internationalization 670
Internet Query Application 444
Internet Server
API (ISAPI) Classes 438
IP Address Control 238
Java Applets 474
List Classes 791
List View Control 217
Map Classes 798
Memory Leaks 590
Memory Management 687
Menu System 722
Message Loops 63
Message Maps 65
Message-Box Display 777
Message-Map Macros 781
Messages 669
Messages, Recognizing 72
Messaging API (MAPI) 432
MFC and Printing 133
MFC Tracer 767
Microsoft Internet
Explorer 466
Microsoft Transaction
Server 582
Month Calendar Control 240
Moving, Resizing, and
 Tracking 322
Multiple Document 34
Netscape Navigator 469
Object Deletion 341
Object Embedding 294
Object Linking 292
Object Wizard 493

Objects and Persistence 140
Objects, Working with 676
ODBC 533
OLE DB 558
Optimization 594
Output and Error
Messages 719
Persistence and a
Property Page 512
Persistent Class 145
Profiling 595
Progress Bar Control 208
Property Sheets 268
Rebars 201
Registry 154
Resizing 322
Reusable Code, Writing 598
Reusing Code 683
Rich Edit Control 233
Runtime Object Model
Services 781
Scaling 124
script Safe 522
Scrolling Windows 113
ShowString Dialog Boxes 166
ShowString Menus 164
Slider Control 210
SQL 560
SQL Databases 561
Standard Command
and Window IDs 782
Standard Template
Library (STL) 625
Status Bars 193
String Class 803
Templates 617
Thread Communication 636
Thread Synchronization 643
Threads 632
Time Classes 805
Toolbars 186,

752
Tracking 322
Tree View Control 227
Type Libraries and
ActiveX 389
Up-Down Control 213
View Class 84
Windows API 698
Windows Sockets 428

Page
Topic Number

Page
Topic Number

Page
Topic Number

Untitled-11 2/19/99, 10:41 AM1

When you’re looking for computing information, consult the authority.
The Authoritative Encyclopedia of Computing at mcp.com.

The Authoritative Encyclopedia of Computing

Get the best
information and
learn about latest
developments in:

■ Design

■ Graphics and
Multimedia

■ Enterprise Computing
and DBMS

■ General Internet
Information

■ Operating Systems

■ Networking and
Hardware

■ PC and Video Gaming

■ Productivity
Applications

■ Programming

■ Web Programming
and Administration

■ Web Publishing

Resource Centers

Books & Software

Personal Bookshelf

WWW Yellow Pages

Online Learning

Special Offers

Site Search
Industry News

▼ Choose the online ebooks
that you can view from your
personal workspace on our site.

About MCP Site Map Product Support

Turn to the Authoritative
Encyclopedia of Computing

You'll find over 150 full text books online, hundreds of
shareware/freeware applications, online computing classes

and 10 computing resource centers full of expert advice
from the editors and publishers of:

• Adobe Press • Que
• BradyGAMES • Que Education & Training
• Cisco Press • Sams Publishing
• Hayden Books • Waite Group Press
• Lycos Press • Ziff-Davis Press
• New Riders

mcp.com ad 2/19/99 10:46 AM Page 861

mcp.com ad 2/19/99 10:46 AM Page 862

iContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Kate Gregory

Visual C++ 6

U
sin

g
S

p
e

c
ia

l E
d

itio
nUsing

®

201 West 103rd Street, Indianapolis, Indiana 46290

Untitled-2 2/18/99, 1:18 PM1

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

ii Special Edition Using Visual C++ 6

Special Edition Using Visual C++® 6
Copyright © 1998 by Que

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Neither is any liability assumed for damages resulting from
the use of the information contained herein.

International Standard Book Number: 0-7897-1539-2

Library of Congress Catalog Card Number: 98-84615

Printed in the United States of America

First Printing: August 1998

00 99 98 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Que cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The authors and the
publisher shall have neither liability or responsibility to any person
or entity with respect to any loss or damages arising from the infor-
mation contained in this book.

Untitled-2 2/18/99, 1:18 PM2

iiiContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Contents at a Glance

Introduction 1

I Getting Started with Visual C++

1 Building Your First Windows Application 11
2 Dialogs and Controls 43
3 Messages and Commands 61

II Getting Information from Your Applications

4 Documents and Views 81
5 Drawing on the Screen 97
6 Printing and Print Preview 121
7 Persistence and File I/O 139
8 Building a Complete Application: ShowString 159

III Improving Your User Interface

9 Status Bars and Toolbars 185
10 Common Controls 205
11 Help 243
12 Property Pages and Sheets 267

IV ActiveX Applications and ActiveX Controls

13 ActiveX Concepts 289
14 Building an ActiveX Container Application 303
15 Building an ActiveX Server Application 343
16 Building an Automation Server 373
17 Building an ActiveX Control 393

V Internet Programming

18 Sockets, MAPI, and the Internet 427
19 Internet Programming with the WinInet Classes 443
20 Building an Internet ActiveX Control 465
21 The Active Template Library 491

Untitled-2 2/18/99, 1:18 PM3

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

iv Special Edition Using Visual C++ 6

VI Advanced Programming Techniques

22 Database Access 529
23 SQL and the Enterprise Edition 559
24 Improving Your Application’s Performance 585
25 Achieving Reuse with the Gallery and Your Own AppWizards 597
26 Exceptions and Templates 607
27 Multitasking with Windows Threads 631
28 Future Explorations 655

VII Appendixes

A C++ Review and Object-Oriented Concepts 675
B Windows Programming Review and a Look Inside CWnd 693
C The Developer Studio User Interface, Menus, and Toolbars 705
D Debugging 757
E MFC Macros and Globals 773
F Useful Classes 783

Index 811

Untitled-2 2/18/99, 1:18 PM4

vContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Table of Contents

Introduction 1

Who Should Read This Book? 2

Before You Start Reading 3

What This Book Covers 3

Conventions Used in This Book 6

Time to Get Started 7

I Getting Started with
Visual C++

1 Building Your First Windows
Application 11

Creating a Windows Application 12
Deciding How Many Documents the
Application Supports 12
Databases 14
Compound Document Support 15
Appearance and Other Options 16
Other Options 19
Filenames and Classnames 19
Creating the Application 20
Try It Yourself 21

Creating a Dialog-Based Application 22

Creating DLLs, Console Applications, and
More 26

ATL COM AppWizard 26
Custom AppWizard 26
Database Project 27
DevStudio Add-In Wizard 27
ISAPI Extension Wizard 27
Makefile 27
MFC ActiveX ControlWizard 27
MFC AppWizard (DLL) 27
Win32 Application 27
Win32 Console Application 28
Win32 Dynamic Link Library 28
Win32 Static Library 28

Changing Your AppWizard Decisions 28

Understanding AppWizard’s Code 29
A Single Document Interface
Application 29
Other Files 34

Understanding a Multiple Document
Interface Application 34

Understanding the Components of a
Dialog-Based Application 37

Reviewing AppWizard Decisions and This
Chapter 40

2 Dialogs and Controls 43

Understanding Dialog Boxes 44

Creating a Dialog Box Resource 44
Defining Dialog Box and Control
IDs 46
Creating the Sample Dialog Box 46

Writing a Dialog Box Class 47

Using the Dialog Box Class 50
Arranging to Display the Dialog
Box 50
Behind the Scenes 53
Using a List Box Control 54
Using Radio Buttons 58

3 Messages and Commands 61

Understanding Message Routing 62

Understanding Message Loops 63

Reading Message Maps 65
Message Map Macros 66
How Message Maps Work 67
Messages Caught by MFC Code 69

Learning How ClassWizard Helps You
Catch Messages 69

The ClassWizard Tabbed Dialog
Box 69

Untitled-2 2/18/99, 1:19 PM5

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

vi Special Edition Using Visual C++ 6

The Add Windows Message Handler
Dialog Box 70
Which Class Should Catch the
Message? 72

Recognizing Messages 72

Understanding Commands 73

Understanding Command Updates 74

Learning How ClassWizard Helps You
Catch Commands and Command
Updates 76

II Getting Information from Your
Applications

4 Documents and Views 81

Understanding the Document Class 82

Understanding the View Class 84

Creating the Rectangles Application 87

Other View Classes 91

Document Templates, Views, and Frame
Windows 93

5 Drawing on the Screen 97

Understanding Device Contexts 98

Introducing the Paint1 Application 99

Building the Paint1 Application 100
Painting in an MFC Program 100
Switching the Display 102
Using Fonts 104
Sizing and Positioning
the Window 107
Using Pens 109
Using Brushes 110

Scrolling Windows 113

Building the Scroll Application 114
Adding Code to Increase Lines 117
Adding Code to Decrease Lines 118

6 Printing and Print Preview 121

Understanding Basic Printing and Print
Preview with MFC 122

Scaling 124

Printing Multiple Pages 126

Setting the Origin 131

MFC and Printing 133

7 Persistence and File I/O 139

Understanding Objects and
Persistence 140

Examining the File Demo Application 140
A Review of Document Classes 140
Building the File Demo
Application 141

Creating a Persistent Class 145
The File Demo 2 Application 146
Looking at the CMessages Class 146
Using the CMessages Class in the
Program 149

Reading and Writing Files Directly 150
The CFile Class 151

Creating Your Own CArchive Objects 153

Using the Registry 154
How the Registry Is Set Up 154
The Predefined Keys 155
Using the Registry in an MFC
Application 156
The Sample Applications Revisited 157

8 Building a Complete Application:
ShowString 159

Building an Application That Displays a
String 160

Creating an Empty Shell with
AppWizard 160
Displaying a String 161

Building the ShowString Menus 164

Untitled-2 2/18/99, 1:19 PM6

viiContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Building the ShowString Dialog
Boxes 166

ShowString’s About Dialog Box 167
ShowString’s Options Dialog Box 168

Making the Menu Work 169
The Dialog Box Class 170
Catching the Message 172

Making the Dialog Box Work 174

Adding Appearance Options to the Options
Dialog Box 175

Changing the Options Dialog Box 175
Adding Member Variables to the Dialog
Box Class 177
Adding Member Variables to the
Document 177
Changing OnToolsOptions() 179
Changing OnDraw() 180

III Improving Your User Interface

9 Status Bars and Toolbars 185

Working with Toolbars 186
Deleting Toolbar Buttons 186
Adding Buttons to a Toolbar 188
The CToolBar Class’s Member
Functions 191

Working with Status Bars 193
Creating a New Command ID 195
Creating the Default String 196
Adding the ID to the Indicators
Array 196
Creating the Pane’s Command-Update
Handler 198
Setting the Status Bar’s
Appearance 199

Working with Rebars 201

10 Common Controls 205

The Progress Bar Control 208
Creating the Progress Bar 208
Initializing the Progress Bar 209
Manipulating the Progress Bar 209

The Slider Control 210
Creating the Trackbar 211
Initializing the Trackbar 212
Manipulating the Slider 212

The Up-Down Control 213
Creating the Up-Down Control 213

The Image List Control 214
Creating the Image List 215
Initializing the Image List 216

The List View Control 217
Creating the List View 219
Creating the List View’s Columns 220
Creating the List View’s Items 221
Manipulating the List View 223

The Tree View Control 227
Creating the Tree View 228
Creating the Tree View’s Items 229
Manipulating the Tree View 232

The Rich Edit Control 233
Creating the Rich Edit Control 233
Initializing the Rich Edit Control 234
Manipulating the Rich Edit
Control 235

IP Address Control 238

The Date Picker Control 238

Month Calendar Control 240

Scrolling the View 240

11 Help 243

Different Kinds of Help 244
Getting Help 244
Presenting Help 245
Using Help 246
Programming Help 247

Components of the Help System 248

Help Support from AppWizard 249

Planning Your Help Approach 250

Programming for Command Help 251

Programming for Context Help 253

Untitled-2 2/18/99, 1:19 PM7

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

viii Special Edition Using Visual C++ 6

Writing Help Text 255
Changing Placeholder Strings 257
Adding Topics 259
Changing the How to Modify Text
Topic 263

Adjustments to the Contents 264

12 Property Pages and Sheets 267

Introducing Property Sheets 268

Creating the Property Sheet Demo
Application 269

Creating the Basic Files 269
Editing the Resources 270
Adding New Resources 273
Associating Your Resources with
Classes 275
Creating a Property Sheet Class 276

Running the Property Sheet Demo
Application 279

Adding Property Sheets to Your
Applications 280

Changing Property Sheets to
Wizards 281

Running the Wizard Demo
Application 281
Creating Wizard Pages 283
Displaying a Wizard 283
Setting the Wizard’s Buttons 284
Responding to the Wizard’s
Buttons 285

IV ActiveX Applications and
ActiveX Controls

13 ActiveX Concepts 289

The Purpose of ActiveX 290

Object Linking 292

Object Embedding 294

Containers and Servers 295

Toward a More Intuitive User
Interface 296

The Component Object Model 298

Automation 299

ActiveX Controls 300

14 Building an ActiveX Container
Application 303

Changing ShowString 304
AppWizard-Generated ActiveX
Container Code 304
Returning the ShowString
Functionality 321

Moving, Resizing, and Tracking 322

Handling Multiple Objects and Object
Selection 325

Hit Testing 325
Drawing Multiple Items 326
Handling Single Clicks 327
Handling Double-Clicks 330

Implementing Drag and Drop 331
Implementing a Drag Source 331
Implementing a Drop Target 332
Registering the View as a Drop
Target 333
Setting Up Function Skeletons and
Adding Member Variables 333
OnDragEnter() 335
OnDragOver() 337
OnDragLeave() 339
OnDragDrop() 339
Testing the Drag Target 341

Deleting an Object 341

15 Building an ActiveX Server
Application 343

Adding Server Capabilities to
ShowString 344

AppWizard’s Server Boilerplate 344
Showing a String Again 360

Applications That Are Both Container and
Server 365

Building Another Version of
ShowString 365
Nesting and Recursion Issues 365

Untitled-2 2/18/99, 1:19 PM8

ixContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Active Documents 365
What Active Documents Do 367
Making ShowString an Active
Document Server 367

16 Building an Automation
Server 373

Designing ShowString Again 374
AppWizard’s Automation
Boilerplate 374
Properties to Expose 377
The OnDraw() Function 382
Showing the Window 385

Building a Controller Application in
Visual Basic 387

Type Libraries and ActiveX Internals 389

17 Building an ActiveX Control 393

Creating a Rolling-Die Control 394
Building the Control Shell 394
AppWizard’s Code 396
Designing the Control 399

Displaying the Current Value 399
Adding a Property 399
Writing the Drawing Code 401

Reacting to a Mouse Click and
Rolling the Die 403

Notifying the Container 404
Rolling the Die 406

Creating a Better User Interface 407
A Bitmap Icon 407
Displaying Dots 407

Generating Property Sheets 412
Digits Versus Dots 412
User-Selected Colors 416

Rolling on Demand 422

Future Improvements 422
Enable and Disable Rolling 422
Dice with Unusual Numbers
of Sides 423
Arrays of Dice 423

V Internet Programming

18 Sockets, MAPI, and the
Internet 427

Using Windows Sockets 428
Winsock in MFC 429

Using the Messaging API (MAPI) 432
What Is MAPI? 432
Win95 Logo Requirements 433
Advanced Use of MAPI 435

Using the WinInet Classes 437

Using Internet Server API (ISAPI)
Classes 438

19 Internet Programming with the
WinInet Classes 443

Designing the Internet Query
Application 444

Building the Query Dialog Box 445

Querying HTTP Sites 448

Querying FTP Sites 453

Querying Gopher Sites 455

Using Gopher to Send a Finger
Query 458

Using Gopher to Send a Whois
Query 460

Future Work 462

20 Building an Internet ActiveX
Control 465

Embedding an ActiveX Control in a
Microsoft Internet Explorer Web
Page 466

Embedding an ActiveX Control in a
Netscape Navigator Web Page 469

Registering as Safe for Scripting and
Initializing 470

Untitled-2 2/18/99, 1:19 PM9

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

x Special Edition Using Visual C++ 6

Choosing Between ActiveX and Java
Applets 474

Using AppWizard to Create Faster
ActiveX Controls 475

Speeding Control Loads with
Asynchronous Properties 480

Properties 480
Using BLOBs 481
Changing Dieroll 482
Testing and Debugging Dieroll 487

21 The Active Template Library 491

Why Use the ATL? 492

Using AppWizard to Get Started 492

Using the Object Wizard 493
Adding a Control to the Project 493
Naming the Control 494
Setting Control Attributes 495
Supporting Stock Properties 497

Adding Properties to the Control 497
Code from the Object Wizard 498
Adding the ReadyState Stock
Property 500
Adding Custom Properties 500
Initializing the Properties 503
Adding the Asynchronous
Property 504

Drawing the Control 508

Persistence and a Property Page 512
Adding a Property Page 512
Connecting the Property Page to
CDieRoll 516
Persistence in a Property Bag 516

Using the Control in Control Pad 516

Adding Events 517
Adding Methods to the Event
Interface 517
Implementing the IConnectionPoint
Interface 518
Firing the Click Event 519
Firing the ReadyStateChange
Event 519

Exposing the DoRoll() function 520

Registering as init Safe and script
Safe 522

Preparing the Control for Use in Design
Mode 522

Minimizing Executable Size 523

Using the Control in a Web Page 525

VI Advanced Programming
Techniques

22 Database Access 529

Understanding Database Concepts 530
Using the Flat Database Model 530
Using the Relational Database
Model 531
Accessing a Database 532
The Visual C++ ODBC Classes 533

Creating an ODBC Database
Program 533

Registering the Database 533
Creating the Basic Employee
Application 535
Creating the Database Display 539
Adding and Deleting Records 542
Examining the OnRecordAdd()
Function 549
Examining the OnMove()
Function 549
Examining the OnRecordDelete()
Function 550
Sorting and Filtering 550
Examining the OnSortDept()
Function 555
Examining the DoFilter()
Function 556

Choosing Between ODBC and DAO 556

OLE DB 558

Untitled-2 2/18/99, 1:19 PM10

xiContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

23 SQL and the Enterprise
Edition 559

What’s in the Enterprise Edition? 560

Understanding SQL 560

Working with SQL Databases
from C++ 561

Exploring the Publishing Application 562
Setting Up the Data Source 562
Building the Application Shell 566
Making a Data Connection 568
Working with Query Designer 570
Stored Procedures 571
Writing a New Stored Procedure 574
Connecting the Stored Procedure
to C++ Code 575

Working with Your Database 579
Database Designer 579
Database Diagrams 580

Understanding Microsoft Transaction
Server 582

Using Visual SourceSafe 583

24 Improving Your Application’s
Performance 585

Preventing Errors with ASSERT and
TRACE 586

ASSERT: Detecting Logic Errors 586
TRACE: Isolating Problem Areas in
Your Program 587

Adding Debug-Only Features 588

Sealing Memory Leaks 590
Common Causes of Memory
Leaks 590
Debug new and delete 591
Automatic Pointers 592

Using Optimization to Make Efficient
Code 594

Finding Bottlenecks by Profiling 595

25 Achieving Reuse with the Gallery
and Your Own AppWizards 597

Reviewing the Benefits of Writing Reusable
Code 598

Using Component Gallery 598
Adding a Component to
the Gallery 599
Using Gallery Components in Your
Projects 600
Exploring the Gallery 601

Introducing Custom AppWizards 601

26 Exceptions and Templates 607

Understanding Exceptions 608
Simple Exception Handling 609
Exception Objects 610
Placing the catch Block 611
Handling Multiple Types
of Exceptions 615
The Old Exception Mechanism 617

Exploring Templates 617
Introducing Templates 618
Creating Function Templates 618
Creating Class Templates 620

The Standard Template Library 625
Managed Pointer Templates:
auto_ptr 625
Other Useful STL Templates 626

Understanding Namespaces 627
Defining a Namespace 627
Namespace Scope Resolution 628
Unnamed Namespaces 629
Namespace Aliases 629

27 Multitasking with Windows
Threads 631

Understanding Simple Threads 632

Understanding Thread
Communication 636

Communicating with Global
Variables 636

Untitled-2 2/18/99, 1:20 PM11

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

xii Special Edition Using Visual C++ 6

Communicating with User-Defined
Messages 639
Communicating with Event
Objects 640

Using Thread Synchronization 643
Using Critical Sections 643
Using Mutexes 648
Using Semaphores 650

28 Future Explorations 655

Creating Console Applications 656
Creating a Console Executable 656
Writing an Object-Oriented Console
Application 657
Scaffolding Discrete Algorithms 659

Creating and Using a 32-Bit Dynamic
Link Library 660

Making a 32-Bit DLL 664
Using 32-Bit DLLs 667

Sending Messages and Commands 669

Considering International Software
Development Issues 670

VII Appendixes

A C++ Review and Object-Oriented
Concepts 675

Working with Objects 676
What Is an Object? 676
Why Use Objects? 677
What Is a Class? 678
Where Are the Functions? 679
How Are Objects Initialized? 681
What Is Overloading? 682

Reusing Code and Design with
Inheritance 683

What Is Inheritance? 683
What Is Protected Access? 685
What Is Overriding? 685
What Is Polymorphism? 686

Managing Memory 687
Allocating and Releasing Memory 687
Pointers as Member Variables 688
Dynamic Objects 689
Destructors and Pointers 690
Running Destructors Accidentally 691
What Else Should I Know? 691

B Windows Programming Review and a
Look Inside CWnd 693

Programming for Windows 694
A C-Style Window Class 694
Window Creation 695

Encapsulating the Windows API 698

Inside CWnd 698

Getting a Handle on All These
MFC Classes 701

CObject 701
CCmdTarget 701
CWnd 702
All Those Other Classes 702

C The Visual Studio User Interface,
Menus, and Toolbars 705

Reviewing Developer Studio: An Integrated
Development Environment 706

Choosing a View 706

Looking at Interface Elements 708
Accelerators 709
Dialog Boxes 709
Icons 710
Menus 710
The String Table 711
Toolbars 712
Version Information 713

Looking at Your Code, Arranged by
Class 714

Looking at Your Code, Arranged by
File 718

Output and Error Messages 719

Untitled-2 2/18/99, 1:20 PM12

xiiiContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Editing Your Code 719
Basic Typing and Editing 719
Working with Blocks of Text 720
Syntax Coloring 720
Shortcut Menu 721

Learning the Menu System 722
Using the File Menu 722
Edit 725
Using the View Menu 733
Insert 737
Project 738
Build 742
Tools 744
Window 747
Help 751

Reviewing Toolbars 752
Standard Toolbar 753
Build Mini-bar 755
Using Other Toolbars 755

D Debugging 757

Debugging Vocabulary 758

Debugging Commands and Windows 758
Menu Items 759
Setting Breakpoints 760
Examining Variable Values 761
Stepping Through Code 763
Edit and Continue 764
Other Debug Windows 766

Using MFC Tracer 767

Defining a Dump Member Function 768
An Example Using CDumpContext,
CFile, and axfDump 769

E MFC Macros and Globals 773

Application Information and Management
Functions 774

ClassWizard Comment Delimiters 775

Collection Class Helper Functions 776

CString Formatting and Message-Box
Display 777

Data Types 777

Diagnostic Services 778

Exception Processing 780

Message-Map Macros 781

Runtime Object Model Services 781

Standard Command and Window IDs 782

F Useful Classes 783

The Array Classes 784
Introducing the Array Application 785
Declaring and Initializing the
Array 788
Adding Elements to the Array 788
Reading Through the Array 789
Removing Elements from the
Array 790

The List Classes 791
Introducing the List Application 792
Declaring and Initializing the List 794
Adding a Node to the List 795
Deleting a Node from the List 796
Iterating Over the List 797
Cleaning Up the List 798

The Map Classes 798
Introducing the Map Application 799
Creating and Initializing the Map 800
Retrieving a Value from the Map 801
Iterating Over the Map 802

Collection Class Templates 802

The String Class 803

The Time Classes 805
Using a CTime Object 806
Using a CTimeSpan Object 809

Index 811

Untitled-2 2/18/99, 1:20 PM13

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

xiv Special Edition Using Visual C++ 6

Untitled-2 2/18/99, 1:20 PM14

xvContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Credits

EXECUTIVE EDITOR
Bradley L. Jones

ACQUISITIONS EDITOR
Kelly Marshall

DEVELOPMENT EDITOR
Matt Purcell

MANAGING EDITOR
Jodi Jensen

SENIOR EDITOR
Susan Ross Moore

COPY EDITORS
Susan M. Dunn
Kate O. Givens
Kate Talbot

INDEXER
Greg Pearson

TECHNICAL EDITOR
Olaf Meding

SOFTWARE DEVELOPMENT SPECIALIST
Andrea Duvall

PRODUCTION
Carol Bowers
Mona Brown
Ayanna Lacey
Gene Redding

Untitled-2 2/18/99, 1:20 PM15

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

xvi Special Edition Using Visual C++ 6

About the Author
Kate Gregory is a founding partner of Gregory Consulting Limited (www.gregcons.com),
which has been providing consulting and development services throughout North America
since 1986. Her experience with C++ stretches back to before Visual C++ existed—she enthusi-
astically converted upon seeing the first release. Gregory Consulting develops software and
Web sites and specializes in combining software development with Web site development to
create active sites. They build quality custom and off-the-shelf software components for Web
pages and other applications.

Untitled-2 2/18/99, 1:20 PM16

xviiContents

B3A3 swg4 UsingVisual C++6 1539-2 7.22.98 Ayanna FM LP#3

Dedication

To my children, Beth and Kevin, who keep me connected to the world away
from the keyboard, and remind me every day how good it feels to learn new
things.

Acknowledgments
Writng a book is hard, hard work. What makes it possible is the support I get from those
around me. First, as always, my family, Brian, Beth, and Kevin, who know it’s only temporary.
Brian does double duty as both supportive husband and world’s best technical editor. This
time around I was lucky enough to have Bryan Oliver helping, shooting figures, testing code,
finding bugs, and generally pitching in. Thanks, Bryan.

There’s an army of editors, proofers, indexers, illustrators, and general saints who turn my
Word documents into the book you hold in your hand. Many of the team members this time
have been involved in other Que projects with me, and I know that I landed the “good ones” for
this book. Special mention has to go to Olaf Meding, who provided a terrific tech edit based on
a fast-changing product. Joe Massoni and Mike Blaszczak at Microsoft have also earned my
gratitude during this release cycle.

While I cheerfully share the credit for the accurate and educational aspects of this book, the
mistakes and omissions I have to claim as mine alone. Please bring them to my attention so
that they can be corrected in subsequent printings and editions. I am as grateful as ever to
readers who have done so in the past, and improved this book in the process.

Untitled-2 2/18/99, 1:20 PM17

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As the Executive Editor for the Programming team at Macmillan Computer Publishing, I wel-
come your comments. You can fax, email, or write me directly to let me know what you did or
didn’t like about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author
and editors who worked on the book.

Fax: 317-817-7070

Email: adv_prog@mcp.com

Mail: Executive Editor
Programming
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Untitled-2 2/18/99, 1:21 PM18

	New in this Edition
	Quick Jump Table
	Turn to the Authoritative Encyclopedia of Computing
	SE Using Visual C++ 6
	Copyright © 1998 by Que
	Contents at a Glance
	Table of Contents
	Credits
	About the Author
	Dedication & Acknowledgments
	Tell Us What You Think!

	Introduction
	Who Should Read This Book?
	Before You Start Reading
	What This Book Covers
	Conventions Used in This Book
	Time to Get Started

	Part I Getting Started with Visual C++
	Ch 1 Building Your First Windows Application
	Ch 2 Dialogs and Controls
	Ch 3 Messages and Commands

	Part II Getting Information from Your Applications
	Ch 4 Documents and Views
	Ch 5 Drawing on the Screen
	Ch 6 Printing and Print Preview
	Ch 7 Persistence and File I/O
	Ch 8 Building a Complete Application: ShowString

	Part III Improving Your User Interface
	Ch 9 Status Bars and Toolbars
	Ch 10 Common Controls
	Ch 11 Help
	Ch 12 Property Pages and Sheets

	Part IV ActiveX Applications and ActiveX Controls
	Ch 13 ActiveX Concepts
	Ch 14 Building an ActiveX Container Application
	Ch 15 Building an ActiveX Server Application
	Ch 16 Building an Automation Server
	Ch 17 Building an ActiveX Control

	Part V Internet Programming
	Ch 18 Sockets, MAPI, and the Internet
	Ch 19 Internet Programming with the WinInet Classes
	Ch 20 Building an Internet ActiveX Control
	Ch 21 The Active Template Library

	Part VI Advanced Programming Techniques
	Ch 22 Database Access
	Ch 23 SQL and the Enterprise Edition
	Ch 24 Improving Your Application’s Performance
	Ch 25 Achieving Reuse with the Gallery and Your Own AppWizards
	Ch 26 Exceptions and Templates
	Ch 27 Multitasking with Windows Threads
	Ch 28 Future Explorations

	Part VII Appendixes
	A: C++ Review and Object-Oriented Concepts
	B: Windows Programming Review and a Look Inside CWnd
	C: The Visual Studio User Interface, Menus, and Toolbars
	D: Debugging
	E: MFC Macros and Globals
	F: Useful Classes

	Index

	page one:

